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Abstract—Open radio access network (O-RAN) architecture
enables proactive network management through AI/ML inte-
gration. This addresses limitations of reactive approaches that
respond only after service degradation. This paper presents
a practical framework using the O1 interface to collect real-
time key performance indicators (KPIs) and radio resource
control (RRC) messages. We implement a complete Kubernetes-
based O-RAN testbed. The testbed includes service management
and orchestration (SMO), O1 Adapter, and AI/ML Framework
(AIMLFW). We propose an anomaly prediction approach using
long short-term memory (LSTM) autoencoders. The system
achieves detection through the O1 interface with sub-30-second
latency. We validate the framework through extensive robustness
testing under data loss, delayed reports, and measurement noise.
The multi-layered detection strategy achieves 95.0% F1-score
while maintaining production-ready reliability. Evaluation results
demonstrate 23% latency reduction, 35% packet loss reduction,
and 41% handover failure reduction using an O1-compliant
custom simulator.

Index Terms—O-RAN, O1 Interface, LSTM Autoencoder,
Anomaly Detection, RRC Optimization, QoE Enhancement,
Closed-Loop Control, Time-Series Prediction

I. INTRODUCTION

Open Radio Access Networks (O-RAN) represent a fun-
damental shift in mobile network architecture [1]. O-RAN
introduces disaggregated, vendor-neutral components orches-
trated through standardized interfaces. The integration of
AI/ML capabilities within RAN intelligent controllers (RICs)
facilitates this transformation. This enables proactive network
optimization that was unachievable in traditional monolithic
architectures [2].

Currently, 5G/6G networks face unprecedented complex-
ity driven by heterogeneous traffic patterns [3]. Ultra-high-
definition streaming, low-latency gaming, and cloud virtual re-
ality (VR) applications require different quality-of-experience
(QoE) guarantees. To satisfy these diverse QoE requirements,
the O-RAN architecture adopts service management and or-
chestration (SMO), which interfaces with RAN intelligent
controllers and AI/ML training platforms via standardized
interfaces including A1, E2, and O1 [4], [5].

Despite extensive theoretical frameworks for SMO-based
management, practical end-to-end implementations remain
scarce. Most existing research focuses on individual interface
specifications without demonstrating complete SMO deploy-

ment. This deployment must integrate data collection, intel-
ligent analysis, and automated actuation. While AI/ML inte-
gration is widely discussed in O-RAN literature, production-
ready implementations validating closed-loop control through
standardized interfaces are notably absent.

This paper presents a complete end-to-end SMO implemen-
tation leveraging the O1 interface for comprehensive network
management. Our system demonstrates practical feasibility of
SMO-driven autonomous network optimization. We validate
this through LSTM-based anomaly detection as a practical
use case. The implementation addresses critical gaps in ex-
isting work. First, it provides full SMO deployment spanning
O1 Adapter integration, AI/ML framework coupling, and
automated policy enforcement. Second, it validates closed-
loop control achieving sub-30-second response times through
3GPP-compliant interfaces. Third, it demonstrates production-
ready integration across Kubernetes-orchestrated microser-
vices. Fourth, it provides comprehensive robustness analysis
under realistic impairment conditions.

The major contributions of this paper are summarized as
follows:

• Complete O1 interface implementation for data collection
and parameter control.

• SMO and AI/ML framework integration for intelligent
network management.

• LSTM-based anomaly detection with closed-loop au-
tomation.

• Production-ready Kubernetes deployment.
• Comprehensive robustness testing under realistic network

conditions.

II. RELATED WORK

A. SMO Implementation Approaches

Despite extensive theoretical frameworks, practical end-
to-end SMO implementations remain scarce in existing O-
RAN research. Tabiban et al. provided foundational analysis
of signaling storm phenomena in O-RAN environments [6].
Their work categorized threat models including massive UE
attachment scenarios, malicious traffic injection, and cascading
failure propagation. The proposed signaling storm protection
schema (SSPS) framework emphasizes RIC-based intelligent



TABLE I
COMPARISON WITH EXISTING O-RAN IMPLEMENTATIONS

Feature [6] [7] Ours

Interface Coverage Theory E2 Only O1+A1+R1
Detection Method Concept Threshold LSTM Multi-tier
Prediction No No Yes (3-step)
Response Time N/A <1s <30s
Detection Layers Single Single Four-tier
Deployment No Partial Full K8s
End-to-End No E2 Only Complete
Robustness Test No No Yes

monitoring and AI/ML-driven intervention. However, this the-
oretical framework lacks complete SMO deployment. Missing
elements include O1 interface data collection integration,
AI/ML framework coupling, and automated policy enforce-
ment across production-grade infrastructure.

B. O-RAN Interface Implementations

Prior work leverages individual O-RAN interfaces without
full SMO orchestration. Bogucka et al. constructed an oper-
ational O-RAN testbed for detecting radio-access anomalies
[7]. Their jamming detection xApp (JD-xApp) demonstrates
closed-loop automation through the E2 interface. The xApp re-
ceives ACK/NACK reports from E2 nodes and analyzes block
error rate (BLER) patterns. When BLER exceeds thresholds,
the system detects jamming and autonomously adjusts modula-
tion and coding scheme (MCS) parameters. Their implemen-
tation validated millisecond-scale response times for xApp-
driven interventions. This demonstrates technical feasibility of
automated RAN parameter control.

However, the E2-focused approach operates independently
without complete SMO integration. This provides limited
visibility into management-plane KPIs and configuration state
accessible through the O1 interface. Threshold-based detection
mechanisms operate reactively after anomaly manifestation
rather than enabling predictive intervention.

C. AI/ML Integration in RAN

Recent literature explores various ML techniques for RAN
optimization. Chen et al. demonstrated reinforcement learning
for dynamic spectrum allocation [8]. Wang et al. applied
graph neural networks for interference prediction in dense
deployments [9]. These works validate AI/ML efficacy for
specific optimization objectives. However, they lack SMO-
integrated deployment demonstrating end-to-end automation
from data collection through intelligent analysis to policy
enforcement.

D. Comparative Analysis

Table I compares our implementation with existing ap-
proaches across key dimensions. Our work distinguishes itself
through complete O1-based SMO implementation validated
via LSTM-based anomaly detection. We address the full
workflow spanning three components: standardized O1 data
collection through NETCONF and VES protocols, AI/ML
framework integration for intelligent analysis, and auto-
mated NETCONF-based parameter reconfiguration orches-
trated through SMO.

Fig. 1. O-RAN integration architecture

Fig. 2. Six-layer closed-loop architecture

Key Differentiators: (1) First complete O1-based SMO-
AI/ML integration with full closed-loop control, (2) Only
implementation combining predictive LSTM with multi-tier
defense strategy, (3) Comprehensive robustness validation un-
der realistic impairment conditions.

III. SYSTEM ARCHITECTURE AND DESIGN

This section presents our comprehensive O-RAN integra-
tion framework addressing identified gaps through end-to-
end O1 interface implementation. The proposed architecture
spans from RAN simulation through intelligent detection to
automated parameter enforcement. It realizes the closed-loop
vision articulated in prior theoretical work. The system extends
capabilities through predictive LSTM-based anomaly detec-
tion.

Fig. 1 presents the complete O-RAN integration topology.
The gNodeB simulator (Port 9091) interfaces with the O1
Adapter layer. The adapter exposes three standardized inter-
faces: NETCONF (Port 830) for configuration management,
VES (Port 8443) for event streaming, and PM Files for
performance measurements. The SMO layer aggregates these
through corresponding client components. Data is published
to the Kafka message bus. The AI/ML Framework consumes
data via RANPM (RAN Performance Management) for feature
extraction and Training components for model development.

A. Overall Architecture

Our integration framework follows a six-layer architecture.
This spans the data source, storage, detection, policy decision,
protocol translation, and RAN actuation layers as illustrated in



Fig. 2. This design adheres to O-RAN Alliance specifications.
It integrates AIMLFW components to create a production-
grade closed-loop optimization system.

The architecture follows four key design principles. First,
standardization compliance is achieved through 3GPP O1
interface implementation using NETCONF/YANG models.
Second, modularity is enabled via containerized microservices
supporting independent scaling. Third, real-time performance
delivers sub-second data collection latency and sub-30-second
detection-to-action pipeline. Fourth, multi-layered defense em-
ploys four-tier anomaly detection for comprehensive coverage.

The Data Source Layer generates network telemetry through
the data-collector component. Measurements are posted via
HTTP to the O1 Storage Layer. The storage layer is imple-
mented using InfluxDB for time-series persistence. The AI/ML
Detection Layer retrieves windowed observations through Flux
queries. It executes both rule-based and ML-based anomaly
analysis. Upon detecting deviations, the system triggers HTTP
POST requests to the Policy Decision Layer. The Policy
Decision Layer (o1-actuator) maps anomaly types to appro-
priate RRC parameter adjustments. The Protocol Translation
Layer (rest-netconf-bridge) converts HTTP-based policies into
NETCONF RPC operations. These operations conform to
3GPP YANG schemas. They ultimately reach the RAN Actu-
ation Layer where the gNodeB simulator applies configuration
changes.

B. Data Source Layer

The data collection subsystem implements dynamic pa-
rameter variation. This emulates realistic network operational
scenarios. The gNodeB simulator employs cyclic patterns
where UE count varies from one to ten concurrent users. Cell
load oscillates at twelve-second intervals. The simulator gener-
ates JSON-formatted responses containing critical parameters:
throughput, latency, handover counts, and resource utilization
metrics. The simulator provides comprehensive RRC-level
parameters. These include reference signal received power
(RSRP), reference signal received quality (RSRQ) measure-
ments, and connection state indicators aligned with 3GPP
specifications.

The data collector serves dual functions as both a KPI gen-
erator and an anomaly simulator. It operates on a deterministic
five-minute cycle. The system remains in normal mode for four
minutes before introducing one of three anomaly types for the
final minute. Latency spike anomalies model network conges-
tion or processing delays by significantly increasing latency.
Throughput burst anomalies represent flash-crowd behavior
or scheduled high-volume transfers by sharply raising data
rates. Mobility storm anomalies generate excessive handover
events. This reflects unstable coverage conditions or rapid
user movement. Each collected sample is explicitly labeled
according to its anomaly category. This enables supervised
validation of anomaly detection performance.

C. O1 Interface and Data Storage Layer

The O1 interface implementation adheres to 3GPP TS
28.532 specifications for management services. InfluxDB
serves as the time-series database enabling scalable storage
and retrieval of performance data. The database is structured
to support efficient time-range querying for both historical
analysis and real-time operational monitoring.

Performance data is continuously ingested at twelve-second
intervals through lightweight HTTP-based communication.
Database write operations are optimized to remain within sub-
second latency budgets. This includes transmission, validation,
and archival storage. Long-term data retention is supported
by automated policies. These maintain full-resolution observa-
tions for the most recent 24-hour period while consolidating
older records into aggregated summaries.

D. AI/ML Detection Layer with False Positive Mitigation

The detection layer implements a four-tier strategy: (1)
spike-detector for rule-based immediate response querying
InfluxDB every 30 seconds, (2) LSTM-detector using au-
toencoder reconstruction error for pattern-based confirmation,
(3) early-warning-detector forecasting three time-steps ahead
for predictive intervention, (4) RRC-analyzer examining RSR-
P/RSRQ trends for root cause analysis. Detailed tier interaction
logic is presented in Section III-F.

To address transient load spikes (60% of false alarms)
and measurement noise (25%), we implement two mitiga-
tion strategies. Persistence-based filtering requires anomaly
persistence across N consecutive measurements before trig-
gering actions. Feature-specific adaptive thresholds apply dif-
ferent sensitivities per KPI: Latency (µ + 2.5σ), Throughput
(µ + 2.0σ), Handover (µ + 1.5σ). Section VI evaluates these
strategies, demonstrating 34% false positive reduction with
N=3 persistence.

E. Policy Decision and Protocol Translation

The o1-actuator receives anomaly notifications via REST
interface and maps them to RRC parameter adjustments: DRX
cycle extension (40ms → 80ms) for latency spikes, buffer
allocation increase (100KB → 200KB) for throughput bursts,
and handover threshold adjustment (3dB → 5dB) for mobility
instability.

The rest-netconf-bridge translates HTTP-based policies into
NETCONF edit-config operations conforming to 3GPP YANG
models (o-ran-sc-odu-alarm, o-ran-sc-odu-cell-meas, o-ran-sc-
odu-ueinfo), ensuring vendor-neutral interoperability.

F. Multi-Tier Decision Logic

The four tiers operate with distinct interaction patterns.
Tier 1 (spike-detector) executes immediate independent ac-
tions upon threshold violations (e.g., latency > 100ms →
DRX extended to 80ms). Tier 2 (LSTM-detector) provides
confirmation or override: if Tier 1 triggered, it validates the
decision; if Tier 1 missed subtle anomalies, it issues new
policies; if false alarm detected, it sends cancellation signals.
Tier 3 (early-warning) operates preemptively with highest



1 [SPIKE] Latency=151.60ms at 2025-11-24 08:54:59
2 [ACTION] HTTP 200
3 [BURST] Throughput=29.47Mbps at 2025-11-24 08:56:35
4 [ACTION] HTTP 200
5 [SPIKE] Latency=165.39ms at 2025-11-24 08:59:23
6 [ACTION] HTTP 200
7 [STORM] Throughput=24.52Mbps at 2025-11-24 09:06:36
8 [ACTION] HTTP 200

Listing 1. Spike-detector anomaly identification output

1 {
2 "policy": "latency-spike",
3 "action": "increaseDRX",
4 "target": "NRCELLDU-1",
5 "params": {"drxCycle": 80}
6 }
7 {
8 "policy": "traffic-burst",
9 "action": "adjustBuffer",

10 "target": "NRCELLDU-1",
11 "params": {"bufferSize": 200}
12 }

Listing 2. O1-actuator policy execution payload

1 Table: keys: [_field, _measurement, actor]
2 _field:string _measurement:string actor:string
3 forward_status o1_apply o1-actuator
4 payload_json o1_apply o1-actuator
5
6 {"policy":"latency-spike","action":"increaseDRX",
7 "target":"NRCELLDU-1","params":{"drxCycle":80}}
8 {"policy":"traffic-burst","action":"adjustBuffer",
9 "target":"NRCELLDU-1","params":{"bufferSize":200}}

Listing 3. InfluxDB validation query results

priority, forecasting anomalies 60 seconds ahead to enable
proactive load reduction. Tier 4 (RRC-analyzer) performs
post-hoc analysis without direct policy execution, generating
RSRP/RSRQ trend reports that inform next-cycle threshold
adjustments.

This hierarchical design ensures coverage across the de-
tection latency spectrum, balancing sub-30-second immediate
response with deep pattern validation.

G. RAN Actuation and Distributed Deployment

The O1 adapter implements dual protocol stacks: NET-
CONF server (RFC 6241, port 830) for configuration man-
agement and operational state queries, and VES client for
asynchronous event notifications including performance mea-
surements and fault management [10]. Our testbed employs
mock-o1 simulator as echo server validating parameter recep-
tion and logging applied configurations.

The system deploys across five Kubernetes namespaces
(ran, smo, onap, traininghost, monitoring) providing logi-
cal isolation with controlled communication paths. Multi-
layer authentication includes Keycloak OAuth2 for service-to-
service auth, Strimzi Kafka SCRAM-SHA-512 for message
bus authorization, and TLS certificates for VES endpoints.

IV. LSTM-BASED ANOMALY DETECTION

A. Rationale for LSTM Autoencoders

Time-series anomaly detection in telecommunications net-
works presents unique challenges. First, temporal dependen-
cies cause current network KPIs to exhibit strong autocor-
relation with historical patterns. Second, multivariate inter-
actions occur where latency spikes often precede throughput
degradation and handover storms correlate with load increases.
Third, non-stationarity arises as traffic patterns vary diurnally

and seasonally. Fourth, subtle precursors emerge where early
anomaly indicators may be statistically insignificant individu-
ally but collectively predictive.

LSTM autoencoders address these challenges through mul-
tiple capabilities. Sequence learning captures temporal de-
pendencies across sliding windows. These encompass 120
seconds of historical data. Unsupervised training methodology
learns normal operational patterns without requiring labeled
anomaly data. Reconstruction error quantification measures
deviation from expected behavior via MSE metrics. Predictive
capability enables forecasting of next time-step values for early
intervention.

B. Network Architecture and Hyperparameter Selection

Our LSTM autoencoder employs encoder-decoder structure
with symmetric design. The encoder uses two recurrent layers
(64 and 32 units) processing ten historical samples across four
performance metrics (throughput, latency, handover count, cell
load). The decoder reconstructs the original feature patterns
through sequential layers.

Hyperparameters are configured to reflect operational net-
work characteristics. The 10-sample sequence (120 seconds)
captures one complete RRC reconfiguration cycle (60-180
seconds), achieving optimal validation loss (0.023) compared
to 5-sample (0.031) and 15-sample (0.025) windows. The
threshold of µ + 2σ maximizes F1-score (0.95) while en-
compassing 95.4% of normal data. The 32-unit latent space
provides 80% compression with information loss below 5%.
Training for 50 epochs uses Adam optimizer with MSE loss,
with validation loss plateauing at epoch 45.

C. Detection Algorithm

The detection algorithm operates through sequential stages:
(1) Input preparation normalizes time-series data using Stan-
dardScaler fitted on training distribution, (2) Forward pass
feeds normalized sequence through trained LSTM autoen-
coder to generate reconstructed output, (3) Error computation
calculates reconstruction MSE as mean squared difference
between original and reconstructed values across all features
and time-steps, (4) Threshold comparison evaluates MSE
against adaptive threshold set at training distribution mean
plus two standard deviations, (5) Anomaly classification: Upon
threshold exceedance, analyze feature contributions to total re-
construction error. Dominant latency error with mean exceed-
ing 100ms triggers SPIKE classification. Dominant throughput
error with mean exceeding 20 Mbps indicates BURST clas-
sification. Dominant handover error with count exceeding 20
events yields STORM classification. The classified anomaly
type propagates to the policy decision layer for appropriate
parameter adjustment.

V. EXPERIMENTAL VALIDATION

A. Testing Methodology and Infrastructure

Our validation environment employs comprehensive multi-
interface monitoring. Four distinct terminal interfaces provide
real-time visibility: gNodeB simulator operations tracking



Fig. 3. End-to-end latency decomposition with percentile markers

telemetry generation patterns, O1 Adapter behavior capturing
parsing operations and VES event generation, VES Collector
operations documenting event reception and Kafka publica-
tion activities, and InfluxDB query operations tracking data
availability and retrieval characteristics.

Listings 1–3 illustrate the operational monitoring environ-
ment during anomaly detection and actuation cycles. Real-
time log aggregation confirms end-to-end data flow across
all integration points under continuous operation. Extended
testing over 72-hour periods demonstrated zero packet loss
and maintained consistent performance characteristics without
degradation.

Hardware configuration comprises a Kubernetes cluster with
three nodes. Each node provides 16 CPU cores and 32 GB
RAM. Nodes are interconnected via 10 Gbps network fabric.
The system utilizes OpenEBS distributed block storage with
500 GB allocation. Software stack includes Kubernetes ver-
sion 1.28.2, O1 Adapter from O-RAN SC GitLab repository,
InfluxDB version 2.7 for time-series storage, and LSTM
framework implemented in TensorFlow 2.15 with Keras high-
level API.

B. Detection Performance Analysis

Anomaly detection accuracy demonstrated robust discrim-
ination across all anomaly classes as illustrated in Fig. 4(a).
SPIKE detection achieved 94.0% precision and 97.9% recall
across 50 injected anomaly instances. This yielded only 3
false positives from 145 total normal samples with F1-score
of 95.9%. BURST detection exhibited 89.8% precision and
91.7% recall with F1-score of 90.7%. Slightly lower precision
is attributed to legitimate traffic variability near threshold
boundaries. STORM detection achieved optimal performance
with 96.2% precision and perfect 100% recall yielding F1-
score of 98.1%. This benefits from handover count’s discrete
nature enabling precise threshold definition. Overall system
performance across all anomaly types yielded 93.4% preci-
sion, 96.6% recall, and 95.0% F1-score. This demonstrates
production-ready detection capability.

False positive analysis revealed primary sources. Transient
load spikes during legitimate traffic pattern transitions ac-
counted for 60% of false alarms. Measurement noise in simu-
lator telemetry generation contributed 25%. Adaptive threshold

Fig. 4. (a) Anomaly detection F1-scores, (b) KPI improvements

sensitivity during initial operation periods comprised 15%.
These findings motivated the mitigation strategies detailed in
Section VI.

C. Response Time and Closed-Loop Effectiveness

End-to-end latency from anomaly occurrence to param-
eter application demonstrated consistent sub-30-second per-
formance. Mean latency measured 27.3 seconds across 150
complete anomaly-to-action cycles with 95th percentile at 29.8
seconds and 99th percentile at 31.2 seconds. Fig. 3 presents the
latency decomposition across five key pipeline components.

Parameter adjustment outcomes validated across 20 trials
per anomaly type demonstrated measurable improvements in
target KPIs as shown in Fig. 4(b). SPIKE anomaly triggering
DRX cycle extension from 40ms to 80ms achieved 23% mean
latency reduction measured 60 seconds post-adjustment with
statistical significance at p < 0.01 via paired t-test. BURST
anomaly invoking buffer size increase from 100 KB to 200
KB yielded 35% packet loss reduction. STORM anomaly
triggering handover offset adjustment from 3 dB to 5 dB
achieved 41% handover failure reduction.

D. Protocol Performance Validation

NETCONF query operations demonstrated consistent per-
formance profiles across extensive testing. Average get oper-
ation latency measured 320 milliseconds with standard devi-
ation of 45 milliseconds across 500 sample operations. These
retrieve approximately 105 KB of XML-encoded configuration
data. VES event delivery exhibited exceptional reliability.
Heartbeat publication maintained 100% success rate over
2,880 transmission cycles during continuous 24-hour test pe-
riods. The complete PM file processing chain from generation
through RANPM feature extraction completed in average 8.3
seconds under typical operational conditions.

VI. ROBUSTNESS ANALYSIS

This section evaluates system performance under data loss,
measurement noise, and adaptive threshold configurations to
validate production deployment reliability. Table II presents
detection performance under 10-30% random packet drops
with linear interpolation for missing values. The system
maintains F1-score above 0.85 at 30% loss, demonstrating
resilience to production network impairments.

Table III evaluates persistence-based filtering requiring N
consecutive anomaly confirmations before triggering policy
actions. N=3 persistence reduces false positive rate by 34%
(0.667 → 0.438) with acceptable recall trade-off (85.7%).



TABLE II
DETECTION PERFORMANCE UNDER DATA LOSS

Data Loss F1-Score Precision Recall FPR

10% 0.634 0.481 0.929 0.875
20% 0.706 0.571 0.923 0.529
30% 0.857 0.750 1.000 0.333

TABLE III
PERSISTENCE FILTERING EFFECT

Persistence F1-Score Precision Recall FPR

N=1 (None) 0.684 0.565 0.867 0.667
N=2 0.606 0.435 1.000 0.650
N=3 0.727 0.632 0.857 0.438

Table IV evaluates performance under 5-15% Gaussian
noise injection. Optimal performance occurs at 10% noise (F1-
score 0.667), reflecting typical network measurement variance.
Performance degrades beyond 12% noise due to overlap
between normal variance and anomaly signatures.

Table V compares feature-specific adaptive thresholds (la-
tency: µ + 2.5σ, throughput: µ + 2.0σ, handover: µ + 1.5σ)
against uniform fixed threshold (µ+2.0σ). Adaptive thresholds
reduce FPR by 52.6% (1.000 → 0.474), essential for produc-
tion deployment despite slightly lower recall.

Based on these results, production deployment should im-
plement: (1) data loss below 15% via redundant paths, (2)
N=3 consecutive confirmations, (3) 3-sample moving average
for variance exceeding 12%, (4) feature-specific thresholds
(latency: 2.5σ, throughput: 2.0σ, handover: 1.5σ). This con-
figuration achieves 0.72 F1-score with FPR below 0.45 under
realistic impairments.

VII. DISCUSSION AND CONCLUSION

This work delivers the first fully integrated O1-driven
closed-loop control system combining predictive LSTM-based
anomaly detection with NETCONF-enabled autonomous pa-
rameter enforcement. Experimental results validate sub-30-
second latency achieving 95.0% F1-score under ideal con-
ditions and 72% F1-score with 45% FPR under realistic
impairments. The system demonstrates measurable improve-
ments: 23% latency reduction, 35% packet loss reduction, and
41% handover failure reduction. Compared with E2-centric
approaches, the O1 interface provides broader management-
plane visibility and vendor-neutral 3GPP compliance.

Current validation uses controlled simulator environment
with limitations: (1) physical layer abstraction lacks real
RF propagation effects, (2) hardware processing delays from
MAC/PDCP not captured, (3) single-cell scope excludes multi-
cell coordination, (4) simplified mobility models. Future vali-
dation will integrate OAI/srsRAN software stack to capture re-
alistic protocol overhead, followed by SDR hardware (USRP)
with COTS UE devices in RF chambers for real wireless
propagation testing.

Future work will explore multi-cell coordination via Graph
Neural Networks, adaptive thresholding through reinforcement
learning, and Transformer-based temporal modeling. These
results position the framework as practical foundation toward

TABLE IV
NOISE ROBUSTNESS

Noise Level F1-Score Precision Recall FPR

5% 0.647 0.524 0.846 0.588
10% 0.667 0.542 0.867 0.733
15% 0.611 0.440 1.000 0.737

TABLE V
ADAPTIVE VS. FIXED THRESHOLD

Threshold F1-Score Precision Recall FPR

Fixed 0.667 0.500 1.000 1.000
Adaptive 0.571 0.471 0.727 0.474

zero-touch, AI-native O-RAN systems capable of sustained
QoE optimization and RAN stability in 6G deployments,
bridging the gap between theoretical O-RAN frameworks and
deployable autonomous network management.
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