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Abstract—Large language models (LLMs) are increasingly
used as network management agents that reason over teleme-
try and assist decision-making. If such agents are to enable
prediction-driven control, they must obtain short-term forecasts
of key performance indicators (KPIs) under tight operational
constraints, notably accuracy and low end-to-end latency. A naı̈ve
approach is to let the LLM forecast numeric sequences directly
(via prompting or fine-tuning), but this can be unstable for long
horizons and often requires task-specific tuning. In this paper,
we move toward forecast-aware LLM agents by adopting a tool-
augmented design: the LLM orchestrates forecasting requests
(when to forecast, which horizon, and how to use the output),
while forecasting itself is delegated to an external model. We study
this design choice through a cellular-traffic case study, comparing
(i) LLM-only forecasting (Mistral 7B), (ii) an LLM calling a
conventional LSTM forecaster trained per cell, and (iii) an LLM
calling an off-the-shelf, pre-trained time-series foundation model,
Chronos-2. Results show that LLM-only forecasts drift over a
multi-day horizon, and the LSTM tool improves accuracy at a
higher end-to-end cost due to training and invocation overhead.
In contrast, Chronos-2 delivers the best accuracy–latency trade-
off without per-cell retraining, supporting the practicality of tool-
based forecasting back-ends for forecast-aware LLM agents in
network management.
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I. INTRODUCTION

Next-generation mobile networks operate under highly dy-
namic and heterogeneous conditions, where traffic demand, in-
terference, and quality-of-experience (QoE) can fluctuate over
short time scales. In such environments, prediction becomes a
practical requirement for network management rather than an
optional feature: traffic and load balancing, anomaly detection,
proactive resource reservation, energy-aware cell control, and
service-level agreement (SLA) assurance all benefit from pre-
dicting the near-future evolution of key performance indicators
(KPIs) such as throughput, latency, error rates, and user
demand. While our case study focuses on cell-level traffic,
the same need applies broadly to KPI-driven automation in
5G/6G systems [1], [2].

LLMs are increasingly explored as network-management
agents. To support prediction-driven control, such agents must
be able to obtain short-term KPI forecasts and incorporate
them into actionable decisions. Importantly, forecasts used in
operational settings are constrained by more than accuracy

alone: an agent must produce forecasts within tight runtime
budgets (end-to-end latency), and the forecasting mechanism
should remain usable across many cells, horizons, and KPIs
without expensive per-case retraining or prompt redesign. This
operational perspective aligns with ongoing efforts toward
practical, deployable RAN control platforms and data-driven
automation [3].

A naı̈ve approach is to ask the LLM itself to output
future KPI values, either by fine-tuning the LLM on numeric
sequences or by prompting it to extrapolate raw values.
However, LLM-only forecasting can be brittle in practice:
general-purpose LLMs are not optimized for numerical time-
series modeling, and long-horizon outputs may drift or be-
come unstable without careful, task-specific tuning. Moreover,
repeatedly generating long numeric sequences through an
LLM can be computationally costly, which conflicts with
the low-latency requirements of network control loops. These
concerns are consistent with broader observations on reliability
and robustness challenges in LLM-empowered communication
systems [4].

An alternative is to treat the LLM primarily as an or-
chestrator and delegate numerical forecasting to specialized
models accessed through tool interfaces. This tool-augmented
paradigm is well established in the broader LLM ecosystem,
but its implications for network KPI forecasting merit careful
study because network agents face strict accuracy–latency
trade-offs and operational constraints. Meanwhile, the time-
series community has produced pre-trained forecasting models
designed for multi-series and multi-horizon prediction in a
plug-and-play manner. Chronos-2 is one representative ex-
ample: a probabilistic transformer-based forecaster trained on
large collections of time series and intended to be used without
task-specific retraining. In this paper, we do not introduce
Chronos-2 as a new model; instead, we use it as an off-
the-shelf forecasting back-end to examine how LLM-based
network agents should obtain forecasts in practice.

Specifically, we conduct a cellular-traffic case study using a
public dataset and compare three strategies that differ only
in how forecasts are produced: (i) LLM-only forecasting
using a general-purpose model (Mistral 7B), (ii) an LLM
calling a conventional LSTM forecaster trained on the target
series, and (iii) an LLM calling Chronos-2 as a pre-trained
forecasting back-end. For each strategy, we report both fore-



casting error (MAE) and end-to-end prediction time, reflecting
the agent-centric view that forecasts must be accurate and
available quickly enough for operational use. Our results show
that LLM-only forecasting is prone to long-horizon drift, and
that while an LSTM-based tool can improve accuracy, it
introduces additional overhead due to task-specific training
and invocation. In contrast, the pre-trained Chronos-2 back-
end provides a favorable accuracy–latency trade-off without
per-cell retraining, suggesting that pre-trained forecasting tools
are a practical default choice for building forecast-aware LLM
agents in network management.

Based on this case study, the contributions of this work can
be summarized as follows:

• We motivate an agent-centric view of KPI forecasting
for LLM-based network management, emphasizing oper-
ational requirements beyond accuracy, including end-to-
end latency and reusability across settings.

• We adopt a tool-augmented design toward forecast-aware
LLM agents, where the LLM orchestrates forecasting re-
quests while numerical prediction is delegated to external
forecasters.

• We provide an empirical comparison of three forecasting
strategies (LLM-only, LLM+LSTM, and LLM+Chronos-
2) on cellular traffic traces, reporting both MAE and end-
to-end prediction time.

• We discuss practical implications for deploying forecast-
aware LLM agents, highlighting when tool-based fore-
casting back-ends are preferable to relying on LLM-only
prediction.

II. RELATED WORK

Forecasting has long been recognized as an enabling ca-
pability for network operation and control, where predicted
traffic or KPI trajectories are consumed by downstream de-
cision modules (e.g., resource provisioning, energy saving,
and sleep control). Recent work on cellular traffic forecast-
ing has explicitly connected prediction quality to operational
objectives, demonstrating that forecast accuracy can be a
practical prerequisite for control policies such as base-station
sleep scheduling [5]. Such studies highlight that forecasting in
networks is rarely an end in itself; rather, it is a supporting
function that must be sufficiently accurate and available within
a time budget compatible with operational decision loops.

LLMs have also begun to be explored as agents for network
management, aiming to translate high-level intents into action-
able configurations and procedures while improving reliability
through structured execution and guardrails [6]. MeshAgent
is a representative example that targets network-management
tasks that can be framed as graph manipulation, and it
improves reliability by constraining and validating LLM-
generated actions [7]. Importantly, MeshAgent also delineates
a clear limitation: certain operational tasks, such as flow-level
performance monitoring that requires statistical analysis over
time-series measurements (e.g., latency, jitter, and loss), are
better handled by signal-processing or time-series models than
by graph-oriented reasoning [7]. This observation supports the

view that a practical network LLM agent will rely on special-
ized external modules for time-series inference, including KPI
forecasting.

Tool-augmented LLM agents provide a general mechanism
to realize such specialization. Frameworks such as ReAct for-
malize an agent pattern in which an LLM interleaves natural-
language reasoning with actions that query external tools and
environments [8]. In this paradigm, the LLM is not required
to internally master every numerical or domain-specific skill;
instead, it orchestrates when to invoke specialized functions
and how to interpret their outputs. This provides a principled
basis for positioning forecasting as a callable capability within
an LLM-driven network agent. Related efforts also study how
to structure and optimize tool-augmented LLM pipelines for
practical use [9].

Recent progress on pre-trained forecasting models further
strengthens the case for tool-based prediction. While classic
neural forecasters (e.g., LSTMs) can be effective, they typ-
ically require task- and series-specific training and tuning,
which introduces non-trivial overhead when deployed as an
on-demand tool inside an agent loop. In contrast, forecasting
foundation models such as Chronos and Chronos-2 are de-
signed to be used in a plug-and-play manner across diverse
series and horizons, providing probabilistic forecasts without
per-series retraining [10], [11]. This property aligns closely
with the operational requirements of network LLM agents,
where forecasts must be obtained quickly and repeatedly
across many cells and KPIs. Motivated by these trends, this pa-
per adopts an agent-centric view of forecasting and examines
practical strategies for obtaining forecasts under operational
accuracy–latency constraints.

III. EXPERIMENTAL SETUP

To assess how an LLM-based network agent should obtain
network data forecasts, we conduct an agent-centric case study
in which forecasting is treated as a callable capability used to
support downstream management decisions. In this setting, the
forecasting component is not evaluated solely by prediction
accuracy; rather, it must also satisfy operational constraints
such as responsiveness, since an agent may need to request
forecasts repeatedly across many cells and time horizons.
Accordingly, our evaluation jointly considers (i) forecasting
error over the requested horizon and (ii) the end-to-end time
perceived by the agent to obtain the forecast, enabling an
accuracy–latency interpretation that is aligned with practical
agent operation in network management.

A. Dataset and KPI Construction

We use the public Milan cellular dataset, which reports cell-
level usage statistics in ten–minute intervals from 1 December
2013 to 1 January 2014. For each target cell, we aggregate
the raw counters (SMS, calls, and Internet usage) into a
single scalar value per time slot, producing a univariate time
series that represents the overall traffic intensity of that cell.
This simple KPI construction is intended to reflect a practical
scenario in which an agent consumes a compact, single-stream



indicator of cell activity (rather than multiple heterogeneous
counters) when making rapid management decisions. Although
our case study uses traffic, the same experimental structure
applies to generic network KPI prediction where an agent must
forecast the near-future evolution of a measurable quantity
from its history [12].

B. Forecasting Task and Horizon

We split the time series into a history window and a
prediction horizon. The samples from 2013-12-01 to
2013-12-26 are used as the history, and the final six days
(2013-12-27 to 2014-01-01) form the horizon to be
forecast. Given the observed sequence up to the end of 26
December, the task is to produce a point forecast for every time
step in the six–day horizon. We adopt a multi-day horizon to
expose differences that are relevant to agent operation: when
forecasts are required beyond very short look-ahead steps,
direct numeric extrapolation may drift and trained-per-series
predictors may incur additional overhead, whereas pre-trained
forecasting back-ends are designed to remain usable across
horizons without re-training. In this sense, the chosen horizon
provides an informative stress case for comparing forecasting
strategies under agent-centric constraints.

C. Agent Configurations

The underlying language model in all experiments is Mistral
7B in FP16 precision. We compare three configurations that
differ only in how the forecasts are obtained:

1) LLM-only: the LLM receives the past KPI sequence
encoded as text and is prompted to output the future
values directly, without using any external forecasting
model. This configuration represents the most direct
approach in which the agent relies on the LLM as a
stand-alone numerical forecaster. In our study, it serves
as a sanity-check baseline for understanding how a
general-purpose LLM behaves when asked to extrapolate
a multi-day numeric trajectory and whether it preserves
basic properties such as trend and daily periodicity.

2) LLM + LSTM tool: the LLM is equipped with a
tool that wraps a conventional LSTM forecaster. The
LSTM is trained on the history window for the target
cell, and at inference time the LLM calls this tool to
obtain the predictions for the six–day horizon. This
configuration represents a trained-per-series forecasting
back-end that is commonly adopted in cellular traffic
prediction. From an agent perspective, it provides a
useful contrast to pre-trained models because it requires
an explicit training step and model invocation before
forecasts can be returned to the agent.

3) LLM + Chronos-2 tool: the LLM is equipped with
a tool that wraps Chronos-2, a pre-trained probabilistic
time-series model. Chronos-2 receives the same history
window as input but does not require task-specific
retraining for the target cell; the LLM simply uses this
tool to perform the forecasting step. This configuration

represents the tool-augmented design in which forecast-
ing is delegated to an off-the-shelf, pre-trained back-end
that can be called in a plug-and-play manner, matching
the operational expectation that an agent should obtain
forecasts quickly without repeated per-target training.

D. Evaluation Criteria

For each configuration, we evaluate the forecasts using three
criteria from the perspective of the LLM agent. First, we
quantify forecasting error over the horizon using the mean
absolute error (MAE),

MAE =
1

T

T∑
t=1

∣∣yt − ŷt
∣∣, (1)

where yt and ŷt denote the actual and predicted values at
time t, and T is the number of predicted samples. Second,
we measure the end-to-end prediction time, defined as the
wall-clock time from the moment the agent requests a forecast
until all horizon values are available to the agent. This end-
to-end metric is included because, in operational settings,
an accurate forecast that arrives too late may be less useful
than a slightly less accurate forecast that can be acted upon
immediately. Third, we provide a qualitative visual comparison
of the predicted and actual trajectories using time-series plots,
which helps interpret whether each method preserves coarse
properties such as level, trend, and daily structure. Together,
these criteria reflect the practical objective of building forecast-
aware LLM agents that can obtain forecasts with an appropri-
ate balance between accuracy and responsiveness.

IV. RESULTS

We evaluate the three forecasting strategies from an agent-
centric perspective by jointly considering forecasting error
and end-to-end prediction time. We first present a qualitative
comparison of forecast trajectories and then summarize the
quantitative accuracy–latency trade-off.

A. Accuracy and qualitative behavior

We report qualitative results using a representative cell
whose forecasting error is close to the median across the
evaluated cells. This selection is intended to reflect typical
behavior under each configuration, rather than highlighting
exceptionally good or poor cases.

Fig. 1. Qualitative forecasting behavior for a representative cell under the
LLM-only configuration.



Fig. 2. Qualitative forecasting behavior for the same cell under the LLM +
LSTM tool configuration.

Fig. 3. Qualitative forecasting behavior for the same cell under the LLM +
Chronos-2 tool configuration.

Fig. 4. Forecasting performance from an agent-centric perspective. Lower is
better for both MAE and end-to-end prediction time.

In the LLM-only configuration, the model is prompted to
extrapolate the KPI sequence without using any dedicated
forecasting module. As shown in Fig. 1, the predicted trajec-
tory exhibits noticeable drift over the multi-day horizon and
does not preserve the daily periodic structure observed in the
historical data, suggesting that direct numeric extrapolation
with a general-purpose LLM can be unstable for multi-day
KPI forecasting.

Equipping the agent with an LSTM tool improves forecast
fidelity. Fig. 2 shows that the predicted series follows the daily
ups and downs of the actual traffic more closely than the LLM-
only output, resulting in an MAE of 2.54 over the six-day
horizon (Fig. 4). This indicates that a trained neural forecaster
can capture the dominant temporal pattern when used as an
external forecasting back-end in this case study.

The LLM + Chronos-2 tool configuration achieves the
lowest MAE among the three strategies. As shown in Fig. 3,
Chronos-2 closely matches both the level and daily structure
of the target series, yielding an MAE of 1.48 without per-cell
retraining (Fig. 4). From an agent perspective, this result is
consistent with the use of pre-trained forecasting back-ends
for producing stable multi-day KPI predictions.

B. End-to-end prediction time and accuracy–latency trade-off

Beyond accuracy, a forecast-aware agent must obtain pre-
dictions within a runtime budget compatible with operational

decision loops. All timing results were measured on a single
machine under identical runtime settings to ensure a fair
comparison across configurations. Fig. 4 shows that the LSTM
tool incurs the highest end-to-end prediction time (48.24 s),
reflecting the overhead of using a trained-per-series fore-
casting back-end in an on-demand tool-calling workflow. In
contrast, Chronos-2 yields the fastest end-to-end prediction
time (12.58 s), which is even shorter than the 14.92 s ob-
served for LLM-only generation. This suggests that delegating
forecasting to a specialized pre-trained model can improve
numerical accuracy while also reducing the agent-perceived
time to obtain forecasts.

Overall, the comparison indicates that the three strategies
exhibit distinct accuracy–latency profiles in our setting, with
the pre-trained Chronos-2 back-end offering a particularly
favorable balance.

V. CONCLUSION

This paper examined how an LLM-based network manage-
ment agent should obtain short-term KPI forecasts under prac-
tical operational constraints. Rather than relying on the LLM
as a stand-alone numerical forecaster, we evaluated a tool-
augmented design in which the LLM orchestrates forecasting
requests while numerical prediction is delegated to an external
model. Using a cellular-traffic case study, we compared three
strategies: LLM-only forecasting, an LLM calling a trained-
per-cell LSTM forecaster, and an LLM calling a pre-trained
forecasting foundation model (Chronos-2). Note that our goal
is not to propose a new forecasting model, but to clarify
how an LLM agent should obtain forecasts in practice under
accuracy–latency constraints.

The results highlight a clear agent-centric trade-off. LLM-
only forecasting exhibited noticeable drift over a multi-day
horizon, indicating limited reliability for direct numeric ex-
trapolation. The LSTM tool improved accuracy (MAE 2.54)
but incurred the highest end-to-end prediction time (48.24 s),
reflecting the overhead of using a trained-per-series back-end
in an on-demand tool-calling workflow. In contrast, Chronos-
2 achieved the lowest MAE (1.48) while also yielding the
fastest end-to-end prediction time (12.58 s), demonstrating that
a plug-and-play, pre-trained forecasting back-end can deliver
a favorable accuracy–latency balance for forecast-aware LLM
agents without per-cell retraining. This latency advantage is
consistent with the fact that tool-based forecasting avoids
long sequence generation inside the LLM and returns horizon
values through a single external inference step.

These findings support a practical design principle for
prediction-driven network automation: LLMs are most effec-
tive when used as orchestration layers that invoke specialized
forecasting tools, and pre-trained forecasting models are a
strong default choice when forecasts must be obtained quickly
and repeatedly across many targets. Future work will extend
this evaluation to additional KPIs and horizons, assess ro-
bustness across diverse traffic regimes, and integrate forecast-
aware agents into closed-loop network control pipelines where
prediction latency and decision latency are jointly constrained.



An important next step is to validate whether the same
accuracy–latency trend holds across a larger set of cells and
KPIs (e.g., throughput or latency) and under different horizon
lengths.
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