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Abstract—Physical dynamical systems can be considered as
natural information processors, where their trajectories encode
past inputs in high-dimensional continuous states. Reservoir
computing exploits this property by driving a fixed nonlinear dy-
namical system and learning only a linear output mapping, how-
ever traditional approaches assume fixed measurement locations
and weights, which limits robustness across different regimes
and substrates. This work introduces a general framework for
adaptive measurement of continuous physical dynamics using
a partial-differential-equation—based reservoir, where both the
spatial positions of the measurements and the output weighting
are learned jointly. The method dynamically determines how and
where to observe the state of the system and optimizes sensor
placement end-to-end. Experiments on forecasting tasks involving
multiple chaotic systems demonstrate substantial improvements
in accuracy compared to fixed-measurement reservoir computing
approaches, indicating that adaptive measurement provides an
effective interface for extracting task-relevant information from
continuous dynamical systems.

Index Terms—Reservoir computing, attention mechanism, dy-
namical systems, adaptive measurement, partial differential equa-
tions, forecasting

I. INTRODUCTION

Many physical systems can be understood as high-
dimensional information reservoirs. When such a system is
driven by an input signal, its state trajectory implicitly stores
a linear or nonlinear, temporal representation of the past
drive [1]. This perspective underlies reservoir computing (RC),
which uses a fixed nonlinear dynamical system (the reservoir)
together with a simple, typically linear readout to solve super-
vised learning tasks [2]-[4].

Classical RC has been successfully implemented in software
and in hardware, for example in photonic, electronic, mechan-
ical, or soft robotic substrates [3], [S]-[9]. The standard setting
assumes a fixed input coupling, a fixed measurement interface
(e.g., a set of sensors or sampled coordinates), and a linear
readout trained by ridge regression. While this yields efficient
training and can exploit fast physical dynamics, it also imposes
a strong constraint: the measurement operator is not adapted
to the task or to changes in the dynamical regime.

Recent work has introduced Attention—Enhanced Reservoir
Computing (AERC), in which the linear readout is replaced by
a small neural network with an attention mechanism [10]. In-
stead of reading out the reservoir state with fixed weights, the
system learns a state-dependent weighting that can emphasize

task-relevant coordinates and suppress irrelevant ones. This
connects RC to the broader class of attention mechanisms in
deep learning [11], [12]. However, the existing AERC formula-
tion typically operates on discrete, finite-dimensional reservoir
states and assumes that the set of measured coordinates is
fixed.

In many physical implementations, the reservoir is inher-
ently continuous in space and time. Examples include optical
fields propagating in space, reaction—diffusion media, and par-
tial differential equation based analog computing substrates.
In such settings, the choice of measurement locations (e.g.,
sensor positions) and actuators (e.g., injection points) is itself
a crucial design parameter.

The central idea of this work is to treat measurement as
a trainable, differentiable interface between a continuous dy-
namical substrate and a task-specific neural readout. We gener-
alize AERC to continuous spatiotemporal reservoirs, formalize
the resulting Continuous AERC (CAERC) framework, and
demonstrate its effectiveness on forecasting tasks involving
multiple attractors. Conceptually, this links RC to adaptive
sensing and sensor placement approaches [13], [14], and to
learnable spatial transformations used in spatial transformer
and deformable convolutional networks [15], [16], however
applied here to continuous physical dynamics.

II. RESERVOIR COMPUTING AND ADAPTIVE
MEASUREMENT

A. Classical Reservoir Computing

In classical RC, a discrete-time input sequence {x:}, with
x; € RP=, drives a nonlinear dynamical system [2]-[4]

i1 = F(rt,xt), (D

where r; € RV is the reservoir state, and F : RV x RP» —
RY denotes the (fixed) reservoir dynamics. After a transient,
the state trajectory is used as a feature representation of the
input. The output is computed by a linear readout,

Vi = Wouly, )

where y; € RP» and W, € RPv*YN s trained by ridge
regression,

Wou = argrgin [Y = WRIE + A[W[3, @)
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Figure 1. Conceptual architecture of the Continuous Attention—Enhanced Reservoir Computer (CAERC). A discrete input x; drives a fixed spatiotemporal
PDE reservoir u(x, t). The reservoir state is sampled via fixed measurement kernels to form ¥, while the trainable attention module Gg(r¢) predicts adaptive
kernel parameters (i.e., where to observe) and combination weights (i.e., how to weigh), which inform improved measurement during prediction.

where R € RV*T collects reservoir states across 7' time steps,
Y € RPv*T are the target outputs, and \ is a regularization
parameter.

The reservoir itself can be a recurrent neural network, a
delay line, or any physical dynamical system with suitable
fading memory properties [3], [5]-[9]. The key assumption
is that the reservoir dynamics are rich enough that a linear
combination of its state coordinates suffices to approximate
the desired mapping from input history to output.

B. Attention—Enhanced Reservoir Computing

AERC generalizes the static readout by introducing a state-
dependent projection [10]. Instead of fixed weights, the read-
out uses a small attention network Gy that maps the current
reservoir state to output-specific attention weights,

Ay = Gy(ry), S

where we interpret A; € RPv*DP¢ ag a collection of D,
row vectors Agk) € RP#, one for each output dimension

k=1,...,Dy, and Gy : RN — RPv*Ps_These are used
as dynamic combination coefficients such that
Vi = A (ry), (5)

where ® : RV — RP¢ is a fixed or learned feature map
(e.g., linear, nonlinear, or low-rank), so that ®(r;) € R”# and
yt € RDy .

This architecture keeps the reservoir dynamics F' fixed
while allowing the readout to adapt the effective measurement
distribution over the reservoir state. The attention parameters
@ are trained by gradient-based optimization, in line with
modern attention-based sequence models [11], [12]. Compared
to classical RC, AERC can exploit different parts of the state
space depending on the current regime and has been shown
to improve robustness and predictive performance without
modifying the underlying physical substrate [10].

C. PDE-Based Spatiotemporal Reservoir

To move towards continuous reservoirs, we consider a
spatiotemporal field u(x,t) on a domain Q C RY, governed
by a PDE of the form

dwu(x,t) = Llu](x,t) + T(x;%x¢), (6)

where £ encodes intrinsic dynamics (e.g., diffusion, advection,
reaction) and Z injects the discrete-time input x; via spatial
actuators. For example, £ may include a diffusion term vAu
and a nonlinear reaction g(u), and Z may be realized as
localized sources or sinks at specified injection points.

In numerical simulations, the PDE is discretized in space
and time (e.g., finite differences or finite elements combined
with explicit or implicit time-stepping), which yields a high-
dimensional state vector r; at each discrete time ¢. In a
physical implementation, wu(x,t) is directly realized by a
medium such as an optical or chemical system.

D. Continuous Attention—Enhanced Reservoir Computing

In the continuous setting, attention serves a dual function:
it learns (i) where to sense the field and (ii) how to combine
sensed features to produce the prediction. To this end, we
distinguish two types of measurement functionals.

Fixed measurements (input to attention).: A set of sta-
tionary kernels {z/J(j)(x)}j-\l*1 evaluates the PDE reservoir
state,

i) = / P9 (x) u(x, t) dx, A AT
Q
(N
providing the input feature vector to the attention network.
Adaptive measurements (learned sensors).: Conditioned
- . . (1)
on T, the attention module Gy(r;) predicts parameters 6, of

time-varying spatial kernels,

o) (x) = h(x; 7). i=1,....N, ®)

o= (

which act as dynamic sensors. These produce an adaptive
measurement state

rt(i) = /ngﬁgi)(x) u(x, t) dx, r; = (rﬁl), .. 7T§N))T e RY.
)

Adaptive weighting (readout).: The same network outputs
output-specific attention weights

A, = Gy(ty), A, € RPvXN, (10)

such that each row A,Ek) € RY defines how the N adaptive
sensor values are combined to compute output component k.
The final prediction is then

y: € RDy.

Vi = A1y, (11)
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Figure 2. Prediction error (normalized root-mean-square error, NRMSE) as a function of the number of measurement points. All methods use the
same PDE reservoir. (Blue solid line) Classical reservoir computing with ridge regression; (Orange dashed line) AERC with fixed measurement positions;

(Green dash—dotted line) CAERC with adaptive sensing.

Only the attention parameters are updated by gradient descent;
the PDE dynamics remain fixed and receive no gradients.

If the spatial kernels ¢£2) are held fixed and equal to (),
CAERC reduces to discrete AERC [10]. Replacing the PDE
with a discrete update further recovers the standard RC/AERC
model.

III. EXPERIMENTAL SETUP

We illustrate the CAERC framework by predicting multi-
attractor dynamics. We compare three configurations: classical
linear RC with fixed measurements, discrete AERC with state-
dependent readout weights, and the proposed CAERC with
adaptive measurement locations.

In the multi-attractor setting, a single reservoir is driven by
several distinct chaotic dynamical systems. Typical examples
include the Lorenz, Rossler, Duffing, Mackey—Glass, Hénon,
and logistic systems [17]-[21]. Each attractor is simulated
under standard parameters and sampled at a fixed timestep,
and the resulting state trajectories serve as driver signals for
the reservoir.

The task is to forecast the next step of a designated state
variable (e.g., x(t) of the Lorenz system) in an open-loop,
one-step-ahead fashion. During training, trajectories from all
attractors are interleaved so that the reservoir and readout must
handle transitions between qualitatively different dynamical
regimes. Performance is evaluated in terms of mean squared
error (MSE) and normalized error on held-out trajectories.

For the PDE-based reservoir used in this experiment, the
input is injected at a fixed set of actuation points, while the
measurement strategy differs between the three configurations.
In classical RC, a fixed set of measurement points is specified
in advance and only a linear readout is trained. In discrete

AERC, the same fixed measurements are used, but the readout
weights become state dependent through an attention mech-
anism. In CAERC, both the locations of the measurement
points and the attention-based combination of their outputs
are learned jointly with the task-specific readout.

IV. RESULTS

The results are shown in Fig. 2, where the normalized root
mean square error (NRMSE) over the whole dataset of 8
different dynamical systems is shown. CAERC consistently
improves forecasting performance compared to classical RC
and discrete AERC for a fixed reservoir and comparable
parameter counts.

In the multi-attractor setting, classical RC (blue curve in
Fig. 2) with fixed measurements can achieve reasonable one-
step-ahead predictions when the reservoir is tuned for a
specific attractor. However, its performance degrades when
the reservoir must handle multiple attractors with different
geometries and time scales. The learned linear readout is
forced to compromise across regimes, and no mechanism
exists for emphasizing different state components in different
regions of the attractor space, thus the normalized root-mean-
square error (NRMSE) plateaus at around 0.1.

Discrete AERC (orange curve in Fig. 2) mitigates this
limitation by introducing state-dependent weighting over the
measured coordinates [10]. Empirically, this reduces prediction
error across most attractors and yields more robust perfor-
mance when switching between regimes. Nevertheless, the set
of measured coordinates remains fixed, thus the error roughly
is only reduced by one order of magnitude.

CAERC (green curve in Fig. 2) provides an additional
degree of optimization by adjusting not only the weights but



also the spatial locations of measurements. In the experiments,
this leads to two orders-of-magnitude reduction in error over
classical RC and one order-of-magnitude improvement over
discrete AERC for the same number of measurement points.

Overall, these observations support the view that treating
measurement as a trainable interface significantly enhances
the expressivity of reservoir computing without altering the
underlying physical dynamics. Adaptive measurement can be
seen as learning an optimal coordinate system on the manifold
of reservoir states, tailored to the task of forecasting.

V. CONCLUSION

We proposed Continuous Attention—-Enhanced Reservoir
Computing (CAERC), a general framework for adaptive mea-
surement of continuous physical dynamical systems. By com-
bining a PDE-based reservoir, differentiable measurement ker-
nels with trainable locations, and an attention-based readout,
CAERC learns where and how to observe a spatiotemporal
field in order to forecast target signals.

Numerical simulations on multi-attractor forecasting
demonstrate that CAERC substantially improves prediction
accuracy over classical linear RC and discrete AERC, even
when the underlying reservoir and the number of trainable
parameters are kept comparable. The results suggest that
learning sensor placement and measurement structure is a
powerful and flexible mechanism for interfacing with physical
information-processing substrates.

Future work includes applying CAERC to real physical
reservoirs such as photonic, electronic, or mechanical systems
[3], [5]-[9], extending the framework to control and inference
tasks, and exploring regularization strategies and architectural
variants tailored to specific PDEs and hardware constraints.
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