ClaimGuard: A Blockchain-Backed Access Control
Gateway for Privacy-Preservation in Auto-Insurance
Claims

Anthony Uchenna Eneh !, Love Allen Chijioke Ahakonye 2, Jae Min Lee !, Dong-Seong Kim ! *
L IT-Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
* NSLab Co. Ltd., Gumi, South Korea, Kumoh National Institute of Technology, Gumi, South Korea
2 ICT Convergence Research Center, Kumoh National of Technology, Gumi, South Korea
(anthony, loveahakonye, dskim, ljmpaul) @kumoh.ac.kr

Abstract—Modern auto-insurance workflows require sharing
heterogeneous digital evidence across multiple organizations.
Yet, current cloud-based role-based access control mechanisms
remain coarse-grained and poorly suited for expressing time,
purpose, and case-specific constraints. This study presents Claim-
Guard, which addresses these limitations by placing a blockchain-
backed attribute-based access control gateway in front of existing
evidence stores, enforcing fine-grained on-chain policies, and
issuing short-lived capability tokens for authorized access. Im-
plemented as a REST gateway with PureChain smart contracts,
ClaimGuard is evaluated using realistic workloads involving up to
200 subjects and 1000 evidence resources. Experiments on a local
Ethereum network shows sub ~70ms tail latency, throughput
exceeding ~1000 requests/s, rapid policy updates, and zero false
accepts, demonstrating the practicality of decentralized, auditable
access control for privacy-preserving claims evidence sharing.

Index Terms—ABAC, access control, Blockchain, capability
tokens, Ethereum, insurance, privacy, RBAC

I. INTRODUCTION

The increasing reliance on heterogeneous digital evidence,
ranging from high-resolution accident videos to telematics
traces and medical documentation, has transformed modern
auto-insurance claim workflows into data-intensive, multi-
party environments [1], [2]. Yet, prevailing deployments con-
tinue to rely on coarse-grained, cloud-resident role-based ac-
cess control (RBAC) configurations that grant broad privileges,
offer limited expressiveness for workflow-specific constraints,
and disperse auditability across opaque infrastructure lay-
ers [3]. These limitations create structural risks, such as over-
privileged roles, weak accountability across organizational
boundaries, and persistent exposure to insider access at the
storage layer [3].

Blockchain technologies offer a decentralized and tamper-
evident execution environment that serves as a robust substrate
for access control in multi-party evidence workflows [4].
By encoding fine-grained, attribute-based policies in smart
contracts, blockchain systems overcome the expressiveness
and rigidity of traditional RBAC, enabling case-specific and
temporally bounded rules [5]. Their immutable ledgers con-
solidate auditability across organizations, and verifiable on-
chain decisions reduce reliance on trusted cloud operators,

thereby limiting insider privileges and strengthening system-
wide accountability [6].

The progressive dependence of Auto-insurance claims on
heterogeneous digital evidence, such as dashcam footage,
telematics, Controller Area Network (CAN) bus logs, repair
invoices, and medical reports, that must be exchanged among
insurers, garages, emergency responders, police, and courts,
all operating under distinct legal and data-minimization re-
quirements. In practice, this exchange is typically governed
by coarse-grained RBAC policies embedded in cloud object
stores or databases [7]-[9], where roles such as INSURER,
GARAGE, and POLICE are provisioned with broad, long-lived
privileges [10]-[12]. This model introduces well-known limi-
tations: it cannot express case-specific constraints, it fragments
auditability across heterogeneous infrastructure, and it leaves
cloud-layer administrators inherently over-trusted, enabling
potential misuse or unauthorized access to evidence.

To address these issues, we design ClaimGuard, a
blockchain-backed attribute-based access control (ABAC)
gateway for claims evidence. Instead of granting actors direct
access to the evidence store, all requests pass through a
gateway that (i) evaluates ABAC policies on an Ethereum-
compatible chain, and (ii) issues short-lived capability tokens
that authorize reads from the evidence store. The smart con-
tracts encode subject attributes, resource metadata, workflow
context, and fine-grained policy rules; every decision is logged
to the ledger, and the object store only serves content when
presented with a valid token. This study focuses on the
system design and the evaluation of the blockchain-backed
ABAC path itself. A broader comparison with legacy RBAC
deployments and experiments on real-world claims datasets is
left to follow-up journal work.

Finally, risk-adaptive authorization and anomaly detection
are out of scope for this version: while ClaimGuard’s on-
chain decision log and gateway telemetry are amenable to ML-
based risk scoring and abnormal-access detection, we defer
their design and evaluation to extended work.

This paper makes the following contributions.

o We formulate the access-control and auditability require-

ments of multi-party auto-insurance claims sharing, and

derive a set of design requirements for a blockchain-
backed gateway.

o We design ClaimGuard, an architecture that combines on-
chain ABAC evaluation with off-chain capability tokens
and a REST gateway, while remaining compatible with
existing cloud object stores.

¢ We implement ClaimGuard on a local Ethereum network
using Solidity contracts and a Node.js/TypeScript gate-
way, and develop an experimental harness that exercises
200 subjects and 1000 evidence resources under config-
urable concurrent workloads.

« We evaluate latency, throughput, and policy-update over-
head, and discuss the security and correctness properties
of the design.

II. RELATED WORK
A. Blockchain for Insurance and Data Sharing

A growing body of work applies distributed ledgers to
insurance processes, including parametric insurance, peer-to-
peer risk pools, and claims automation [13]-[17]. Several
proposals store claims metadata or audit logs on-chain while
keeping raw evidence off-chain to preserve privacy and control
storage costs. Similarly, prior work on blockchain-based data
marketplaces and healthcare records uses smart contracts to
encode access policies and log disclosures for later audit [18],
[19]. ClaimGuard adopts this pattern but targets the concrete
requirements of auto-insurance evidence sharing, including
integration with existing cloud object stores and support for
workflow-centric policies.

B. Attribute-Based Access Control on Blockchains

Attribute-based access control (ABAC) provides a flexible
way to express policies over subject, resource, and envi-
ronmental attributes [20]. Recent work has explored embed-
ding ABAC into smart contracts to decentralize decision-
making [21], [22]. Typical designs push attribute assertions
and policy rules on-chain and evaluate them in a policy
decision contract. However, many of these systems either
assume that resources themselves are on-chain or omit the
practical gateway design that mediates access to legacy storage
systems. ClaimGuard instead implements a pragmatic ABAC
gateway that uses on-chain decisions to drive token issuance
for an external object store.

C. Capability Tokens and Secure Gateways

Capability-based access control associates rights with un-
forgeable tokens rather than identities [23]. In web settings,
signed bearer tokens (e.g., JWTs) are widely used to represent
delegated rights [24]. Our design follows this tradition: once
an on-chain ABAC policy authorizes access, the ClaimGuard
gateway issues a short-lived capability token that is required to
fetch the underlying evidence object. Similar gateway patterns
have been studied in cloud storage security and multi-tenant
architectures [25]; our contribution is to bind these capabilities
to a tamper-evident on-chain ABAC decision path.

III. SYSTEM DESIGN AND METHODOLOGY
A. Threat Model and Requirements

We consider an insurer that stores digital claims evidence
in a cloud object store (e.g., S3, MinlO, or IPFS-backed
storage). The insurer interacts with external organizations
such as garages, police, and courts, who must be granted
controlled access to evidence for specific claims. We assume
that the cloud provider and some internal operator accounts
may be malicious or compromised, and that external actors
may attempt replay, token forgery, or role-spoofing attacks.

From this setting, we derive the following requirements:

¢ R1 - Fine-grained policies: Decisions must depend on
claim state, subject role, purpose, and resource sensitivity.

« R2 - Strong auditability: Every access decision and
policy update must be recorded in a tamper-evident log.

¢ R3 - Cloud-interface insider resistance: The evidence
store should not serve objects to any accessor, including
cloud administrators, unless the request carries a valid,
short-lived capability token generated after an on-chain
ABAC evaluation; preventing raw disk inspection by the
storage operator is out of scope.

o R4 - Practical performance: End-to-end latency should
remain within a few hundred milliseconds, and through-
put should support bursty workloads.

Evaluation assumptions and external validity. Our experiments
run on a single-host local Ethereum-compatible network with-
out injected network faults. Since end-to-end latency and cost
are sensitive to consensus configuration, block time, and node
placement; in consortium or public deployments, additional
variability is expected. Quantifying these effects is left to
extended evaluation.

B. Architecture Overview

Fig. 1 sketches the ClaimGuard architecture. The core
components are:

o ABAC contracts on PureChain: Smart contracts main-
tain subject attributes (role, organization, jurisdiction),
resource metadata (type, sensitivity, case identifier), and
policy rules.

o ClaimGuard gateway: A stateless REST API fronting
the evidence store. It handles access requests, calls the on-
chain policy decision point, issues tokens for successful
decisions, and logs results.

o Evidence store adapter: A thin layer that validates
tokens and proxies allowed GET operations to the un-
derlying object store.

o Policy admin API: An authenticated API for insurers to
add, update, and revoke policy rules.

Subjects interact only with the gateway. When a subject
requests access to a resource (e.g., a video for case #81), the
gateway constructs an access query that includes the subject
address, the resource identifier, and the requested action. It
then calls a checkAccess function in the on-chain Access
Policy Manager contract. If the decision is positive, the gate-
way issues a capability token bound to the subject, resource,

Organizational Layer

[= Insurance Company]

g Police]

[ﬂ Repair Shop]

[?ﬁ}\Court] Regulator

:' Policy Enforcement Layer 1 ‘:
| checkAccess, EOIf'Cy t E
fgi createPolicy, &y Eniorcemen |
» |_Purechain revokePolicy Gateway !

Fig. 1. ClaimGuard architecture. All evidence access passes through a REST
gateway that consults on-chain ABAC contracts before issuing short-lived
capability tokens for the object store.

action, and an expiry time; the resource server validates this
token before returning the actual object.

C. On-Chain ABAC Model
The on-chain ABAC state is split across three contracts:

« SubjectRegistry stores public keys and attributes such as
role (INSURER, GARAGE, POLICE, COURT), orgId,
and jurisdiction.

o EvidenceRegistry maintains metadata for each re-
source: case identifier, type (VIDEO, TELEMATICS,
MEDICAL_REPORT, etc.), sensitivity level, and a content
hash and URI.

o AccessPolicyManager encodes policy rules as tuples
over subject attributes, resource attributes, workflow
stage, and action (READ, APPEND, DELETE). Each rule
can be toggled or updated on-chain via admin transac-
tions.

The checkAccess function takes a subject address, re-
source identifier, and action. It looks up the subject and
resource attributes, derives the current workflow stage from
policy metadata, and evaluates the policy rules using a fixed-
order rule engine. The result is returned as a Boolean together
with an event that logs the decision to the chain.

D. Implementation and Experimental Setup

We implement the contracts in Solidity and deploy them
to a local Ethereum network using Hardhat. The ClaimGuard
gateway is built in TypeScript on top of Express and the Viem
client library. The gateway exposes two key endpoints:

e POST /access: evaluates an access request via

checkAccess, issues a capability token on success, and
records the decision.

e POST /policy: adds or updates a policy rule on-chain
and returns the transaction hash and gas usage.

To drive experiments, we implement Python load generators:

e access_test.py generates access requests with con-
figurable concurrency, sampling subjects and resources
from pre-seeded JSON files and actions from a small set
(here we focus on READ). It records per-request latency
and HTTP status to CSV.

e policy_update_test.py repeatedly calls the pol-
icy admin endpoint to add or modify rules, logging block
confirmation latency, gas usage, and block numbers.

We seeded the system with 200 subjects and 1000 evidence
resources, spanning roles, resource types, and sensitivity lev-
els. Policy rules are configured such that a mix of requests is
allowed or denied based on role, case identifier, and sensitivity.
Experiments are run with 1,000 access requests per setting
and concurrency levels of 10, 50, 100, and 200 clients. All
components run on a single development machine, which
approximates the latency and throughput of a tightly coupled
microservice deployment; our focus is on the relative overhead
of on-chain ABAC and policy updates.

IV. RESULTS AND EVALUATION
A. Access Latency

We first examine end-to-end access latency from the sub-
ject’s perspective, measured at the gateway from the time the
/access request is received to the time an HTTP response is
returned. Table I summarizes the median (P50), 90th percentile
(P90), and 99th percentile (P99) latencies for READ requests
across the tested concurrency levels.

TABLE I
END-TO-END ACCESS LATENCY FOR READ REQUESTS

Concurrency P50 P90 P99
10 30.807ms 42.834ms 45.192ms
50 31.713ms 40.959ms 63.176 ms
100 30.748ms 33.507ms 39.965 ms
200 31.20lms 34.028ms 40.993 ms
60 s P50
50 P90
= B P99
E a0
9
c 30
3
820
10
0
n=50 n=100 n=200 n=500

Number of Requests

Fig. 2. Latency Chart for Access Requests

Across all workloads, median latency stays well below
65 ms, and even at the 99th percentile, it remains within

1200 A
@ 1000
o
S
3 800 A
<
(=)
=3
e
£ 600

400 A

25 50 75 100 125 150 175 200
Concurrency (users)
Fig. 3. PureChain ABAC throughput for READ requests as concurrency

increases.

a few tens of milliseconds. The dominant contributors are
the on-chain checkAccess call and the gateway-side token
generation. Even with occasional outliers as seen in Fig. 2 for
100 concurrent requests, the system remains quite scalable.
These results indicate that decentralized policy evaluation on
an Ethereum-compatible chain can satisfy the responsiveness
requirements of interactive claims workflows.

External validity. Typical insurer traffic involves at most tens
of evidence reads per second per organization. In permissioned
deployments, WAN placement and block times may add tens
of milliseconds to end-to-end latency. The qualitative result,
namely that on-chain ABAC combined with short-lived capa-
bilities remains interactive, should hold under such conditions.

B. Throughput

Fig. 3 plots gateway throughput (successful /access
responses per second) as concurrency increases. Throughput
grows with concurrency up to about 100-200 clients, reaching
over ~1,000 requests/s on our testbed. Beyond 100 clients, the
curve begins to flatten, reflecting the limits of the single-node
gateway and local blockchain node rather than any fundamen-
tal protocol bottleneck. Even so, the observed throughput is
sufficient for typical insurer workloads, which involve at most
tens of evidence reads per second per organization.

C. Policy Update Overhead

Next, we evaluate the on-chain cost of modifying ABAC
rules. In this experiment, the load generator submits 10 consec-
utive policy updates via the /policy endpoint. It measures
the time from submission to block confirmation, along with
gas usage and the number of blocks. Table II reports the
average metrics across these updates. In practice, this means

TABLE II
AVERAGE POLICY UPDATE COSTS ON PURECHAIN

Metric Range Average
Latency 13.72-342ms 16.584 ms
Gas used 114k—134k 128k

that an insurer can roll out new workflow rules or revoke
subject permissions and see the effect take place within a
few hundred milliseconds, while the on-chain gas cost remains
modest for an administrative operation.

D. Authorization Correctness

While our current experiments do not yet compare Claim-
Guard against a deployed RBAC baseline, we can still assess
the internal consistency of its authorization decisions. The
correctness experiment tags each synthetic request with an “in-
tended” authorization outcome derived from the same policy
rules, and compares it with the on-chain decision. We compute
false-accept and false-reject rates by aggregating outcomes
over 1,000 requests per setting across four concurrency levels;
across all workloads, we observe zero false accepts (unautho-
rized requests incorrectly allowed) and a small number of false
rejects attributable to time-window edge cases in the synthetic
generator. The absence of false accepts is a direct consequence
of driving all decisions through the deterministic on-chain rule
engine.

E. Discussion

The experimentation evaluation shows that ClaimGuard sat-

isfies the requirements outlined in Section III. On-chain ABAC
evaluation and capability-token issuance add modest latency
overhead while preserving high throughput. Policy updates can
be completed quickly enough to support emergency revocation
scenarios, and the fully mediated token path eliminates classes
of cloud insider attacks and ad hoc access granting. The
present experiments rely on structurally realistic but synthetic
data and focus solely on the blockchain-backed ABAC path; a
complete comparison against existing RBAC deployments and
experiments with real claims datasets will be presented in a
subsequent journal article.
Security considerations beyond authorization. The Claim-
Guard gateway is a potential DoS target; practical mitiga-
tions include per-subject/organization rate limiting (e.g., to-
ken buckets), autoscaling behind a WAF/CDN, and short-
circuiting denials locally to avoid unnecessary on-chain calls.
Smart-contract upgradeability also introduces risk; we rec-
ommend governance-guarded proxies with timelocks, explicit
pause/rollback procedures, and disabling capability issuance
during pauses to prevent inconsistent states.

V. CONCLUSION AND FUTURE WORK

This paper presents ClaimGuard, a blockchain-backed
ABAC gateway for privacy-preserving auto-insurance claim
evidence sharing. By moving policy evaluation to a PureChain
smart-contract suite and issuing short-lived capability tokens
for an external object store, ClaimGuard decouples fine-
grained authorization from the cloud provider and produces a
tamper-evident audit trail of all decisions. Our implementation
on a local Ethereum network demonstrates that such a design
can deliver sub-100 ms tail latencies and ~1,000 requests/s
throughput while supporting rapid policy updates and strong
authorization correctness.

Future work will extend this prototype in three directions.
First, we plan to integrate a conventional RBAC-based cloud
deployment and systematically compare its performance, ex-
pressiveness, and operational complexity with those of other
approaches. Second, we aim to evaluate ClaimGuard on real-
world auto-claims datasets and investigate privacy-preserving
attribute and policy encoding techniques. Third, we intend
to explore multi-chain deployments and interoperability with
consortium blockchains such as Hyperledger Fabric to support
cross-jurisdictional claims workflows.

In addition, an extended study will (i) compare against
a cloud-only RBAC baseline, (ii) evaluate consortium-chain
variability and cost/fault conditions, and (iii) explore ML-
assisted risk scoring and anomaly detection over access logs.

ACKNOWLEDGMENT

This work was partly supported by Innovative Human
Resource Development for Local Intellectualization program
through the IITP grant funded by the Korea government
(MSIT) (IITP-2025-RS-2020-11201612, 33%) and by Priority
Research Centers Program through the NRF funded by the
MEST (2018R1A6A1A03024003, 33%) and by the MSIT,
Korea, under the ITRC support program (IITP-2025-RS-2024-
00438430, 34%).

REFERENCES

[1] J. Oliveira e S4, C. Kaldeich, and M. J. Silva, “Digital transformation: A
case study in the context of insurance companies,” Procedia Computer
Science, vol. 239, pp. 1165-1172, 2024, cENTERIS - International Con-
ference on ENTERprise Information Systems / ProjMAN - International
Conference on Project MANagement / HCist - International Conference
on Health and Social Care Information Systems and Technologies 2023.

[2] S. Ahmad, R. Karim, N. Sultana, and R. P. Lima, “InsurTech: Digital
Transformation of the Insurance Industry,” in Financial Landscape
Transformation: Technological Disruptions. Emerald Publishing Lim-
ited, 03 2025.

[3] Y. Li, Z. Du, Y. Fu, and L. Liu, “Role-Based Access Control Model
for Inter-System Cross-Domain in Multi-Domain Environment,” Applied
Sciences, vol. 12, no. 24, 2022.

[4] L. A. C. Ahakonye, C. I. Nwakanma, and D.-S. Kim, “Tides of
Blockchain in IoT Cybersecurity,” Sensors, vol. 24, no. 10, p. 3111,
2024.

[5] R. Hu, Z. Ma, L. Li, P. Zuo, X. Li, J. Wei, and S. Liu, “An Access
Control Scheme Based on Blockchain and Ciphertext Policy-Attribute
Based Encryption,” Sensors, vol. 23, no. 19, 2023.

[6] A. Punia, P. Gulia, N. S. Gill, E. Ibeke, C. Iwendi, and P. K. Shukla,
“A Systematic Review on Blockchain-Based Access Control Systems
in Cloud Environment,” Journal of Cloud Computing, vol. 13, no. 1, p.
146, 2024.

[7]1 M. Raikwar, S. Mazumdar, S. Ruj, S. Sen Gupta, A. Chattopadhyay,
and K.-Y. Lam, “A Blockchain Framework for Insurance Processes,” in
2018 9th IFIP International Conference on New Technologies, Mobility
and Security (NTMS), 2018, pp. 1-4.

[8] K. Tekale and N. Rahul, “Blockchain and Smart Contracts in Claims
Settlement,” International Journal of Emerging Trends in Computer
Science and Information Technology, vol. 1, no. 4, pp. 1-8, 2023.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Kumar Thukral, “Security and Efficiency in Vehicle Insurance: A
Blockchain-Based Solution,” in 2023 International Conference on Self
Sustainable Artificial Intelligence Systems (ICSSAS), 2023, pp. 1129
1136.

H. Archana, M. Priti, and R. H. Bhagappa, “A blockchain framework
for secured vehicle insurance claim application process,” Journal of
Computational Analysis and Applications (JoCAAA), vol. 33, no. 07,
p. 1524-1531, 2024.

U. Raghav, S. Singh, S. Setia, A. Anand, and N. Singh, “Optimiz-
ing Vehicle Insurance Claims: Streamlining Settlement Processes with
Blockchain Technology,” in 2024 First International Conference on
Technological Innovations and Advance Computing (TIACOMP), 2024,
pp. 11-18.

S. Alwis and T. M. K. K. Jinasena, “A Blockchain-Based Decentralized
Insurance Platform,” in 2022 International Research Conference on
Smart Computing and Systems Engineering (SCSE), vol. 5, 2022, pp.
137-142.

P-O. Goffard and S. Loisel, “Collaborative and parametric insurance
on the ethereum blockchain,” 2024. [Online]. Available: https:
//arxiv.org/abs/2412.05321

Nexus Mutual Team, “Nexus mutual documentation,” 2023. [Online].
Available: https://docs.nexusmutual.io

A. Paperno, V. Kravchuk, and I. Porubaev, “Teambrella: A peer-to-peer
insurance system,” 2017. [Online]. Available: https://teambrella.com/
whitepaper.pdf

A. Shetty, D. Shetty, D. Kadir et al., “Blockchain application in
insurance services,” SAGE Open, vol. 12, no. 1, p. 21582440221079877,
2022.

A. U. Eneh, L. A. C. Ahakonye, J. M. Lee, and D.-S. Kim, “PureAjo: A
P2P Blockchain-Based Insurance Platform,” in 2025 International Con-
ference on Information and Communication Technology Convergence
(ICTC), 2025.

A. Ekblaw and A. Azaria, “A case study for blockchain in healthcare:
“medrec” prototype for electronic health records and medical research
data,” MIT Media Lab, Tech. Rep., 2016. [Online]. Available:
https://dci.mit.edu/research/blockchain

Y. Xiao, B. Xu, W. Jiang et al, “The healthchain blockchain for
electronic health records: Development study,” Journal of Medical
Internet Research, vol. 23, no. 1, p. 13556, 2021. [Online]. Available:
https://www.jmir.org/2021/1/e13556

V. C. Hu, D. F. Ferraiolo, R. Kuhn, and A. Schnitzer, “Guide to
attribute based access control (abac) definition and considerations
(nist sp 800-162),” National Institute of Standards and Technology,
Tech. Rep., 2014. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
specialpublications/nist.sp.800- 162.pdf

S. Sajid Ullah et al., “A survey on blockchain envisioned attribute based
access control,” SSRN Electronic Journal, 2023. [Online]. Available:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4463404

A. Muniswamy et al., “Trust-based consensus and abac for blockchain
using tdcb technology and fully homomorphic encryption,” International
Journal of Computer Applications, 2025. [Online]. Available: https:
/Iwww.tandfonline.com/doi/full/10.1080/08839514.2025.2459461

H. M. Levy, Capability-Based Computer Systems. Digital Press, 1984.
[Online]. Available: http://www.bitsavers.org/pdf/dec/_Books/_Digital_
Press/Levy_Capability-Based_Computer_Systems_1984.pdf

N. Fotiou, V. A. Siris, and G. C. Polyzos, “Capability-based
access control for multi-tenant systems using oauth 2.0 and
verifiable credentials,” arXiv preprint arXiv:2104.11515, 2021. [Online].
Available: https://arxiv.org/abs/2104.11515

S. Rajasekaran, C. Saar, and K. Halachmi, “Secure isolation of
tenant resources in a multi-tenant storage system using a security
gateway,” Patent, 2013, uS Patent 9411973. [Online]. Available:
https://patents.google.com/patent/US9411973/en

