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Abstract—The rapid accumulation of patent documents
presents challenges for traditional analysis methods due to
the high dimensionality and volume of data. This study pro-
poses an integrated framework that combines Transformer-based
Sentence-BERT embeddings, UMAP dimensionality reduction,
and k-medoids clustering to extract and visualize meaningful
patent clusters. Selected clusters are analyzed through 2D and
3D visualizations to reveal core and peripheral technological con-
cepts, semantic densities, and inter-cluster relationships. Further-
more, generative AI is employed to provide descriptive summaries
and predictive insights for each cluster, enabling the identification
of emerging technological trends and potential applications. The
proposed approach enhances interpretability, supports strategic
decision-making in research and development, and demonstrates
a scalable method for AI-assisted patent landscape analysis.

Index Terms—Patent Analysis, Sentence-BERT, UMAP, k-
Medoids, Generative AI, Clustering, Technology Trend Predic-
tion.

I. INTRODUCTION

This study extends the framework of patent document
analysis by combining Sentence-Bidirectional Encoder Rep-
resentations from Transformers (Sentence-BERT) for vector-
ization, Uniform Manifold Approximation and Projection for
Dimension Reduction (UMAP) for dimensionality reduction,
and k-medoids for clustering, and integrating generative AI to
enhance cluster interpretation and the extraction of strategic
insights. The contemporary technological and business envi-
ronment is characterized by volatility, uncertainty, complexity,
and ambiguity (VUCA) [1], making it crucial to extract ac-
tionable knowledge from large-scale patent datasets to support
decision-making in research and development (R&D) and
technology management.

Patent documents are first transformed into high-
dimensional vectors using a Transformer-based Sentence-
BERT model [5], preserving sentence-level semantic
relationships [2]. These high-dimensional embeddings are
then projected into a lower-dimensional space using UMAP,
enabling 2D and 3D visualization of the clusters. Visualization
enables the capture of the structural features of each cluster,
including key terms, peripheral concepts, distances to other
clusters, and semantically dense regions.

While 2D visualization is suitable for quick overview and
interpretation, 3D visualization provides a spatial represen-
tation of complex relationships and multi-layered structures,
aiding the understanding of potential interactions between
clusters and the direction of technological development [4]. By
combining both approaches, users can intuitively grasp central
and peripheral technologies within each cluster.

Furthermore, representative terms from each cluster are
input into a generative AI model, which automatically pro-
duces descriptive summaries that encompass latent term re-
lationships, related technologies, potential applications, and
future technological trends [3]. This approach can reveal subtle
relationships and emerging directions that may be overlooked
by conventional co-occurrence analysis or statistical methods.
The outputs from generative AI can be further evaluated
and supplemented by experts to improve reliability and in-
terpretability.

In addition, the framework allows exploration of inter-
cluster relationships and scenario-based predictions, providing
guidance for identifying promising technology areas and re-
search directions worth pursuing. By integrating visualization
and generative AI-based interpretation, the overall landscape
of technological domains can be comprehensively understood,
enabling the acquisition of practical knowledge and strategic
insights that were not previously achievable.

II. ANALYTICAL METHODS AND CLUSTERING PROCESS

A. Overview of the Text Data Used in this Study

In this work, we performed extensive textual analysis on
patents retrieved from Google Patents. Patents present unique
challenges for natural language processing (NLP) due to their
large volume, specialized terminology, and frequent use of
complex compound expressions. Prior studies have highlighted
the usefulness of patent data for identifying technological
trends, informing R&D strategies, and performing competitive
analyses, emphasizing the importance of systematic patent text
mining. Each patent contains multiple layers of information
―such as titles, abstracts, International Patent Classification



(IPC) codes, claims, and detailed descriptions―which in-
creases the complexity of preprocessing.

Because Google Patents generates content dynamically,
conventional static HTML scraping alone is insufficient for
comprehensive data collection. To overcome this limitation,
we automated browser-based operations using Selenium in
combination with ChromeDriver and, using BeautifulSoup,
extracted relevant sections, including titles, abstracts, IPC
codes, claims, and detailed descriptions. Furthermore, patent
documents often include extraneous information, such as vari-
ations in application numbers, company names, multilingual
entries, and paragraph numbering. We therefore leveraged
the HTML structure to selectively extract essential content,
thereby improving data accuracy and reliability.

After collection, the text underwent normalization, symbol
removal, and stopword filtering, followed by morphological
tokenization. Japanese patents, in particular, contain numerous
compound nouns and technical terms, which make dictionary-
based tokenization inadequate for accurate word segmenta-
tion. To address this, we applied the termextract library to
identify and standardize domain-specific terms and compound
expressions, resulting in a vocabulary better suited for patent
analysis. Additionally, the processed text was formatted for
direct embedding with Sentence-BERT, preserving contextual
information.

By combining dynamic acquisition, structured text extrac-
tion, and specialized term handling, we established a pre-
processing pipeline that produces a high-quality dataset opti-
mized for patent document analysis. This dataset subsequently
supports downstream tasks, including embedding generation,
dimensionality reduction, clustering, and semantic interpreta-
tion via generative AI, thereby enhancing the robustness and
reliability of the overall analytical workflow.

B. Document Embedding

Patent documents accumulate continuously, resulting in
an enormous volume that complicates efficient analysis. To
address this challenge, it is effective to convert each patent
into a numerical vector that captures its semantic content. In
this study, we employed Sentence-BERT to obtain sentence-
level embeddings for patent texts.

Sentence-BERT builds on the BERT architecture, generating
sentence vectors that capture the overall meaning of sentences
while preserving word order. BERT itself uses an encoder-only
Transformer design and captures word relationships through
attention mechanisms [6]. It is pretrained on Masked Lan-
guage Modeling and Next Sentence Prediction tasks, providing
general contextualized embeddings suitable for downstream
applications such as classification, clustering, and semantic
analysis.

Unlike traditional recurrent or convolutional networks, the
Transformer leverages self-attention, enabling parallel compu-
tation and scalability across NLP tasks. Multi-Head Attention
allows a model to simultaneously focus on multiple represen-
tation subspaces Eqs. 1, 2 and 3, while positional encoding

injects sequence information into the embeddings Eqs. 4 and
5.
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To capture semantic similarities between multiple sen-
tences, Sentence-BERT employs a Siamese network structure.
Sentence embeddings generated by BERT are pooled and
subsequently compared or classified using a Softmax layer.
These embeddings serve as the foundation for identifying
technological domains, tracking innovation trends, and feeding
generative AI modules for further interpretation.

This modified approach extends our previous work by in-
corporating a more sophisticated preprocessing and embedding
strategy, providing enhanced representation of patent seman-
tics while facilitating downstream clustering, visualization, and
semantic forecasting using LLMs.

C. Dimensionality Reduction with UMAP

The patent embeddings generated in this study are 768-
dimensional vectors, which can lead to challenges related
to the curse of dimensionality during clustering. To mitigate
this issue and facilitate meaningful clustering, it is necessary
to reduce dimensionality while retaining the data’s essential
geometric and topological structure. Dimensionality reduction
techniques can be categorized as linear or nonlinear. While
linear approaches are computationally efficient, they are often
insufficient for capturing the complex nonlinear relationships
present in patent embeddings. Nonlinear methods, on the other
hand, can model these intricate structures but require higher
computational resources.

In this study, we applied UMAP [7], a nonlinear dimen-
sionality reduction technique that efficiently preserves both lo-
cal and global relationships among high-dimensional vectors.
UMAP constructs a weighted k-nearest neighbor graph for the
high-dimensional data points and optimizes a low-dimensional
representation that minimizes the discrepancy between the
high- and low-dimensional proximities Eqs. 6. This process



enables clustering algorithms to operate more effectively on
reduced-dimensional data while preserving meaningful seman-
tic relationships.

L =
∑
i,j

[
vij log

vij
wij
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]
(6)

D. Clustering with k-Medoids

To organize the high-dimensional patent embeddings ob-
tained in this study, we used the k-medoids clustering al-
gorithm. Clustering helps to identify groups of patents with
similar semantic features by assigning a representative center
for each cluster [8]. Unlike k-means, k-medoids chooses
the cluster center from actual data points, called medoids,
minimizing the sum of distances to all other points in the
cluster. This approach is remarkably robust against outliers
and irregular data distributions:

mk = arg min
xj∈Xk

∑
xi∈Xk

d(xi,xj) (7)

where d(xi,xj) represents a chosen distance metric. The
optimal number of clusters was determined by silhouette
analysis [9], which evaluates both intra-cluster cohesion a(i)
and inter-cluster separation b(i) for each data point x(i). The
silhouette coefficient s(i) is defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(8)

We selected the number of clusters that maximized the
average silhouette coefficient. In this study, silhouette scores
were calculated for cluster numbers ranging from 2 to 30,
and the cluster configuration yielding the highest score was
adopted for subsequent analysis.

E. Analysis and Visualization of Clustered Patent Terms

To gain insights into the characteristics of patent clusters,
we examined term co-occurrence patterns within each cluster.
Co-occurrence indicates how frequently specific terms appear
together in the same context, which provides information
about their semantic relationships [10]. In this study, we used
several similarity indices to quantify co-occurrence, including
the Jaccard, Dice, and Simpson coefficients. The Jaccard
coefficient measures the proportion of shared terms between
sets A and B:

J(A,B) =
|A ∩B|
|A ∪B|

(9)

The Dice coefficient evaluates the shared terms relative to
the average size of the two sets [11]:

DSC(A,B) =
2|A ∩B|
|A|+ |B|

(10)

Additionally, the Simpson coefficient considers the overlap
relative to the smaller set [12]:

overlap(A,B) =
|A ∩B|

min(|A|, |B|)
(11)

The quantified co-occurrence data were visualized as net-
works to facilitate intuitive interpretation of term relationships.
For 2D visualizations, we used the pyvis library, which allows
flexible customization of node and edge attributes and interac-
tive exploration of the network. To represent a larger amount
of information spatially, 3D visualizations were created using
Three.js. While 3D representations can increase information
density, potentially reducing readability, combining them with
2D visualizations ensures both detailed and comprehensible
views. This integrated visualization approach supports the in-
terpretation of patent cluster semantics using both quantitative
and visual perspectives.

III. AI-BASED CLUSTER INTERPRETATION AND FUTURE
PREDICTION

A. Positioning of Generative AI

In conventional cluster analysis, the interpretation of tech-
nological characteristics has primarily relied on word frequen-
cies and co-occurrence relationships within clusters. However,
this approach relies solely on word occurrences and co-
occurrences, making it difficult to understand the semantic
background and latent relationships within clusters fully. Espe-
cially for high-dimensional, specialized datasets such as patent
documents, simple frequency-based information may not cap-
ture key aspects, including technological applicability, research
trends, or societal impact. Moreover, manual interpretation
heavily relies on domain expertise and time, posing challenges
for reproducibility and efficiency.

The use of generative AI offers an effective means to
overcome these limitations. Generative AI can automatically
generate natural-language summaries and explanations from
the words and document information within a cluster, enabling
an intuitive and comprehensive understanding of the cluster’s
technological meaning and potential applications [13]. In
particular, large language models that have learned contextual
relationships between words can infer subtle differences in
meaning and relationships that may be overlooked by human
experts, thereby improving both the accuracy and depth of
cluster interpretation.

Furthermore, leveraging generative AI enables automation
and efficiency in the analysis process. Previously, represen-
tative words for each cluster had to be manually organized
and interpreted. Generative AI can summarize and analyze in-
formation across thousands of clusters almost instantaneously,
enabling comprehensive interpretations of large-scale patent
datasets within realistic time frames. In this way, generative AI
serves as a powerful tool that balances improved interpretive
accuracy with analytical efficiency.

B. Generation of Cluster Descriptions

Generative AI-based cluster description involves creating
natural language summaries of clusters using representative,
frequently occurring words as input. Specifically, prompts
such as “This cluster contains words AAA, BBB, and CCC.
Describe the characteristics, related technologies, and potential
applications of this cluster in detail” are used to guide the



Fig. 1. Cluster display interface

model, enabling output that captures the technological content
and scope of the cluster [14].

This approach allows a comprehensive understanding of
cluster features and enables applications such as inter-cluster
comparison and technological domain classification. Since
generative AI considers contextual relationships between
words, it can reveal latent relationships and technological
directions that conventional statistical methods cannot detect.
Additionally, the generated cluster descriptions can be vali-
dated and refined by human experts, ensuring accurate and
reliable interpretation.

C. Future Prediction and Insight Extraction for Each Cluster

The words within each cluster and their relationships can
be organized in textual or tabular formats, which can serve
as input for generative AI models. Specifically, representative
words, frequently occurring words, and strongly co-occurring
word pairs are listed, and the relationships and characteristics
of the cluster are summarized in text. By inputting this orga-
nized information into a generative AI model, latent patterns,
novel ideas, and related technologies within the cluster can
be extracted in natural language. This method allows an
intuitive, comprehensive understanding of cluster structures
and provides insights that traditional statistical analyses alone
cannot deliver.

Furthermore, using template formats to organize input infor-
mation enhances the reproducibility and efficiency of cluster
interpretation. Generative AI can also generate future trend
predictions in textual form, serving as a reference for decision-
makers and researchers to formulate technology strategies

Fig. 2. Examples of templates to input into generative AI

quickly. This approach advances beyond conventional cluster
analysis, which primarily provides technological categoriza-
tion, to offer direct support for strategic decision-making and
the setting of research and development directions.

IV. RESULTS AND DISCUSSION

A. Results of the End-to-End Processing Pipeline from Pre-
processing to Clustering

In this study, we developed an integrated processing pipeline
that collects patent information from Google Patents using
multiple user-provided keywords, performs document vector-
ization with Sentence-BERT, applies dimensionality reduction
with UMAP, and conducts clustering with the K-medoids
method. This section describes the entire preprocessing pro-
cedure, including the web scraping stage and the resulting
clustering outcomes.

First, an OR-based keyword search is executed on Google
Patents to retrieve relevant patent identifiers. Because Google
Patents imposes a limit of 1,000 records per request, the
present study divides the target period into one-year intervals
and assigns each year to an individual thread. This parallel
scraping strategy enables efficient collection of patent texts
across multiple years, and the aggregated results are combined
to construct the final patent dataset.

Next, the collected text data are encoded into document
vectors using Sentence-BERT. The resulting high-dimensional
vectors are then reduced to 15 and 2 dimensions using UMAP.
The 15-dimensional vectors are used for clustering and inter-
preting cluster contents, as this representation retains sufficient
semantic information while suppressing noise, resulting in
stable clustering. In contrast, 2-dimensional vectors are used
to visualize the clustering results. The reason for adopting 2-
dimensional vectors for visualization is that, compared with
three-dimensional or higher-dimensional vector spaces, the
distances and density relationships between data points plotted
in a 2D space can be more intuitively perceived by humans.
Furthermore, in visualizing similarities among data points, a
2D space makes it easier to recognize how data points are
grouped within each cluster. It provides a more straightfor-
ward overview of the dataset’s overall structure. The UMAP



Fig. 3. Future Projections by Cluster (Cluster 0)

parameters were tuned to preserve both the local and global
structures of the patent corpus.

Subsequently, silhouette analysis was conducted on the
15-dimensional vectors to estimate the optimal number of
clusters, followed by K-medoids clustering. K-medoids was
chosen over K-means because it is more robust to outliers
and defines cluster centers as actual data samples, enabling
more interpretable, stable clustering results in non-Euclidean
vector spaces such as those produced by Sentence-BERT. To
facilitate interpretation, the ten documents closest to each clus-
ter medoid were extracted, and essential terms were identified
through the termextract library. Based on this, three represen-
tative terms were selected for each cluster, enabling explicit
characterization of the underlying themes and technological
domains.

The clustering output was then visualized as a 2D scatter
plot using pyvis, with each cluster assigned a distinct color and
marker shape to improve interpretability. The visualization also
displays representative terms for each cluster, enabling users
to intuitively select areas of interest (refer to Fig. 1). After
a cluster is selected, a co-occurrence network is constructed
using the Simpson coefficient, and both 2D and 3D graphs of
the term network are generated.

Overall, the proposed system provides a fully automated
end-to-end pipeline that spans keyword input, patent retrieval,
text preprocessing, dimensionality reduction, clustering, and
visualization. This enables users to intuitively grasp cluster
structures and their content, while seamlessly progressing to
more detailed analyses of specific technical fields. The inte-
grated results presented in this section also serve as essential
inputs for subsequent stages, such as future-trend prediction
and idea-generation support, contributing significantly to ex-
ploratory analysis in targeted technological domains.

Fig. 4. Comparison results by cluster

B. Future Prediction of each Cluster Using Generative AI

In this study, we conducted clustering on a set of patents
containing the terms“ wind” and“ turbine” to identify
the technological characteristics of each cluster. Subsequently,
we used generative AI to predict future trends. The purpose
of the future prediction was to estimate the developmental
directions of technological domains for each cluster, providing
insights valuable for research and development strategies and
investment decision-making.

Inputs to the generative AI were formatted according to
the template shown in Figure 2, with three representative
terms describing each cluster. The template instructs the AI to
define the future technological trends of each cluster, compare
clusters when necessary, and explain the rationale for its
predictions based on historical trends such as changes in
patent filings or the maturity of related technologies. This
approach succinctly conveys the key points of the cluster while
facilitating the AI’s inference of the underlying technological
context. The generative AI, based on statistical knowledge
derived from past technical literature, news, and patent trends,
generated textual outputs predicting future trends for each
cluster (refer to Fig. 3). Figure 3 shows an example output
for Cluster 0, which summarizes AI-generated predictions in
Japanese regarding short- to mid-term (3–5 years) technolog-
ical developments, supporting indicators such as patent filing
trends and citation counts, and suggested strategic actions
for researchers and companies. The outputs were organized
according to the following aspects:

• Direction of annual trends
• Emerging research topics
• Expected application areas
• Societal and industrial impact
• Technical challenges and potential risks

Through this process, the generative AI provided concrete



descriptions of the anticipated 5-10 years development poten-
tial and possible barriers to adoption for each cluster. The
outputs also supported inter-cluster comparisons, highlighting
clusters with high development potential as recommended
areas (refer to Fig. 4). In this way, the future prediction results
function not merely as supplementary information but as a
guide for identifying technological domains likely to become
strategically important.

By integrating these predictions, we organized the techno-
logical positioning of each cluster, providing a framework
for constructing technology scenarios in the wind power
domain. Notably, some clusters showed a clear upward trend
in patent filings, indicating potential market expansion in the
coming years. In contrast, mature domains faced challenges in
technological differentiation, suggesting a need to shift focus
to peripheral technologies such as material performance and
environmental resilience.

C. Visualization of Selected Clusters and Idea Generation
with Generative AI

For user-selected clusters, we perform 2D and 3D visual-
izations using UMAP and conduct a detailed analysis of the
structural characteristics of term groups. These visualizations
highlight key terms defining the cluster, peripheral concepts,
relative distances to other clusters, and regions with high se-
mantic density within the cluster, thereby enabling an intuitive
understanding of the internal structure of the technical domain
and the relationships among terms.

In particular, 3D visualizations can represent complex rela-
tionships and multi-layered structures in space, helping capture
potential interactions between clusters and understand the de-
velopmental directions of technologies. In contrast, 2D visual-
izations have lower information density, making them suitable
for grasping the overall structure and for rapid interpretation.
By combining both 2D and 3D visualizations, the precision
and efficiency of visual understanding can be enhanced.

Furthermore, in this study, generative AI is leveraged to
support idea generation and technological interpretation of
clusters. Specifically, representative and frequently occurring
terms from each cluster are fed into a language model, which
automatically generates descriptive summaries that capture la-
tent relationships among terms, related technologies, potential
applications, and future technological trends.

This approach enables the extraction of subtle inter-cluster
relationships and novel technological directions that conven-
tional co-occurrence analysis or statistical methods may fail to
reveal. Moreover, the outputs of generative AI can be evaluated
and refined by human experts, improving both the reliability
and interpretive accuracy of the analysis.

V. CONCLUSION

In this study, we developed an end-to-end analytical pipeline
that integrates patent retrieval, text vectorization, dimen-
sionality reduction, clustering, visualization, and generative
AI–based interpretation. By combining Sentence-BERT em-
beddings, UMAP, and K-medoids clustering, the proposed

system successfully extracted meaningful cluster structures
from patents related to wind-turbine technologies. Represen-
tative terms were identified for each cluster, enabling explicit
characterization of technological domains and facilitating the
interpretability of the clustering results.

Furthermore, by employing generative AI to predict future
developments for each cluster, we demonstrated the applica-
bility of large language models for estimating emerging tech-
nological directions, potential application areas, and expected
challenges. The results provided valuable insights for technol-
ogy forecasting and strategic decision-making. Visualization
with both 2D and 3D UMAP further enhanced interpretability
by enabling intuitive exploration of cluster structures and inter-
cluster relationships.

Overall, the proposed pipeline significantly streamlines the
process of exploratory patent analysis and supports early-stage
R&D planning by integrating automated data processing with
AI-driven interpretation. Future work includes expanding the
data sources to incorporate scientific publications and real-
world news, integrating temporal trend analysis, and develop-
ing an interactive decision-support system for industrial and
academic users.
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