Event-Aware Relabeling for Addressing Future
Leakage in End-to-End Autonomous Driving
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Abstract—Recent advances in autonomous driving have shifted
the field from modular pipelines to End-to-End (E2E) frame-
works. E2E frameworks directly map raw sensor inputs to control
commands, leveraging large-scale data to learn robust driving
policies. However, the conventional data generation process relies
on future actions and trajectory information as Ground Truth
(GT). This procedure introduces a “Future Leakage” problem,
where information unavailable at inference time unintentionally
enters the training process. This leads to causal confusion, where
the model learns spurious correlations instead of true causality,
thus compromising driving safety. In this paper, we propose
an Event-Aware Relabeling technique to address this problem.
The proposed method detects interaction events with obstacles
and vehicles by utilizing traffic lights and the ego-vehicle’s
state information. Then it effectively eliminates the leakage of
future information by performing appropriate relabeling on
the data prior to the event occurrence. Experimental results
demonstrate that our method effectively mitigates the causal
confusion problem and achieves a driving score improvement of
approximately 14% compared to baseline. This study highlights
that a high-quality data curation process is essential to ensure
the safety of E2E autonomous driving systems and validates the
potential of data-centric performance optimization.

Index Terms—End-to-end autonomous driving, dataset refine-
ment, causal confusion

I. INTRODUCTION

Autonomous driving research is transitioning from tradi-
tional modular pipelines to End-to-End (E2E) paradigms.
Traditional approaches are often limited by error propagation
and a heavy reliance on manually engineered components.
In contrast, E2E models directly map raw sensor inputs to
control commands. Leveraging large-scale data-driven learn-
ing, these systems have demonstrated robust generalization
capabilities [1]-[3].
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Most E2E models rely on Imitation Learning (IL), where
expert future trajectories are used as Ground Truth (GT).
However, directly adopting expert demonstrations induces the
future leakage problem. This occurs because the GT implicitly
embeds information unavailable at the current time step, such
as future traffic light changes. This leakage prevents the model
from learning true causal relationships and leads to causal
confusion [4]. As a result, the model may capture spurious
correlations rather than understanding actual driving contexts.
This issue often remains hidden in open-loop evaluations but
results in critical safety failures in real-world closed-loop
environments.

These limitations indicate that ensuring the safety of E2E
autonomous driving requires efforts beyond architectural im-
provements. A more fundamental solution lies in enhancing
data quality and restoring proper causal structure within train-
ing labels. To address this challenge, we propose an Event-
Aware Relabeling framework. This method identifies critical
driving events, such as traffic stops or object interactions, and
rectifies the preceding data segments where future information
is unintentionally embedded. This process enables the model
to learn decisions grounded solely in information observable
at each moment, thereby establishing a causally consistent
training signal.

The main contributions of this study are summarized as
follows:

o First, we provide a concrete analysis of the causal
confusion problem caused by future leakage in E2E
autonomous driving datasets and identify it as a cause
of driving performance degradation.

e Second, we propose an Event-Aware Relabeling algo-
rithm that utilizes traffic light and ego-vehicle status
information to eliminate future information and preserve



causality at the current time step.

o Third, we demonstrate that our method improves driving
scores by approximately 14% compared to baselines.
This significant gain underscores the critical role of data
curation in enhancing the safety and performance of
autonomous driving systems.

The remainder of this paper is organized as follows. Sec-
tion II reviews the latest research trends in E2E autonomous
driving and related works on dataset curation. Section III
details the specific methodology of the Event-Aware Relabel-
ing algorithm proposed in this study. Section IV presents a
quantitative and qualitative analysis of the proposed method’s
impact on driving safety and performance. Finally, Section V
concludes the paper by reaffirming the importance of address-
ing the future leakage problem based on the experimental
results.

II. RELATED WORKS
A. End-to-End Autonomous Driving

E2E autonomous driving directly maps raw sensor inputs
such as camera or LiDAR data to control signals including
steering, throttle, and brake or to future trajectories through a
unified neural network. Beginning with ALVINN [1] in 1989,
NVIDIA’s PilotNet [2] further demonstrated the feasibility of
the E2E paradigm by successfully performing lane-keeping
with a CNN-based architecture. More recent works such as
Uni-AD [3], VAD [5], and Gen-AD [6] focus on improving sit-
vational understanding and strengthening interaction modeling
with surrounding agents by explicitly integrating perception
and planning within a single framework. In addition, with
the rapid advancement of Large Language Models (LLMs),
E2E autonomous driving research has begun to explore LLM-
inspired architectures. For example, SimLingo [7] incorporates
LLMs to combine semantic reasoning with driving control.
However, imitation learning approaches are inherently limited
by two critical challenges: covariate shift and causal confusion.
Covariate shift arises from the distribution mismatch between
expert demonstrations and real-world environments. Mean-
while, causal confusion occurs when models learn incorrect
causal associations due to spurious correlations within the
dataset.

B. Causal Confusion in Imitation Learning

Causal confusion occurs when a model learns spurious cor-
relations instead of identifying the true causal factors behind
expert actions [4]. De Haan et al. [4] point out that high-
dimensional sensory data such as images can unintentionally
intensify this issue by distracting the model from causally
meaningful cues. In autonomous driving, this often appears
as the inertia problem, in which models tend to imitate pre-
vious actions or rely heavily on speed-related cues instead of
responding appropriately to visual information such as traffic
lights or obstacles [8]. The future leakage phenomenon, which
is a central focus of this study, further aggravates causal confu-
sion. Specifically, future events such as traffic light transitions
or obstacle interactions are often inadvertently embedded

in GT labels due to temporal misalignment. Consequently,
the model attempts to infer nonexistent causal cues from
the current input. This reduces generalization performance
and undermines the model’s ability to respond reliably to
unexpected situations in real-world environments.

C. Data Curation and Relabeling

Achieving robust E2E autonomous driving requires not only
improvements in architectural design but also the construction
of high-quality datasets. Early work such as DAgger [9]
attempted to mitigate distribution mismatch by allowing expert
intervention during online training. However, this approach
is costly and difficult to scale. As a result, more recent
efforts have shifted toward offline data curation and relabeling
strategies to enhance learning efficiency. Some studies [10],
[11] focus on removing noise from expert demonstrations or
reducing ambiguity in supervisory signals by aggregating be-
haviors from multiple experts. Nonetheless, these approaches
mainly address human error or sensor noise and do not directly
resolve the temporal inconsistencies that cause future leakage.
In contrast, the Event-Aware Relabeling method proposed in
this paper detects future events in advance and selectively
relabels segments that contain causally invalid information at
the current time. This process eliminates future-dependent bias
in the GT labels and enables the model to learn causally sound
driving policies, thereby overcoming the limitations of existing
data curation techniques.

III. METHODOLOGY
A. Overview

This section describes the overall framework designed to
address the future leakage problem that commonly arises
during the training of E2E autonomous driving models. The
proposed framework is composed of three core components:
(1) Model Architecture that processes multimodal inputs to
perceive the environment and generate control commands;
(2) Event Detection module that identifies driving scenarios
within expert demonstrations prone to future leakage; and (3)
Event-Aware Relabeling module that rectifies GT labels in
the detected segments to ensure causal consistency. We adopt
the SimLingo-base [7] model as a baseline and modify it
with structures tailored to autonomous driving. In addition,
we enhance training stability through a data curation process
that eliminates causally invalid supervision.

B. Model Architecture

The model proposed in this study is based on SimLingo-
base and is designed to jointly process visual information,
navigation cues, and ego-vehicle state signals. The overall
architecture is illustrated in Figure 2. The visual inputs consist
of images captured from five vehicle-mounted cameras that
provide front, left, right, rear-left, and rear-right views. To
incorporate temporal context, the model uses both the current
frame at time ¢ and a previous frame at time ¢ — 4, resulting in
a total of ten input images. A route map image that provides
global navigation and planning information is also included.
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Fig. 1. Event-Aware Relabeling applied to trajectory and action labels during stop scenes. This figure compares the original trajectory and action labels
generated before applying relabeling with those modified to maintain a stationary state over the same interval. In each label visualization, the left plots show
the trajectory labels derived from future positions, while the right plots present the future action labels extracted at 0.5-second intervals over a 2-second
horizon. In the action labels, red arrows pointing downward indicate deceleration, whereas green arrows pointing upward represent acceleration.
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Fig. 2. Overview of the proposed architecture. The model encodes multi-
modal inputs using a LLaMA (x-tiny) backbone to jointly predict BEV
segmentation, trajectories, and control actions.

All visual inputs are passed through a Vision Encoder, which
converts them into high-dimensional feature tokens that are
then forwarded to the backbone network. For ego-state in-
formation, we use the most recent two seconds of vehicle
motion data. This includes linear velocities along the three
axes (vy,vy,v,) as well as angular velocities (wg,wy,w,),
which enable the model to precisely capture rotational dy-
namics. The encoded visual tokens and ego-state features are
processed by a transformer backbone built upon the Llama (x-
tiny) architecture. The output layer of the model is composed
of two heads designed for perception and planning. The
Segmentation Head receives tokens generated from camera
images and predicts road layouts and surrounding objects in a
Bird’s Eye View (BEV) representation, which encourages the
model to explicitly learn the geometric structure of the driving
environment. The Planning Head takes ten trajectory queries
and ten action queries as inputs. These queries are processed
through a transformer decoder, after which the model predicts
future trajectory points and control actions for the next ten

time steps.

C. Event Detection

Future leakage primarily occurs in transitional situations in
which the vehicle is either stopping or starting, and future
information is implicitly pulled into the labeling process.
Therefore, we define these situations as events and detect
them using traffic light information and ego-vehicle behavior
analysis. Examples of the detection process and results are
shown in Figure 1. First, events are detected based on the status
of the traffic light that the autonomous vehicle is currently
facing. Rather than considering all traffic lights visible in the
scene, we selectively identify valid traffic lights by examining
the geometric relationship between the vehicle heading and
the spatial position of each traffic light. Traffic lights that are
too distant or excessively close to the vehicle are excluded,
and only those located at a meaningful distance along the
driving path are considered. An event occurrence is defined
at the moment when a selected traffic light transitions from a
stop signal (Red or Yellow) to a go signal (Green). Second, to
complement cases where traffic light information is uncertain,
we directly analyze changes in the motion state of the ego-
vehicle. When the vehicle speed converges to zero and the
vehicle is in a stationary state (v ~ 0), abrupt transitions
between the current action and a future action are detected.
Specifically, we identify the time step at which sustained
braking transitions into acceleration and define this point as a
potential departure event. This allows the detection of starting
intentions even in the absence of reliable traffic light signals.

D. Event-aware Relabel

In segments where events are detected, future information
may influence the GT labels recorded during data collection
and cause causal confusion. To prevent this, we perform
Event-Aware Relabeling. When an event such as a departure



TABLE I
COMPARISON OF DRIVING SCORES BY SCENARIO ACCORDING TO RELABELING STRATEGIES

[ Model [ Scenario 1 | Scenario 2 [ Scenario 3 | Scenario 4 [ Scenario 5 | Scenario 6 | Scenario 7 | Scenario 8 | Scenario 9 [ Scenario 10 [[ Avg. |
[ Baseline [| 8667 [ 7333 | 7667 [ 7040 | 7833 | 8667 | 17022 | 73.15 379 [ 7656 [ 72.99 |
[ Relabel || 1000 | 9833 | 8667 | 8342 | 9000 | 9833 | 7667 | 9833 | 5509 | 8500 || 87.18 |
after a traffic light change is detected, we trace back a TABLE 11
predefined interval, referred to as the pre-event horizon, and _SCENARIO CONFIGURATIONS AND TEST ITEMS
fine the dat ithin thi ¢ If th ¢ d trated Scenario Key Test Items

refine the data within this segment. e expert demonstrate Scenario T | Lane Keeping, Car Following
a consistently maintained behavior before the abrupt change, Scenario 2 | Unprotected Left Turn, Pedestrian Yielding
such as remaining stationary, all labels within this interval are Scenario 3 | Flashing Yellow Intersection Response, Right Turn
replaced with this consistent behavior. For the action labels, if Scenario 4 | Obstacle Avoidance, Traffic Light Compliance

. L . . Scenario 5 Traffic Light Compliance, Merging
the vehicle maintains a braking state above a certain threshold, Scenario 6 | Traffic Light Compliance, Merging
all action labels prior to the event are modified to indicate Scenario 7 | Pedestrian Yielding, Obstacle Avoidance
full braking. This ensures that, even if the expert begins to gcenaqog gﬁ’“l:‘dabolgt VDV”V‘“I%I_ e

. . . cenario ighway Driving, Highway Merging, Lane Change

apply acceleration at a future time step, the GT labels instruct Scenario 10 | High-Density Traffic, Toll Gate Passage

the model to keep the vehicle fully stationary until the event
actually occurs. The same principle applies to trajectory labels.
Instead of using trajectory points that move toward a future
position, the trajectory points are modified to remain at the
current position of the stationary vehicle. Figure 1 illustrates
the difference before and after relabeling. In the original data,
future departure behavior was embedded before the traffic
signal changed, whereas the proposed method enforces a full-
stop state until the moment of the signal change and thereby
restores causal consistency in the training labels.

IV. EXPERIMENTS

In this study, we validate the effectiveness of the proposed
methodology using MORALI, a digital twin simulator that pre-
cisely models road environments in Korea. The training dataset
was collected within MORAI and consists of approximately
2.6 million frames, corresponding to a total size of about 2.2
TB.

The evaluation was conducted across ten diverse driving
scenarios constructed on K-City, a standardized autonomous
driving testbed. These scenarios include tasks ranging from
basic traffic rule compliance such as traffic signal obedience
and lane keeping to more complex maneuvers that require
high-level decision making, including unprotected left turns
and stopping for unexpected pedestrian crossings, as summa-
rized in Table II. The evaluation was performed in a real-time
closed-loop setting, in which the model directly controls the
vehicle and interacts with the environment, instead of relying
on a conventional open-loop evaluation based on pre-recorded
datasets. To ensure fairness, each scenario was executed three
times and the final performance score was computed as the
average over these trials.

Driving performance was measured according to the eval-
uation metrics defined in the CARLA Leaderboard [12]. The
final Driving Score (DS) is calculated as the product of the
Route Completion (RC), which measures the proportion of the
planned route successfully driven by the agent, and a Penalty
term that accounts for safety violations such as collisions,
traffic signal violations, and lane boundary intrusions.

A. Quantitative Results

To evaluate the effectiveness of the proposed Event-Aware
Relabeling technique, we compared a baseline model trained
without any data refinement (Baseline) with a model that
applies the proposed method to both action and trajectory
labels (Relabel). Table I presents the driving scores for each
scenario as well as the overall average score.

The results show that the Baseline model consistently
achieved lower driving scores across all scenarios, indicating
that future leakage-induced causal confusion significantly de-
grades decision-making performance in real driving situations.
In contrast, the Relabel model exhibited stable performance
improvements in every scenario, achieving an average driving
score approximately 14% higher than the Baseline.

These findings demonstrate that eliminating future leakage
during the label generation process alone can substantially
enhance the driving stability of E2E autonomous driving
systems. This suggests that data curation plays a critical
role in ensuring causally consistent learning signals, thereby
enabling more reliable decision-making in real-world driving
environments.

B. Qualitative Results

Figure 3 provides a visual comparison of model predictions
with and without the proposed relabeling method. The baseline
model, which suffers from future leakage, often exhibits unsta-
ble action outputs. For example, even when the traffic signal
is still red, the model prematurely anticipates a future green
signal and oscillates between actions or attempts to initiate
acceleration when it should remain stationary. In contrast,
the model trained with Event-Aware Relabeling produces
significantly more stable and consistent predictions during
event-critical situations involving traffic lights or surrounding
vehicles. Notably, during red-signal waiting periods, the model
reliably outputs a stationary action regardless of future signal
changes. Furthermore, in interactions with leading vehicles, it
generates smooth deceleration trajectories while maintaining
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(b) Predictions from the model trained on the Event-Aware Relabeled labels

Fig. 3. Qualitative comparison of model predictions with and without Event-Aware Relabeling.

a safe following distance. These results confirm that the pro-
posed method encourages the model to perform correct causal
reasoning based solely on currently observable information
rather than memorizing future states embedded in the dataset.

V. CONCLUSIONS

In this paper, we identified the future leakage problem
that arises during E2E autonomous driving training and pro-
posed an Event-Aware Relabeling technique to address it. By
detecting events through analysis of traffic light states and
ego-vehicle behavior, and by causally redefining the action
and trajectory labels within the corresponding segments, the
proposed method prevents the model from memorizing future
information and guides it toward learning valid driving logic.

Experimental results show that the proposed technique im-
proves driving scores by approximately 14% compared to the
baseline, particularly enhancing stability in scenarios involving
traffic light waiting and interactions with leading vehicles.
Overall, this study demonstrates that high-quality data curation
is essential for ensuring the safety of autonomous driving sys-
tems, extending beyond architectural improvements, and high-
lights the importance of data-centric approaches for achieving
reliable full autonomy.

ACKNOWLEDGMENT

This work was supported by the Ministry of Trade, Industry
and Resources (MOTIR) grant funded by the Korea govern-
ment (No. N02250174).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989,
pp- 305-313.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du,
T. Lin, W. Wang et al., “Planning-oriented autonomous driving,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 17 853—17 862.

P. De Haan, D. Jayaraman, and S. Levine, “Causal confusion in imita-
tion learning,” in Advances in Neural Information Processing Systems,
vol. 32, 2019.

B. Jiang, S. Chen, Q. Xu, B. Liao, J. Chen, H. Zhou, Q. Zhang,
W. Liu, C. Huang, and X. Wang, “Vad: Vectorized scene representation
for efficient autonomous driving,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 8340-8350.
Z. Weng, Z. Wang, and C. McCarthy, “End-to-end autonomous driving
with generative modeling,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024.

K. Renz, L. Chen, E. Arani, and O. Sinavski, “Simlingo: Vision-only
closed-loop autonomous driving with language-action alignment,” in
Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, 2025, pp. 11993-12003.

F. Codevilla, E. Santana, A. M. Lépez, and A. Gaidon, “Exploring the
limitations of behavior cloning for autonomous driving,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2019,
pp. 9329-9338.

S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the twenty-fourth international conference on artificial intelligence
and statistics, 2011, pp. 627-635.

M. Bansal, A. Krizhevsky, and A. Ogale, “Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst,” in Robotics:
Science and Systems (RSS), 2019.

F. Codevilla, M. Miiller, A. Lépez, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” 2018 IEEE



International Conference on Robotics and Automation (ICRA), pp.
4693-4700, 2018.

[12] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1-16.



