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Abstract—This paper investigates the multi-sensor placement
problem for angle-of-arrival (AOA)-based localization in a surveil-
lance scenario over a half-plane region. In such settings, simple
regular layouts often leave large areas with very high localization
error. To address this issue, we formulate the placement problem as
minimizing the spatially averaged position error bound (PEB) over
the surveillance region. To solve this combinatorial optimization
problem, we first employ a reinforcement learning (RL) policy
with a PEB-based reward derived from the Cramér–Rao lower
bound (CRLB). However, this purely data-driven approach does
not explicitly capture the underlying sensing geometry and does
not guarantee an optimal placement. Therefore, we propose a
hybrid framework that initializes the layout using this RL policy
and then refines it via a physics-aware greedy 1-swap search.
Simulation results show that the proposed method achieves a
lower spatially averaged PEB and reduces high-error lobes over
the surveillance region compared with RL-based baselines.

I. INTRODUCTION

Bearings-only localization using angle-of-arrival (AOA) mea-
surements is widely used in radar, sonar, and electronic warfare
(EW) systems [1], [2]. Because passive AOA sensors provide
only bearing information and no direct range, localization
accuracy is highly sensitive to the sensor–target geometry.
In ideal symmetric layouts such as convex-hull geometries,
sensors surround the target region and provide diverse viewing
angles, which yields relatively uniform accuracy. In practical
surveillance scenarios with unknown target positions, however,
sensors must be deployed behind a front line and observe
only an opposing half-plane [3], as illustrated in Fig. 1. In
this half-plane configuration, distant targets are viewed from
similar directions, which makes the Fisher information matrix
ill-conditioned and leads to broad high-error bands in the
Cramér–Rao lower bound (CRLB) over the surveillance region.

Therefore, classical geometry-based sensor placement rules
are not directly applicable to asymmetric half-plane scenarios
[4], [5]. To overcome these limitations, recent work has
explored reinforcement learning (RL) to optimize sensor
layouts based on performance-driven rewards in simulation
environments [6], [7]. RL is well suited for such problems,
as it can explore very large discrete placement spaces and
handle irregular deployment constraints. However, standard
model-free RL agents typically rely on stochastic exploration
guided by scalar rewards, without explicitly exploiting the an-
alytical sensor–target geometry or Fisher information structure.
Consequently, RL-only designs may settle for suboptimal local
layouts, leaving regions with high localization error.

Fig. 1. Half-plane AOA surveillance geometry.

To address this issue, we formulate the half-plane sensor
placement problem as minimizing a position error bound
(PEB)-based cost over the surveillance region. The spatially
averaged PEB serves as an error metric for the region, since it
directly reflects localization accuracy. We then propose a hybrid
framework in which a PEB-based RL policy first generates an
initial layout, and a physics-aware greedy 1-swap search refines
the RL-based layout by explicitly minimizing the same cost.
This design combines RL’s global exploration with physics-
based local refinement and yields a lower spatially averaged
PEB and fewer high-error regions than RL-based baselines.

II. SYSTEM MODEL

A. Half-Plane Geometry and Discretization

As illustrated in Fig. 2, we consider a two-dimensional
xy-plane in which the front line coincides with y = 0. The
defended region D and the surveillance region Ω are defined
as

D = {(x, y) | −W/2 ≤ x ≤ W/2, −D ≤ y ≤ 0},
Ω = {(x, y) | −W/2 ≤ x ≤ W/2, 0 ≤ y ≤ d},

(1)



Fig. 2. Illustration of the half-plane sensor placement scenario
with defended region D and surveillance region Ω.

where W , D, and d denote the front-line width, defended depth,
and surveillance depth, respectively.

For numerical evaluation, both regions are discretized
on a uniform grid with spacing (∆x,∆y). For notational
convenience, we reuse D and Ω to denote the sets of discrete
grid points. Region D contains M candidate sensor locations
{qi}Mi=1, and Ω contains L evaluation points {pℓ}Lℓ=1. We
denote by SN the family of all N -sensor placements:

SN = {S ⊂ D : |S| = N}, (2)

where N is the number of sensors and S = {s1, . . . , sN}
denotes their positions.

B. AOA Measurement Model

Let the m-th sensor be located at sm = (xm, ym) ∈ D and
the target position vector be denoted by p = [x y]⊤ ∈ Ω. The
bearing measured by sensor m is modeled as [2]

θm(p) = tan−1

(
y − ym
x− xm

)
+ wm, (3)

where tan−1(·) denotes the arctangent, and wm ∼ N (0, σ2
θ)

is zero-mean Gaussian noise, independent across sensors.
Define the relative coordinates between the target and sensor

m as ∆xm = x − xm and ∆ym = y − ym, and the squared
range as r2m = ∆x2

m + ∆y2m. The gradient of θm(p) with
respect to the position vector p is given by [5]

gm(p) =
1

r2m

[
−∆ym
∆xm

]
, (4)

where gm(p) ∈ R2 encodes the local sensitivity of the bearing
measurement at sensor m with respect to the target position p.

C. Regularized CRLB and Spatial Cost
Assuming independent measurements across sensors and the

Gaussian noise model in Section II-B, the Fisher information
matrix (FIM) at location p ∈ Ω under placement S is expressed
as

J(p;S) =
1

σ2
θ

N∑
m=1

gm(p)g⊤
m(p). (5)

For any unbiased estimator p̂, the error covariance satisfies
Cov(p̂− p) ⪰ J−1(p;S) [8].

In the half-plane geometry, J(p;S) can become ill-
conditioned when the target lies on or near the sensors’
baseline, leading to very large error variances (blind zones).
To ensure numerical stability during optimization and to
avoid singularities, we apply diagonal loading and define the
regularized CRLB covariance matrix as

C(p;S) = (J(p;S) + δI)
−1

, (6)

where δ > 0 is a small regularization parameter and I is the
2× 2 identity matrix.

We define the position error bound (PEB) at point p as

PEB(p;S) =
√

tr
(
C(p;S)

)
, (7)

where tr(·) denotes the matrix trace. The PEB provides a lower
bound on the position root-mean-square error (RMSE) at p,
since tr(C(p;S)) is the sum of the position variances. This
regularization keeps the bound well defined in nearly singular
geometries, while still closely approximating the unregularized
CRLB-based PEB in well-conditioned regions [9].

We use the following PEB-based cost function over the
surveillance region:

Jmean(S) =
1

L

∑
p∈Ω

PEB2(p;S). (8)

This quantity is a lower-bound surrogate for the mean-square
error (MSE) of localization under a uniform target distribution
over Ω, and heavily penalizes regions with very large errors,
thereby suppressing blind zones [9], [10].

For performance reporting, we also define the spatially
averaged PEB as

PEB(S) =
1

L

∑
p∈Ω

PEB(p;S), (9)

representing the mean error bound.

III. PROPOSED HYBRID FRAMEWORK

A. Problem Formulation
Given the candidate set D and sensor count N , we seek a

placement S∗ that minimizes Jmean(S):

S∗(N) = arg min
S∈SN

Jmean(S), (10)

where SN denotes the set of all valid N -sensor subsets. Since
Jmean(S) is non-convex and the combinatorial search space(
M
N

)
is huge, exhaustive search is infeasible; instead, we adopt

a hybrid approach that combines RL-based global exploration
with physics-aware greedy refinement.



B. RL-Based Layout Initialization

We formulate the sensor placement problem as an N -step
Markov decision process (MDP). At step t (t = 0, . . . , N − 1),
the state ξt encodes the current sensor set St ⊂ D with S0 = ∅.
The action at selects a new location qjt ∈ D\St, and the next
sensor set is updated as

St+1 = St ∪ {qjt}. (11)

After N steps, the episode terminates with the complete final
placement SN .

To match the objective in (10), we use a terminal reward

R(SN ) = −Jmean(SN ), (12)

and set intermediate rewards to zero. We parameterize a
stochastic softmax policy πθ(at | ξt) over the remaining
candidate sites and train it using a policy-gradient method
(REINFORCE with a value baseline) to maximize the expected
return JRL(θ) = Eπθ

[R(SN )]. This formulation allows the
agent to exploit global sensor–target geometric dependencies
that are often missed by purely local greedy heuristics. At test
time, we perform a greedy rollout by selecting the action with
maximum probability under πθ at each step, yielding the initial
layout SRL, which serves as S(0) for the refinement stage.

C. Physics-Aware Refinement: Greedy Search

Starting from S(0) = SRL, we refine the initial layout using
a greedy 1-swap search to further reduce Jmean. The 1-swap
neighborhood of a placement S is defined as

N (S) = {(S \ {si}) ∪ {qj} | si ∈ S, qj ∈ D \ S} , (13)

which preserves exactly N sensors within the defended region.
At iteration k (k = 0, 1, . . . ), we identify

S̃ = arg min
S′∈N (S(k))

Jmean(S
′), (14)

and update the layout according to

S(k+1) =

{
S̃, if Jmean(S̃) < Jmean(S

(k)),

S(k), otherwise.
(15)

The search stops when S(k+1) = S(k), at which point S(k)

is a 1-swap local minimum of Jmean. Since Jmean is derived
directly from the CRLB and the AOA measurement model, each
1-swap explicitly evaluates the Fisher information structure,
and thus, this refinement acts as a physics-aware local search.

TABLE I Simulation and training parameters.

Parameter Description Value
W,D Defended region size 10× 4 km

d Surveillance depth 10 km

∆x,∆y Grid spacing in D and Ω 0.5 km

σθ AOA noise std. 1◦

δ Regularization param. 10−6

N (Figs. 3, 4) Sensor counts (field / sweep) 6 / 4 ≤ N ≤ 8

RL params Episodes / early-stopping patience 103/200

(a) RL-based baseline

(b) Proposed method

Fig. 3. Comparison of PEB maps for N = 6 sensors.

IV. SIMULATION RESULTS

A. Simulation Setup

In our experiments, both the defended region D and the
surveillance region Ω are discretized on a uniform grid with
spacing 0.5 km. A policy-gradient RL agent minimizes Jmean

to obtain the initial layout SRL, which is subsequently improved
by the physics-aware greedy refinement. The detailed simu-
lation settings, including geometric dimensions and training
hyperparameters, are summarized in Table I.

B. PEB Field Analysis

Fig. 3 visualizes the PEB fields, where the color gradient
indicates the PEB magnitude over the surveillance region. The
baseline configuration in Fig. 3(a) exhibits high estimation
errors, especially for targets far from the front line. In contrast,
the proposed method in Fig. 3(b) effectively mitigates these
error peaks, yielding a more uniform low-error distribution.
The corresponding spatial averages, PEB and Jmean, serve as
our performance metrics and are summarized in Table II.



TABLE II Average performance over 100 MC runs.

Metric Baseline Proposed Improv. Ref.
PEB [km] 0.145 0.124 14.55% Eq. (9)

Jmean [km2] 0.0258 0.0188 26.98% Eq. (8)

Table II summarizes these gains over 100 Monte Carlo
(MC) runs. The proposed method reduces PEB and Jmean by
approximately 15% and 27%, respectively. Moreover, when we
examine the PEB at each surveillance grid point, the refined
placement achieves a smaller local PEB at about 92% of the
points, with the remaining ≈ 8% of non-improved points
confined to a narrow strip just above the front line.

Since each sensor’s Fisher information contribution decays
approximately as 1/r2 with the sensor–target range r, the
refinement tends to pull the sensors toward the front line.
Consequently, a thin band near the front line appears where
the bearings from different sensors become nearly parallel,
making the FIM nearly singular and the PEB in this band
slightly higher than in the baseline. However, this localized
increase in PEB is minor compared to the substantial reduction
achieved over the rest of the surveillance region. In half-plane
surveillance scenarios, the primary objective is to reduce large
error lobes over the surveillance area, so it is more beneficial
for the spatial average cost Jmean to suppress these wide-area
errors than to preserve marginal gains in this narrow strip.

C. Impact of Sensor Count

To investigate the robustness of the proposed framework, we
vary the number of sensors N from 4 to 8. For each N , we gen-
erate an RL-based baseline, apply the same 1-swap refinement,
and then compute PEB over Ω. The resulting averaged values
for both methods are shown in Fig. 4. As expected, increasing
N improves accuracy for both methods due to the increased
information gain. However, the proposed hybrid framework
achieves a lower PEB than the RL-based baseline for all
tested N . The performance gap remains noticeable even as N
increases and the RL baseline improves, indicating that the
physics-aware refinement provides a consistent gain on top of
the learned policy.

V. CONCLUSION

This paper addressed the multi-sensor placement problem for
AOA-based localization in a half-plane surveillance scenario.
We showed that an RL policy trained with a PEB-based
reward can still leave regions with large localization errors.
To overcome this limitation, we proposed a two-stage hybrid
framework that minimizes a PEB-based cost by combining
a PEB-driven RL policy with physics-aware greedy 1-swap
refinement. By leveraging RL for global exploration and CRLB-
based local search for geometry-aware adjustment, the method
effectively optimizes the sensor placement and mitigates blind
zones. Simulation results show that this physics-aware strategy
consistently reduces the PEB-based cost compared with RL-
based baselines and yields more robust localization performance
across various sensor counts.

Fig. 4. Average PEB versus sensor count N (averaged over
100 MC runs).

Future work will extend the current grid-based formulation to
continuous-space optimization and develop adaptive placement
strategies that account for front-line width, surveillance depth,
and obstacle-induced non-line-of-sight (NLOS) conditions. We
will also investigate how these optimized static layouts can
serve as robust baselines for dynamic tactical environments,
including scenarios with maneuvering targets or time-varying
sensor availability. Ultimately, this analysis will provide practi-
cal guidelines for resource allocation and deployment under
realistic operational constraints.
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