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Abstract—Channel estimation is critical for reliable 

communication in 5G New Radio (NR) systems, where increased 

bandwidth and mobility introduce significant challenges. 

Traditional methods like Least Squares (LS) and Minimum 

Mean Square Error (MMSE) face challenges with computational 

complexity and requirement of channel statistics, while recent 

deep learning approaches using cascaded networks suffer from 

error propagation and inefficiency. This paper presents a novel 

lightweight U-Net architecture that jointly performs super-

resolution and denoising in a single stage, achieving superior 

performance with significantly reduced complexity. By treating 

the time-frequency channel response as a 2D image, our 

approach employs a single-stage encoder-decoder network with 

skip connections for joint super-resolution and denoising. The 

proposed mixed-SNR training strategy enables a single model to 

operate across the entire SNR range (0-30 dB), eliminating the 

need for multiple model instances. Extensive simulations on 5G 

NR TDL channel models demonstrate that the proposed method 

achieves NMSE improvement over the state-of-the-art cascaded 

SRCNN+DnCNN approach, while reducing computational 

complexity, and inference time.  

Keywords—5G NR, Channel Estimation, Deep Learning, U-

Net, Super-Resolution, TDL Channels. 

I. INTRODUCTION  

A more intelligent and reliable communication system, as 
well as a faster data rate and reduced latency, are essential due 
to growing number of devices associated to the system. One 
of the most compelling ways to increase data throughput while 
preserving higher communication reliability for upcoming 
wireless systems is multiple-input multiple-output (MIMO) 
with large-scale antenna arrays [1]. In MIMO, orthogonal 
frequency division multiplexing (OFDM), a type of multi-
carrier modulation, has been efficiently used in a extensive 
range of digital communications systems as a robust 
transmission method for extremely frequency selective 
channels [2]. When a signal is transmitted through a channel; 
channel characteristics typically cause the received signal to 
be distorted. In MIMO systems, recovering the transmitted 
signal over a multipath fading channel requires the receiver to 
estimate the channel characteristics to mitigate their effects. 
Channel estimation provides information about the distortion 
experienced by a transmitted signal as it passes through the 
wireless channel. To compensate the fading and/or co-channel 
interference, the information extracted from channel 
estimation is subsequently used by equalizers; enabling 
reconstruction of the original signal. 

In a broader sense, traditional channel estimation 
techniques can be classified as pilot-based or training based, 
semi-blind, and blind channel estimation, which are illustrated 
in Fig. 1. The traditional methods have some advantages but 
there are some limitations. Training based method like least 
square (LS) has lower computational complexity but its 

performance quality is not good, having high bit error rate, and 
it doesn’t use the channel statistics. The minimum mean 
squared error (MMSE) channel estimation technique has good 
performance than LS, use the channel statistics but its 
computational complexity is much higher. For better 
performance in pilot assisted channel estimation techniques 
sometimes proper pilot location management becomes 
challenging; extra pilots are added additional to payload data 
bit which causes the waste of bandwidth. Moreover, pilot 
contamination is a severe problem which degrade the 
performance of training-based channel estimation. These 
training-based methods come with bandwidth inefficiency 
incorporated with higher inaccuracy. Whereas, blind channel 
estimation has higher computational complexity. The third 
method, semi blind channel estimation, combines these two 
with a tradeoff between spectral inefficiency and 
computational complexity [3]. So, the computational 
complexity has to be reduced, estimation accuracy has to be 
increased, pilot contamination problem has to be removed as 
much as possible and moreover the challenges of channel 
estimation for moving and heterogeneous communication 
network have to be overcome. Artificial intelligence-based 
method has already shown huge impact for solving those 
above-mentioned limitations. Deep learning (DL) and 
machine learning (ML) have already used for efficient channel 
estimation in different network structures [4]. DL shows better 
performance than ML in most of the cases. DL methods have 
been adopted to pilot design [5], channel estimation [5], [6], 
[7], [8], [9], signal detection [7] , energy management for 
unmanned aerial vehicle [10], and CSI feedback [11]. 

To estimate the channel, cascaded DL architecture is well 
known; for example, in [12], time-frequency response 
between single Tx and Rx antenna is considered as 2D image 
for known pilot positions. Two cascaded DL models (SRCNN 
and DnCNN) are then used for improving image resolution 
and removing noise. Inspired by this work, we present a single  

U-Net based architecture which provides less complexity, less 
inference time, and improved accuracy. The main 
contributions of this work can be summarized as follows:  

1) A lightweight U-Net that jointly performs super-
resolution and denoising in a single stage is proposed. 
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Fig. 1. Classifications of Traditional Channel Estimation Methods 



2) Theoretical analysis proving that a single network can 
simultaneously learn interpolation and noise 
suppression through multi-scale feature extraction and 
fusion is provided.  

3) Evaluation on 5G NR TDL channel models (TDL-A, 
TDL-C) as specified by 3GPP TR 38.901, along with 
legacy models (VehA, SUI5) is presented. 

The rest of this work is organized as follows: Section II 
demonstrates overview of channel estimation methods. A 
lightweight U-Net model that jointly performs super-
resolution and denoising in a single stage is proposed in 
section III. In section IV, performance analysis of proposed 
model is presented and finally section V concludes our 
research work. 

II. OVERVIEW 

A. Conventional Estimation 

Data aided or training-based channel estimations use the 
known pilot data to estimate the channel. To overcome 
multipath fading channels, OFDM with cyclic prefix is 

applied. Now, for a single-antenna user, let 1P×∈x �  

represents the transmitted signal vector and 1Q×∈y �  denotes 

the received signal vector. Hence, the received signal vector 
in the frequency domain can be obtained:  

= +Y HX N                                       (1) 

where Q P×∈H � is the matrix that denotes the channel 

response, 1Q×∈N � is the noise vector. In case of OFDM 

system having subframe size of (Q×P) for single user, the tth 
time slot and nth subcarrier, where t ranges from 0 to (P-1), n 
ranges from 0 to (Q-1), the received signal for particular time-
frequency slot can be represented as:  

nt nt nt nt= +Y H X N                             (2)                                     

The channels at the pilot positions are estimated using the 

LS method. The estimated channel matrix p

∧

H is derived by 

minimizing the following cost function:  

( ) = Ep p p pJ
∧

−H y H x� �                     (3) 

where (.)J represents the cost function, E .� �  indicates 

expected value of the function, xp contains the transmitted 
pilot symbols, and yp denotes corresponding received signal. 
The least squares solution at pilot positions is obtained by 
taking the derivative of the cost function with respect to Hp 
and setting it to zero, resulting in: 

( )
1

= H H
p p p p p

∧ −

H x x x y                          (4) 

The estimated channel response vector is subsequently 
applied for equalization through interpolation, where the 
received signal is divided by the estimated channel response 
to compensate the channel’s impact. Though it has less 
complexity, but it is poor at accuracy. 

In MMSE estimation, which outperforms LS, the channel 
is estimated based on the minimum mean-square error 
criterion. The corresponding cost function is expressed as:  

( ) = pJ E
∧ ∧

−H y x H H� �                     (5) 

The mean-squared error criterion is applied by 

minimizing ( )pJ
∧

H  with respect to p

∧

H . Taking the partial 

derivative and setting it to zero yields the MMSE solution: 

1=MMSE hy yy y
∧

−H R R                            (6) 

where Rhy and Ryy can be defined as: 

,hy HH=R R y                                     (7) 

2H

yy HH Iσ= +R xR x                         (8) 

where Rhy denotes the cross-covariance matrix between the 
channel matrix H and the received data matrix Y, Ryy 
represents the autocovariance matrix of the received data 
matrix Y, RHH is the autocovariance matrix of the channel 
matrix H, σ2 is the noise variance. Ideal MMSE shows the 
best result with full knowledge of channel statistics, which is 
unfeasible in most of the scenarios.  

B. ChannelNet 

Focus is placed on the individual propagation link 
between a single pair of Tx and Rx antenna while in motion. 
To recover the full time–frequency channel response from 
pilot symbols, they adopt a lattice-type pilot pattern similar 

to LTE. The least-squares estimates at pilot positions, 
LS

ph , 

serve as a noisy, low-resolution representation of the channel. 
A two-stage learning framework comprising of 
Convolutional Neural Network (CNN) is then employed to 
reconstruct the complete channel image.  

In the first stage, a super-resolution (SR) network maps 

the vectorized real and imaginary components of 
LS

ph  to a 

high-resolution channel estimate. Utilizing the SRCNN 
architecture, which initially up samples the input through 
interpolation and then refines it using a three-layer CNN. In 
the second stage, a denoising network (DnCNN) is cascaded 
with the SR module to mitigate noise artifacts.  

III. LIGHTWEIGHT U-NET ARCHITECTURE 

LS estimation has low complexity but its accuracy is poor. 
On the other hand, MMSE has a great improvement than LS 
but then here, for proper channel estimation, full channel 
statistics should be known; which is impractical in most of the 
cases. A deep learning-based model is proposed in [12] 
consisting of two cascaded CNN for super-resolution and 
denoising which is obviously better choice than that of LS and 
ALMMSE. But using cascaded network increases not only the 
complexity but also the inference time. A single network can 
be used for better performance in estimating the channel by 
using U-Net. Both super-resolution and denoising are inverse 
problems solved through learned regularization. The U-Net 
learns a single unified regularizer that exploits spatial 
correlation for interpolation while simultaneously filtering 
noise based on learned signal statistics. The multi-scale 
architecture with skip connections enables different network 
depths to specialize in different aspects: some scales capture 
global structure for SR, while other scales preserve local 
details for denoising. Therefore, a single U-Net having only 3 
encoder-decoder layers to outperform the state of the art is the 
main aspect of this work.  



The proposed U-Net architecture addresses the channel 
estimation problem by treating it as a joint image super-
resolution and denoising task. Unlike cascaded approaches 
where SR and denoising are performed sequentially by 
separate networks, our single-stage U-Net architecture 
performs both tasks simultaneously through a unified learning 
framework. Fig. 2 illustrates the complete U-Net Lite 
architecture, consisting of three main parts: (1) contracting 
path (encoder), (2) bottleneck with channel attention, and (3) 
expanding path (decoder) with skip connections. Each 
encoder performs a 2-layer convolution operation with 3×3 
kernel followed by ReLU activation and then max-pooling is 
accomplished, reduces the image shape half to the input. The 
output from the max-pooling operation is the input to the next 
encoder stage. For the first encoder stage, input dimension is 
72×14 with two channels; one is for real part and another is 
for imaginary part. Filter size for first encoder stage is 32 and 
is doubled in each next step. After 3rd encoder stage 
bottleneck is reached having input size 9×1 with 256 filters in 
convolution. Output of the bottleneck is then upsampled and 
fed to the first decoder stage. Each decoder stage consists of 
concatenated output from the corresponding encoder, 2 
convolutional layers with 3×3 kernel followed by ReLU 
activation. Output of each decoder except the last one is 
upsampled by the size 2×2 and fed to the next decoder. 
Finally, a 1×1 convolution operation is performed to the last 
decoder output to get the desired estimated channel response. 

First encoder performs denoising capturing local noise 
patterns and pilot positions. Encoder 2, 3, and bottleneck 
stages execute SR by capturing medium-range correlations 
Doppler shift, and delay spread structure. Concatenation 
preserves clean high-frequency details from encoder for de-
noising while decoder provides interpolated structure from 
bottleneck. The resize operations in encoder 3 and bottleneck 
are necessary because the input dimension 72×14 is not a 
power of 2. Max-Pooling with stride 2 causes: 14→7→3→1 
by floor division. Up-sampling produces: 1→2, 3→6, 7→14. 
The resize procedure using bilinear interpolation regulates up-
sampled features to match skip connection sizes before 
concatenation, preserving spatial information without loss. 

Our properly designed neural network can learn unified 
regularizer R(H) that simultaneously handles spatial 
smoothness and noise suppression. The joint problem can be 
defined as:  

int ( ) ( )jo = +A H M H N�                     (9) 
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Fig. 2. Architecture of Proposed U-Net Model. 

where {0,1}Q P×∈M is the pilot mask, � is the element 

wise multiplication, and 
int ( )joA H  is forward operator for 

combined SR and denoising techniques. Let 

( ){ }
1

,
pN

p p
p

p n t
=

= denote the set of pilot positions, M be the 

pilot mask where 1nt =M if (n, t) ∈ p and 0 otherwise, and 

Np = 48 pilots per subframe. 

( ) ,SR =A H M H�                           (10) 

( )DN = +A H H N                               (11) 

where ( )SRA H is the forward operator for SR and ( )DNA H

is for noise suppression and both SR and denoising operations 
can be performed by (9) as it is the combination of (10) and 
(11). Channel response for proposed model is then: 

2

int ( ) ( )UNet joE y Rλ
∧

= − +H A H H� �       (12) 

where λ = 0.1 for best generalization. At this value, data fits 

reasonably well at pilots and smooth interpolation is obtained 
between pilots. 

To enable joint learning of super-resolution and 
denoising, we design a multi-objective loss function.  

total MSE f f p pL L L Lλ λ= + +                   (13) 

where LMSE represents spatial domain MSE loss, Lf is the 
frequency domain loss, and Lp is the weighted pilot loss. LMSE 
ensures overall estimation accuracy and affects both SR and 
denoising uniformly which is defined as: 

2

1 1

1
| |

Q P

ntMSE nt

n t

L
P Q

∧

= =

= −
×
 H H              (14) 

Lf preserves spectral characteristics and improves 
interpolation quality, can be defined as: 

1 1

1
| ( ) ( ) |

Q P

ntf nt

n t

L F F
P Q

∧

= =

= −
×
 H H         (15) 

where F denotes 2D Fast Fourier Transform. 

2

( , )

1
| |ntp nt nt

n t PP

L
N

ω
∧

∈

= − H H                (16) 

where 2ntω = for all pilot positions. This ensures pilot  

positions are accurately estimated first, providing anchor 
points for interpolation (denoising emphasis). We set 

0.1fλ =  and 2pλ =  based on validation set performance. 

The frequency loss weight is kept small to avoid 
overemphasis on spectral matching, while the pilot loss 
weight is higher to ensure reliable anchor points. We use 
normalized mean squared error (NMSE) as our performance 
metrics, defined as: 

2

10

,

1
( ) 10log | |ntnt

n t

NMSE dB
P Q

∧ 
= − 

× 
 H H   (17) 



IV. PERFORMANCE ANALYSIS 

In this segment we train our model and evaluate the 

NMSE over the uniform SNR ranges from 0 to 30 dB and 

collate the results with the state of the arts. All the simulations 

are performed in pyhton following 5G NR TDL channel 

models (TDL-A, TDL-C) as specified by 3GPP TR 38.901, 

along with legacy models (VehA, SUI5), demonstrating 

superior performance in challenging high delay spread 

scenarios where conventional methods degrade significantly. 

Following 5G NR specifications, we employ a lattice-type 

pilot pattern where pilots are distributed in a diamond-shaped 

arrangement. Traditional approaches require separate models 

for different SNR ranges. A mixed-SNR training strategy that 

enables a single model to handle the entire SNR spectrum is 

proposed by this work. The network learns to automatically 

adjust its processing based on input noise level. At low SNR, 

it emphasizes spatial smoothing (denoising), while at high 

SNR, it preserves sharp features (SR). Keras and Tensorflow 

along with GPU backend are used to evaluate our model. For 

training, testing and validation we use 30000, 5000, and 5000 

samples, respectively. For optimization, we use Adam 

optimizer with initial learning rate of 0.0001, batch size of 

128, and maximum 250 epoch. Fig. 3 depicts NMSE over a 

range of SNR for VehA channel. Our proposed method 

outperforms SRCNN+DnCNN model for all SNR values. For 

higher SNR values ranges from 20-30 dB, SRCNN+DnCNN 

exhibits poor performance than ALMMSE whereas better 

adjust its processing based on input noise level. At low SNR, 

 
Fig. 3. NMSE vs SNR for VehA Channel. 

 

Fig. 4. NMSE vs SNR for SUI5 Channel. 

it emphasizes spatial smoothing (denoising), while at high 
SNR, it preserves sharp features (SR). Keras and Tensorflow 
along with GPU backend are used to evaluate our model. For 
training, testing and validation we use 30000, 5000, and 5000 
samples, respectively. For optimization, we use Adam 
optimizer with initial learning rate of 0.0001, batch size of 
128, and maximum 250 epoch. Fig. 3 depicts NMSE over a 
range of SNR for VehA channel. Our proposed method 
outperforms SRCNN+DnCNN model for all SNR values. For 
higher SNR values ranges from 20-30 dB, SRCNN+DnCNN 
exhibits poor performance than ALMMSE whereas better 
performance is obtained from our proposed one but not very 
close to ideal MMSE. 

In Fig. 4 NMSE versus SNR for SUI5 channel is 
illustrated. Here, again our proposed method shows better 
performance than conventional methods but it is observed that 
here performance of our work degrades due to the higher 
complexity of SUI5 channel than that of VehA channel.  

As for 5G NR TDL channel models specified by 3GPP TR 
38.901 has TDL-A to TDL-E channel models having different 
delay spread. Among them we use TDL-A and TDL-C as we 
get moderate and high delay spread for them, respectively. 
Due to the higher delay spread performance in TDL-C is 
worse than TDL-A. The performance of our proposed method 
for TDL-A is better than SRCNN+DnCNN method which can 
be clearly seen in Fig. 5. More interestingly, for TDL-C it 
shows slightly better performance though having less 
complexity is illustrated in Fig. 6. 

 
Fig. 5. NMSE vs SNR for TDL-A Channel. 

 

Fig. 6. NMSE vs SNR for TDL-C Channel. 



 

Fig. 7. NMSE vs No. of Pilots per Frame. 

Fig. 7 depicts effects of number of pilots per frame on 
NMSE for VehA model, when the SNR value is fixed at 20 
dB. Our proposed model shows better result not only than 
ALMMSE but also than SRCNN+DnCNN.  

V. CONCLUSION 

This paper proposes a lightweight U-Net architecture for 
enhanced channel estimation which meets superior 
performance, lower complexity, better generalization, and 5G 
NR compatibility as we include TDL-A and TDL-C channel 
models along with legacy models. By treating the time-
frequency channel response as a 2D image, our approach 
performs super-resolution and denoising jointly in a single 
stage through multi-scale feature extraction and fusion. The 
encoder-decoder structure with skip connections enables 
efficient learning of both interpolation and noise suppression 
without error propagation inherent in cascaded methods. The 
results reveal that the proposed U-Net outperforms 
SRCNN+DnCNN strategy with less complexity and close to 
the performance of ideal MMSE for each and every channel 
model. We use mixed-SNR training strategy eliminating the 
needs for multiple model instances, making it practical for 
real-world deployment. This work focuses on individual 
propagation links between single Tx-Rx antenna pairs, can be 
extended to massive MIMO. 
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