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Abstract—Channel estimation is critical for reliable
communication in 5G New Radio (NR) systems, where increased
bandwidth and mobility introduce significant challenges.
Traditional methods like Least Squares (LS) and Minimum
Mean Square Error (MMSE) face challenges with computational
complexity and requirement of channel statistics, while recent
deep learning approaches using cascaded networks suffer from
error propagation and inefficiency. This paper presents a novel
lightweight U-Net architecture that jointly performs super-
resolution and denoising in a single stage, achieving superior
performance with significantly reduced complexity. By treating
the time-frequency channel response as a 2D image, our
approach employs a single-stage encoder-decoder network with
skip connections for joint super-resolution and denoising. The
proposed mixed-SNR training strategy enables a single model to
operate across the entire SNR range (0-30 dB), eliminating the
need for multiple model instances. Extensive simulations on 5G
NR TDL channel models demonstrate that the proposed method
achieves NMSE improvement over the state-of-the-art cascaded
SRCNN+DnCNN approach, while reducing computational
complexity, and inference time.
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I. INTRODUCTION

A more intelligent and reliable communication system, as
well as a faster data rate and reduced latency, are essential due
to growing number of devices associated to the system. One
of the most compelling ways to increase data throughput while
preserving higher communication reliability for upcoming
wireless systems is multiple-input multiple-output (MIMO)
with large-scale antenna arrays [1]. In MIMO, orthogonal
frequency division multiplexing (OFDM), a type of multi-
carrier modulation, has been efficiently used in a extensive
range of digital communications systems as a robust
transmission method for extremely frequency selective
channels [2]. When a signal is transmitted through a channel;
channel characteristics typically cause the received signal to
be distorted. In MIMO systems, recovering the transmitted
signal over a multipath fading channel requires the receiver to
estimate the channel characteristics to mitigate their effects.
Channel estimation provides information about the distortion
experienced by a transmitted signal as it passes through the
wireless channel. To compensate the fading and/or co-channel
interference, the information extracted from channel
estimation is subsequently used by equalizers; enabling
reconstruction of the original signal.

In a broader sense, traditional channel estimation
techniques can be classified as pilot-based or training based,
semi-blind, and blind channel estimation, which are illustrated
in Fig. 1. The traditional methods have some advantages but
there are some limitations. Training based method like least
square (LS) has lower computational complexity but its

performance quality is not good, having high bit error rate, and
it doesn’t use the channel statistics. The minimum mean
squared error (MMSE) channel estimation technique has good
performance than LS, use the channel statistics but its
computational complexity is much higher. For better
performance in pilot assisted channel estimation techniques
sometimes proper pilot location management becomes
challenging; extra pilots are added additional to payload data
bit which causes the waste of bandwidth. Moreover, pilot
contamination is a severe problem which degrade the
performance of training-based channel estimation. These
training-based methods come with bandwidth inefficiency
incorporated with higher inaccuracy. Whereas, blind channel
estimation has higher computational complexity. The third
method, semi blind channel estimation, combines these two
with a tradeoff between spectral inefficiency and
computational complexity [3]. So, the computational
complexity has to be reduced, estimation accuracy has to be
increased, pilot contamination problem has to be removed as
much as possible and moreover the challenges of channel
estimation for moving and heterogeneous communication
network have to be overcome. Artificial intelligence-based
method has already shown huge impact for solving those
above-mentioned limitations. Deep learning (DL) and
machine learning (ML) have already used for efficient channel
estimation in different network structures [4]. DL shows better
performance than ML in most of the cases. DL methods have
been adopted to pilot design [5], channel estimation [5], [6],
[71, [8], [9], signal detection [7] , energy management for
unmanned aerial vehicle [10], and CSI feedback [11].

To estimate the channel, cascaded DL architecture is well
known; for example, in [12], time-frequency response
between single Tx and Rx antenna is considered as 2D image
for known pilot positions. Two cascaded DL models (SRCNN
and DnCNN) are then used for improving image resolution
and removing noise. Inspired by this work, we present a single
U-Net based architecture which provides less complexity, less
inference time, and improved accuracy. The main
contributions of this work can be summarized as follows:

1) A lightweight U-Net that jointly performs super-
resolution and denoising in a single stage is proposed.
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Fig. 1. Classifications of Traditional Channel Estimation Methods



2) Theoretical analysis proving that a single network can
simultaneously learn interpolation and noise
suppression through multi-scale feature extraction and
fusion is provided.

3) Evaluation on 5G NR TDL channel models (TDL-A,
TDL-C) as specified by 3GPP TR 38.901, along with
legacy models (VehA, SUIYS) is presented.

The rest of this work is organized as follows: Section II
demonstrates overview of channel estimation methods. A
lightweight U-Net model that jointly performs super-
resolution and denoising in a single stage is proposed in
section III. In section IV, performance analysis of proposed
model is presented and finally section V concludes our
research work.

II. OVERVIEW
A. Conventional Estimation

Data aided or training-based channel estimations use the
known pilot data to estimate the channel. To overcome
multipath fading channels, OFDM with cyclic prefix is

applied. Now, for a single-antenna user, let xell Px

represents the transmitted signal vector and yell 1 Genotes

the received signal vector. Hence, the received signal vector
in the frequency domain can be obtained:

Y =HX+N (1)

where Hell OxP is the matrix that denotes the channel

response, Nell O is the noise vector. In case of OFDM
system having subframe size of (QxP) for single user, the t™
time slot and n™ subcarrier, where t ranges from 0 to (P-1), n
ranges from 0 to (Q-1), the received signal for particular time-
frequency slot can be represented as:

Ynl = Hn[an + an (2)
The channels at the pilot positions are estimated using the

LS method. The estimated channel matrix H, is derived by
minimizing the following cost function:

J(H,)=Ely, -H x, [ 3)

where J(.) represents the cost function, E [J.0J indicates
expected value of the function, x, contains the transmitted
pilot symbols, and y, denotes corresponding received signal.
The least squares solution at pilot positions is obtained by
taking the derivative of the cost function with respect to H,,
and setting it to zero, resulting in:

1
Xy, 4)

The estimated channel response vector is subsequently
applied for equalization through interpolation, where the
received signal is divided by the estimated channel response
to compensate the channel’s impact. Though it has less
complexity, but it is poor at accuracy.

ﬁp - (XI;XP)

In MMSE estimation, which outperforms LS, the channel
is estimated based on the minimum mean-square error
criterion. The corresponding cost function is expressed as:

J(H)=E0y—-xHH, [ 5)

The mean-squared error criterion is applied by

minimizing J(H,) with respect to H, . Taking the partial
derivative and setting it to zero yields the MMSE solution:

A

Humse =R, Ry (6)

where Ry, and R,, can be defined as:
R, =Ry, ™
R, =xR,, x" +0°[ (8)

where Rj, denotes the cross-covariance matrix between the
channel matrix H and the received data matrix Y, R,
represents the autocovariance matrix of the received data
matrix Y, Ry is the autocovariance matrix of the channel
matrix H, o2 is the noise variance. Ideal MMSE shows the
best result with full knowledge of channel statistics, which is
unfeasible in most of the scenarios.

B. ChannelNet

Focus is placed on the individual propagation link
between a single pair of Tx and Rx antenna while in motion.
To recover the full time—frequency channel response from
pilot symbols, they adopt a lattice-type pilot pattern similar

to LTE. The least-squares estimates at pilot positions, hf,s ,

serve as a noisy, low-resolution representation of the channel.
A two-stage learning framework comprising of
Convolutional Neural Network (CNN) is then employed to
reconstruct the complete channel image.

In the first stage, a super-resolution (SR) network maps
the vectorized real and imaginary components of his to a

high-resolution channel estimate. Utilizing the SRCNN
architecture, which initially up samples the input through
interpolation and then refines it using a three-layer CNN. In
the second stage, a denoising network (DnCNN) is cascaded
with the SR module to mitigate noise artifacts.

III. LIGHTWEIGHT U-NET ARCHITECTURE

LS estimation has low complexity but its accuracy is poor.
On the other hand, MMSE has a great improvement than LS
but then here, for proper channel estimation, full channel
statistics should be known; which is impractical in most of the
cases. A deep learning-based model is proposed in [12]
consisting of two cascaded CNN for super-resolution and
denoising which is obviously better choice than that of LS and
ALMMSE. But using cascaded network increases not only the
complexity but also the inference time. A single network can
be used for better performance in estimating the channel by
using U-Net. Both super-resolution and denoising are inverse
problems solved through learned regularization. The U-Net
learns a single unified regularizer that exploits spatial
correlation for interpolation while simultaneously filtering
noise based on learned signal statistics. The multi-scale
architecture with skip connections enables different network
depths to specialize in different aspects: some scales capture
global structure for SR, while other scales preserve local
details for denoising. Therefore, a single U-Net having only 3
encoder-decoder layers to outperform the state of the art is the
main aspect of this work.



The proposed U-Net architecture addresses the channel
estimation problem by treating it as a joint image super-
resolution and denoising task. Unlike cascaded approaches
where SR and denoising are performed sequentially by
separate networks, our single-stage U-Net architecture
performs both tasks simultaneously through a unified learning
framework. Fig. 2 illustrates the complete U-Net Lite
architecture, consisting of three main parts: (1) contracting
path (encoder), (2) bottleneck with channel attention, and (3)
expanding path (decoder) with skip connections. Each
encoder performs a 2-layer convolution operation with 3x3
kernel followed by ReLU activation and then max-pooling is
accomplished, reduces the image shape half to the input. The
output from the max-pooling operation is the input to the next
encoder stage. For the first encoder stage, input dimension is
72x14 with two channels; one is for real part and another is
for imaginary part. Filter size for first encoder stage is 32 and
is doubled in each next step. After 3rd encoder stage
bottleneck is reached having input size 9x1 with 256 filters in
convolution. Output of the bottleneck is then upsampled and
fed to the first decoder stage. Each decoder stage consists of
concatenated output from the corresponding encoder, 2
convolutional layers with 3x3 kernel followed by ReLU
activation. Output of each decoder except the last one is
upsampled by the size 2x2 and fed to the next decoder.
Finally, a 1x1 convolution operation is performed to the last
decoder output to get the desired estimated channel response.

First encoder performs denoising capturing local noise
patterns and pilot positions. Encoder 2, 3, and bottleneck
stages execute SR by capturing medium-range correlations
Doppler shift, and delay spread structure. Concatenation
preserves clean high-frequency details from encoder for de-
noising while decoder provides interpolated structure from
bottleneck. The resize operations in encoder 3 and bottleneck
are necessary because the input dimension 72x14 is not a
power of 2. Max-Pooling with stride 2 causes: 14—7—3—1
by floor division. Up-sampling produces: 1—2, 3—6, 7—14.
The resize procedure using bilinear interpolation regulates up-
sampled features to match skip connection sizes before
concatenation, preserving spatial information without loss.

Our properly designed neural network can learn unified
regularizer R(H) that simultaneously handles spatial
smoothness and noise suppression. The joint problem can be
defined as:

Ajoim (H) =ML (H + N) (9)
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Fig. 2. Architecture of Proposed U-Net Model.

where M€ {0,1}9” is the pilot mask, [] is the element
wise multiplication, and A, . (H) is forward operator for

combined SR Let

N
p= {(np,tp )}p; denote the set of pilot positions, M be the

and  denoising  techniques.

pilot mask where Mm =1if (n, t) € p and 0 otherwise, and
N, =48 pilots per subframe.

A, (H)=M[ H, (10)

A, (H)=H+N (11)

where A i, (H) is the forward operator for SR and A, (H)

is for noise suppression and both SR and denoising operations
can be performed by (9) as it is the combination of (10) and
(11). Channel response for proposed model is then:

(12)

Hove = EDy—A . (H)[? +AR(H)

Jjoint
where A = 0.1 for best generalization. At this value, data fits
reasonably well at pilots and smooth interpolation is obtained
between pilots.

To enable joint learning of super-resolution and
denoising, we design a multi-objective loss function.

L Ly +A, L, +A4,L, (13)
where Lyse represents spatial domain MSE loss, Ly is the
frequency domain loss, and L, is the weighted pilot loss. Luysz
ensures overall estimation accuracy and affects both SR and
denoising uniformly which is defined as:

total

[ A
Loy = @;;| H, -H.[ (14)
Lr preserves spectral characteristics and improves
interpolation quality, can be defined as:
1 [ A
L, = @Z‘Z" FH,)-FH.)| (15
where F denotes 2D Fast Fourier Transform.
L, L > w,|H, ~H. (16)

P (n,t)eP
where @), =2 for all pilot positions. This ensures pilot

positions are accurately estimated first, providing anchor
points for interpolation (denoising emphasis). We set
lf =0.1 and ﬂp =2 based on validation set performance.
The frequency loss weight is kept small to avoid
overemphasis on spectral matching, while the pilot loss
weight is higher to ensure reliable anchor points. We use
normalized mean squared error (NMSE) as our performance
metrics, defined as:

1 A
NMSE(dB) =101 —>|H, -H.["| (17
(dB) ogw(PxQ;I u IJ( )



IV. PERFORMANCE ANALYSIS

In this segment we train our model and evaluate the
NMSE over the uniform SNR ranges from 0 to 30 dB and
collate the results with the state of the arts. All the simulations
are performed in pyhton following 5G NR TDL channel
models (TDL-A, TDL-C) as specified by 3GPP TR 38.901,
along with legacy models (VehA, SUIS), demonstrating
superior performance in challenging high delay spread
scenarios where conventional methods degrade significantly.
Following 5G NR specifications, we employ a lattice-type
pilot pattern where pilots are distributed in a diamond-shaped
arrangement. Traditional approaches require separate models
for different SNR ranges. A mixed-SNR training strategy that
enables a single model to handle the entire SNR spectrum is
proposed by this work. The network learns to automatically
adjust its processing based on input noise level. At low SNR,
it emphasizes spatial smoothing (denoising), while at high
SNR, it preserves sharp features (SR). Keras and Tensorflow
along with GPU backend are used to evaluate our model. For
training, testing and validation we use 30000, 5000, and 5000
samples, respectively. For optimization, we use Adam
optimizer with initial learning rate of 0.0001, batch size of
128, and maximum 250 epoch. Fig. 3 depicts NMSE over a
range of SNR for VehA channel. Our proposed method
outperforms SRCNN+DnCNN model for all SNR values. For
higher SNR values ranges from 20-30 dB, SRCNN+DnCNN
exhibits poor performance than ALMMSE whereas better
adjust its processing based on input noise level. At low SNR,
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Fig. 3. NMSE vs SNR for VehA Channel.
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Fig. 4. NMSE vs SNR for SUIS Channel.

it emphasizes spatial smoothing (denoising), while at high
SNR, it preserves sharp features (SR). Keras and Tensorflow
along with GPU backend are used to evaluate our model. For
training, testing and validation we use 30000, 5000, and 5000
samples, respectively. For optimization, we use Adam
optimizer with initial learning rate of 0.0001, batch size of
128, and maximum 250 epoch. Fig. 3 depicts NMSE over a
range of SNR for VehA channel. Our proposed method
outperforms SRCNN+DnCNN model for all SNR values. For
higher SNR values ranges from 20-30 dB, SRCNN+DnCNN
exhibits poor performance than ALMMSE whereas better
performance is obtained from our proposed one but not very
close to ideal MMSE.

In Fig. 4 NMSE versus SNR for SUI5 channel is
illustrated. Here, again our proposed method shows better
performance than conventional methods but it is observed that
here performance of our work degrades due to the higher
complexity of SUIS channel than that of VehA channel.

As for 5G NR TDL channel models specified by 3GPP TR
38.901 has TDL-A to TDL-E channel models having different
delay spread. Among them we use TDL-A and TDL-C as we
get moderate and high delay spread for them, respectively.
Due to the higher delay spread performance in TDL-C is
worse than TDL-A. The performance of our proposed method
for TDL-A is better than SRCNN+DnCNN method which can
be clearly seen in Fig. 5. More interestingly, for TDL-C it
shows slightly better performance though having less
complexity is illustrated in Fig. 6.
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Fig. 7 depicts effects of number of pilots per frame on
NMSE for VehA model, when the SNR value is fixed at 20
dB. Our proposed model shows better result not only than
ALMMSE but also than SRCNN-+DnCNN.

V. CONCLUSION

This paper proposes a lightweight U-Net architecture for
enhanced channel estimation which meets superior
performance, lower complexity, better generalization, and 5G
NR compatibility as we include TDL-A and TDL-C channel
models along with legacy models. By treating the time-
frequency channel response as a 2D image, our approach
performs super-resolution and denoising jointly in a single
stage through multi-scale feature extraction and fusion. The
encoder-decoder structure with skip connections enables
efficient learning of both interpolation and noise suppression
without error propagation inherent in cascaded methods. The
results reveal that the proposed U-Net outperforms
SRCNN-+DnCNN strategy with less complexity and close to
the performance of ideal MMSE for each and every channel
model. We use mixed-SNR training strategy eliminating the
needs for multiple model instances, making it practical for
real-world deployment. This work focuses on individual
propagation links between single Tx-Rx antenna pairs, can be
extended to massive MIMO.
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