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Abstract—Nondestructive Testing(NDT) is used to ensure the
reliability of ship pipe welds, and RT is the most widely used method.
However, RT interpretation relies on experimented technicians. Thus
IQI interpretation and defect detection automatic systems are in
demand. Accordingly, we analyzed and evaluated the performance of
object detection models for IQI and weld defects. The dataset was
constructed using YOLOvV8x and Faster R-CNN models for IQI wire
detection, and YOLOv8s for defect detection. The result of experiment
showed that YOLOv8x had high robustness in detection IQI wires in
RT images and demonstrated excellent performance overall. Faster R-
CNN showed high detection rates in high-quality images but had some
over detection. In defect detection, the YOLOv8s model showed high
precision but low recall due to missing small defects. The results of
this study demonstrate that object detection models can effectively be
applied to the automation of RT image-based pipe welding defect
inspection. In the future work, we include expanding the dataset to
enhance model performance.
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I. INTRODUCTION

To ensure the reliability and integrity of welded or fabricated
components, various inspection techniques are employed[1]. In
ship pipe welds, non-destructive testing(NDT) in utilized to
detect internal defects without causing any physical or chemical
damage to the material. Among the available NDT methods,
radiographic testing(RT) is one of the most widely used
techniques, and it becomes particularly indispensable for
structures requiring exceptionally highly reliability, such as
those used in LNG vessels.

In shipyard, RT inspections are primarily interpreted by
qualified and experienced technicians. However, this manual
interpretation process is prone to human error, as the results can
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vary depending on the inspector’s individual skill and
judgement, leading to limited reproducibility. Wang(2005) and
Shafeek(2004) et. al, highlighted the inefficiency of
conventional analog radiographic image assessment method and
the low inter-rater reliability among inspectors [2, 3].

RT inspection procedures are generally divided into image
quality indicator(IQI) evaluation and defect inspection. The IQI
evaluation assesses the sensitivity and resolution of
radiographic images in accordance with ASTM E747., ensuring
that the captured images meet ¢h required quality standards.
Once image quality has been verified, defect interpretation is
performed. The presence or absence of defect is the determined
based on factors such as pipe size and defect characteristics.

Although automated image-based defect identification
technologies have been actively developed in fields such as
construction and medicine, their adoption in the shipbuilding
industry has been relatively slow due to concerns regarding
reliability and consistency. Recent advances in image-based
object detection have demonstrated the effectiveness of machine
learning in diverse application domains, including medicine,
agriculture, and construction[4-6]. Motivated by these
developments, this study proposes an automated image-based
inspection approach for detecting defects in pipe welds.

We propose an algorithm for automatically reading I1QI,
which serves as a benchmark for defect analysis, and for
detecting various types of defects. To this end, we train multiple
Faster R-CNN variants with different backbones, together with
the YOLOvS8 model-renowned for its strong small-object
detection capability—to develop models tailored for pipe weld
defect inspection, and we rigorously compare their performance.



II. EXPERIMENTAL PROCEDURE

A. Experimental materials

The dataset for this study is divided into two parts: one for
IQI detection and another for weld defect detection.

As shown Table I, IQI dataset consisted of 469 original RT
images of SUS316. To enhance the model’s robustness and
prevent overfitting, horizontal and vertical flipping techniques
were applied, resulting in a total of 1,407 images.

TABLE L. SPECIFICATIONS AND NUMBER OF RT IMAGES FOR IQI
DETECTION ALGORITHM
Specification Value
Diameter (mm) 400 | 500 | 600 | 650 | 700 750
Thickness (mm) 127 | 55 | 127 | 79 | 79 7.9
Number (pcs) 108 7 101 54 | 151 48
Total number (pcs) 469

As shown table II, the weld defect detection dataset was
constructed using a total of 3,571 images obtained from two
methods. Due to the limited defect images, the dataset was
composed of original RT images and AI-Hub images, an
artificial intelligence data platform.

TABLE II. DATASET SPLIT FOR WELD DEFECT DETECTION
Dataset Original images AI-Hub images Total
Training 1,611 1,250 2,861
Validation 350 290 640
Test 70 - 70
Total 2,031 1,540 3,571

To ensure robust feature extraction and address potential
class imbalance, a stratified data splitting strategy was
employed rather than simple random sampling. The dataset was
partitioned so that all categories of welding defects were
represented in the training set. Specifically, both datasets were
split into training, validation, and test sets at a ratio of 7:2:1,
maintaining a consistent distribution of defect types to enhance
the model’s generalization performance.

The hardware and software specifications are shown in
Table II1.

TABLE III. HARDWARE AND SOFTWARE ENVIRONMENT
Intel(R) Core(TM) NVIDIA GeForce RTX
CPY i7-14700k GPU 4060 Ti(8.0GB)
Mainboard Gigabyte b760M AORUS ELITE, Intel B760M Chipset
Stora 2.0 TB HDD ST2000DM008-2UB102, 1.0 TB
orage SSD Samsung SSD 990 pro 1 TB
os Windows I1pro 64/ o\ 64.0GB DDR5

bit

B. Experimental methods

For model training, we used the Labelme tool(5.2.1) to label
the IQI and defect areas appearing in the image. To accurately
designate the location of the IQI wire, labeling was performed
into three classes:Text, wire, wire region, which are common to
the wire area in the image. In addition, the weld defect area was
labeled with in ‘defect’ class. Although the two results are
combined and visualized as a single example in Fig.l for
convenience of explanation, the IQI and defect area were
actually labeled and trained independently. A visual example of
the labeling result is shown in Fig.I.

First, we compared the performance of YOLOvVSx, a
representative object detection model, which are representative
object detection models, for IQI wire detection. YOLOVSx is a
model that was released in January 10, 2023 and is based on the
development of YOLO versions. It uses cutting-edge backbone
and neck architectures to improve feature extraction and object
detection performance. Faster R-CNN introduces a Region
Proposal Network(RPN) that performs region proposal and
object classification within a single algorithm. It shares feature
maps to achieve high accuracy and speed. Also, we used the
YOLOV8s object detection model to detect welding defects in
RT images. This model’s structural features follow the
YOLOVS version mentioned earlier.

FIGURE 1. LABELING RESULT FOR IQI AND WELD DEFECTS

The main hyperparameters of each model used in the 1QI
Wire detection study are shown in Table 3. In the case of
YOLOvV8x, the high-resolution training images and model
structure lead to large memory usage. Therefore, the batch size
was set to 2 considering the GPU available in the experimental
environment. The learning rate was set to 0.01 for learning
stability. In addition, the main hyperparameters of the models
used in the pipe weld defect detection study are shown in Table
IV. In the defect detection model training, some parameters,
including the batch size, were set to accommodate hardware
constraints because the GPU usage available in the experimental
environment was limited. In addition, the main hyperparameters
of the models used in the pipe weld defect detection study are
shown in Table I'V. In the defect detection model training, some
parameters, including the batch size, were set to accommodate
hardware constraints because the GPU usage available in the
experimental environment was limited.

TABLE IV. HYPERPARAMETERS OF THE DETECTION MODELS
IQI Wire model Defect model
Parameter YOLOv8x Faster R-CNN YOLOVSs

Batch size 2 8 2




Epoch 180 35 286
Learning rate(0) 0.01 0.0001 0.01
Learning rate(f) 0.01 0.0001 0.01

Image size 1920 1920
IoU 0.5 0.3

The model that was trained to detect IQI wires was evaluated
using precision, recall, mAP@50, mAP@50-95 and F1 score.
The location accuracy of the IQI wires was determined when the
IoU was greater than 0.5. The model for defect detection was
evaluated using the same quantitative evaluation criteria,
considering the defect location accuracy to be 0.3 or higher.

III. RESULTS AND DICUSSION

A. Analysis of Training Loss Trend

Fig.II showed the loss changes of YOLOv8x and Faster R-
CNN for IQI wire detection and YOLOVSs for weld joint defect
detection. First, as shown in Fig.2 YOLOv8x converged at
epoch 180 and Faster R-CNN at epoch 35, and the models were
terminated early at the points. Although the validation loss was
relatively higher than the training loss, it showed a tendency to
converge at a certain point, indicating a stabilized learning
pattern. In the future, we plan to use a model re-learning process
with images of various IQI shapes to improve generalization
performance.

YOLOV8s is trained for a total of 1,000 epochs, with an early
stopping patience of 80. Training loss decreased as the Epochs
increased, and validation loss initially fluctuated but then
decreased. This indicates that the model has the ability to
generalize to defect detection without overfitting. However, the
validation loss didn’t decrease enough, so in the future work, we
will need to expand the diversity of the defect data and use
additional augmentation techniques to improve the model’s
detection performance
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FIGURE II. TRAINING AND VALIDATION LOSS FOR EACH
DETECTION MODELS

B. Analysis of Quantitative Metrics for the models

As shown in Table V, the YOLOv8x model achieved
excellent performance in IQI wire detection using a total of 150
validation images, demonstrating consistent detection rates
across various RT image qualities. Conversely, the Faster R-
CNN model showed relatively lower performance. This can be
interpreted as a susceptibility to duplicate and low-quality RT
images.

Meanwhile, the YOLOv8s model, evaluated using 350
validation images, recorded high precision values. This
indicates a relatively low rate of over-detection, indicating that
the learning model achieves a certain level of reliability in defect
detection. However, some small sized defects were missed,
resulting in a somewhat low recall value. This suggests a lack of
small sized defect data. Therefore, in the future work, we plan
to secure defect data of various sizes to enhance model
reliability

TABLEV.  QUANTITATIVE METRICS FOR THE MODELS
Model | Precision | Recall | mAP@so | ™AL@0- | Kl
score
YOLOWSx | 0987 | 0972 | 0992 0784 | 0979
Faster
0338 | 0528 | 0483 0338 | 0206
R-CNN
YOLOv8s | 0783 | 0609 | 0668 0243 [ 0685

C. Test image Detection results

Table III provides a visual comparison of IQI and defect
prediction results using test images.

First, in the IQI wire detection performance evaluation using
96 test images, the YOLOv8x model showed relatively stable
detection performance even in low quality images, with an
accuracy rate of approximately 55% in recognizing wires.
Meanwhile, the Faster R-CNN model detected wires in only
about 48%, which is lower than YOLOv8x. Additionally, a total
of 41 cases of duplicate detection were identified. These
performance differences are due not only to the structural
characteristics of the models, but also to the influence of the
labeling strategy performed by non-experts. Wire patterns that
had low contrast were difficult to identify even with the eyes
and were excluded form the manual labeling process. Under
these conditions, YOLOVS8x learned the labeled wire patterns
consistently and showed high detection accuracy that aligned
well with the given correct data. Meanwhile, Faster R-CNN
showed a tendency to detect structural patterns in unlabeled
areas as wires, which were counted as duplicate of false
detections in the evaluation process. This characteristic of Faster
R-CNN suggests that it can identify the boundaries of individual
wires more precisely when the image quality is high enough.
Therefore, the performance differences observed in this study
do not necessarily indicate the superiority of a specific model,
but rather, the different result of each model to varying image

quality.
Second, the performance evaluation of pipe welding defect

detection using 61 test images revealed that 41 images
accurately detected defects, demonstrating a certain level of



reliability. However, in some images, small defects were missed,
resulting in a lower detection accuracy. This is likely due to the
insufficient representation of small defects in the training data.
Additionally, due to the limitations of the GPU memory used in
the experiment, other hyperparameters had to be set to fixed
values, which have prevented the optimal detection of defects.
Future studies will include additional data with a variety of
defect sizes, as well as hyperparameter optimization in a high
quality computing environment, to improve the model’s
generalization performance and detection accuracy.

(a) IQI prediction
results for YOLOv8x

(b) IQI prediction
results for Faster R-
CNN

(c) Defect prediction
results for YOLOvS8s

FIGURE III. VISUALIZATION OF IQI AND DEFECT PREDICTIONS

IV. CONCLUSION

The objective of this study was to automate RT image-based
pipe welding joint inspection. We compared and evaluated the
performance of object detection models for IQI wire detection
and weld joint defect detection. A dataset was built using images
that included various IQI shapes and defects and the models’
performance metrics were analyzed.

In the IQI detection results, YOLOv8x showed excellent
performance in most indicators and high robustness. Faster R-
CNN showed a tendency to detect more precisely in high-
quality images, but performance degradation was confirmed due
to some images with duplicate detections.

Additionally, YOLOvV8x demonstrated consistent detection
performance when evaluated using test images. In the result of
detecting welding defects, the YOLOvV8s model recorded a high
accuracy, but due to the absence of small defects, it recorded a
low recall value. This is likely due to the limited size of the data
set. However, it accurately detected defects in 41 of the 61 test
images, achieving an approximate success rate of 67%. The
results of this study demonstrate the effectiveness of developing
automated pipe welding defect inspection technology using
object detection models and suggest the possibility of using
models complementarily depending on the quality of the images.

The results for this study demonstrate the feasibility and
effectiveness of applying object detection models to the
automated inspection of ship pipe IQI and defect detection. In
particular, we confirmed that the detection characteristics of the
models differ depending on the image quality. Future research
will involve building a dataset and performing hyperparameter
optimization in an upgraded computer environment to further
improve detection accuracy and generalization performance.
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