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Abstract—Nondestructive Testing(NDT) is used to ensure the 

reliability of ship pipe welds, and RT is the most widely used method. 

However, RT interpretation relies on experimented technicians. Thus 

IQI interpretation and defect detection automatic systems are in 

demand. Accordingly, we analyzed and evaluated the performance of 

object detection models for IQI and weld defects. The dataset was 

constructed using YOLOv8x and Faster R-CNN models for IQI wire 

detection, and YOLOv8s for defect detection. The result of experiment 

showed that YOLOv8x had high robustness in detection IQI wires in 

RT images and demonstrated excellent performance overall. Faster R-

CNN showed high detection rates in high-quality images but had some 

over detection. In defect detection, the YOLOv8s model showed high 

precision but low recall due to missing small defects. The results of 

this study demonstrate that object detection models can effectively be 

applied to the automation of RT image-based pipe welding defect 

inspection. In the future work, we include expanding the dataset to 

enhance model performance. 

Keywords—radiographic testing, image quality indicator, object 

detection, weld defect, machine learning 

I. INTRODUCTION 

To ensure the reliability and integrity of welded or fabricated 
components, various inspection techniques are employed[1]. In 
ship pipe welds, non-destructive testing(NDT) in utilized to 
detect internal defects without causing any physical or chemical 
damage to the material. Among the available NDT methods, 
radiographic testing(RT) is one of the most widely used 
techniques, and it becomes particularly indispensable for 
structures requiring exceptionally highly reliability, such as 
those used in LNG vessels.  

In shipyard, RT inspections are primarily interpreted by 
qualified and experienced technicians. However, this manual 
interpretation process is prone to human error, as the results can 

vary depending on the inspector’s individual skill and 
judgement, leading to limited reproducibility. Wang(2005) and 
Shafeek(2004) et. al., highlighted the inefficiency of 
conventional analog radiographic image assessment method and 
the low inter-rater reliability among inspectors [2, 3]. 

RT inspection procedures are generally divided into image 
quality indicator(IQI) evaluation and defect inspection. The IQI 
evaluation assesses the sensitivity and resolution of 
radiographic images in accordance with ASTM E747., ensuring 
that the captured images meet eh required quality standards. 
Once image quality has been verified, defect interpretation is 
performed. The presence or absence of defect is the determined 
based on factors such as pipe size and defect characteristics. 

Although automated image-based defect identification 
technologies have been actively developed in fields such as 
construction and medicine, their adoption in the shipbuilding 
industry has been relatively slow due to concerns regarding 
reliability and consistency. Recent advances in image-based 
object detection have demonstrated the effectiveness of machine 
learning in diverse application domains, including medicine, 
agriculture, and construction[4-6]. Motivated by these 
developments, this study proposes an automated image-based 
inspection approach for detecting defects in pipe welds. 

We propose an algorithm for automatically reading IQI, 
which serves as a benchmark for defect analysis, and for 
detecting various types of defects. To this end, we train multiple 
Faster R-CNN variants with different backbones, together with 
the YOLOv8 model–renowned for its strong small-object 
detection capability–to develop models tailored for pipe weld 
defect inspection, and we rigorously compare their performance. 



II. EXPERIMENTAL PROCEDURE 

A. Experimental materials 

The dataset for this study is divided into two parts: one for 
IQI detection and another for weld defect detection. 

As shown Table I, IQI dataset consisted of 469 original RT 
images of SUS316. To enhance the model’s robustness and 
prevent overfitting, horizontal and vertical flipping techniques 
were applied, resulting in a total of 1,407 images.  

TABLE I. SPECIFICATIONS AND NUMBER OF RT IMAGES FOR IQI 
DETECTION ALGORITHM 

Specification Value 

Diameter (mm) 400 500 600 650 700 750 

Thickness (mm) 12.7 5.5 12.7 7.9 7.9 7.9 

Number (pcs) 108 7 101 54 151 48 

Total number (pcs) 469 

  

As shown table II, the weld defect detection dataset was 
constructed using a total of 3,571 images obtained from two 
methods. Due to the limited defect images, the dataset was 
composed of original RT images and AI-Hub images, an 
artificial intelligence data platform.  

TABLE II. DATASET SPLIT FOR WELD DEFECT DETECTION 

Dataset Original images AI-Hub images Total 

Training 1,611 1,250 2,861 

Validation 350 290 640 

Test 70 - 70 

Total 2,031 1,540 3,571 

 

To ensure robust feature extraction and address potential 
class imbalance, a stratified data splitting strategy was 
employed rather than simple random sampling. The dataset was 
partitioned so that all categories of welding defects were 
represented in the training set. Specifically, both datasets were 
split into training, validation, and test sets at a ratio of 7:2:1, 
maintaining a consistent distribution of defect types to enhance 
the model’s generalization performance. 

The hardware and software specifications are shown in 
Table III. 

TABLE III. HARDWARE AND SOFTWARE ENVIRONMENT 

CPU 
Intel(R) Core(TM) 

i7-14700k 
GPU 

NVIDIA GeForce RTX 

4060 Ti(8.0GB) 

Mainboard Gigabyte  b760M AORUS ELITE, Intel B760M Chipset 

Storage 
2.0 TB HDD ST2000DM008-2UB102, 1.0 TB 

SSD Samsung SSD 990 pro 1 TB 

OS 
Windows 11 pro 64 

bit 
RAM 64.0GB DDR5 

  

B. Experimental methods 

For model training, we used the Labelme tool(5.2.1) to label 
the IQI and defect areas appearing in the image. To accurately 
designate the location of the IQI wire, labeling was performed 
into three classes:Text, wire, wire region, which are common to 
the wire area in the image. In addition, the weld defect area was 
labeled with in ‘defect’ class. Although the two results are 
combined and visualized as a single example in Fig.1 for 
convenience of explanation, the IQI and defect area were 
actually labeled and trained independently. A visual example of 
the labeling result is shown in Fig.I. 

First, we compared the performance of YOLOv8x, a 
representative object detection model, which are representative 
object detection models, for IQI wire detection. YOLOv8x is a 
model that was released in January 10, 2023 and is based on the 
development of YOLO versions. It uses cutting-edge backbone 
and neck architectures to improve feature extraction and object 
detection performance. Faster R-CNN introduces a Region 
Proposal Network(RPN) that performs region proposal and 
object classification within a single algorithm. It shares feature 
maps to achieve high accuracy and speed. Also, we used the 
YOLOv8s object detection model to detect welding defects in 
RT images. This model’s structural features follow the 
YOLOv8 version mentioned earlier. 

 
FIGURE I. LABELING RESULT FOR IQI AND WELD DEFECTS 

 
The main hyperparameters of each model used in the IQI 

Wire detection study are shown in Table 3. In the case of 
YOLOv8x, the high-resolution training images and model 
structure lead to large memory usage. Therefore, the batch size 
was set to 2 considering the GPU available in the experimental 
environment. The learning rate was set to 0.01 for learning 
stability. In addition, the main hyperparameters of the models 
used in the pipe weld defect detection study are shown in Table 
IV. In the defect detection model training, some parameters, 
including the batch size, were set to accommodate hardware 
constraints because the GPU usage available in the experimental 
environment was limited. In addition, the main hyperparameters 
of the models used in the pipe weld defect detection study are 
shown in Table IV. In the defect detection model training, some 
parameters, including the batch size, were set to accommodate 
hardware constraints because the GPU usage available in the 
experimental environment was limited. 

TABLE IV. HYPERPARAMETERS OF THE DETECTION MODELS 

 IQI Wire model Defect model 

Parameter YOLOv8x Faster R-CNN YOLOv8s 

Batch size 2 8 2 



Epoch 180 35 286 

Learning rate(0) 0.01 0.0001 0.01 

Learning rate(f) 0.01 0.0001 0.01 

Image size 1920 1920 

IoU 0.5 0.3 

 
The model that was trained to detect IQI wires was evaluated 

using precision, recall, mAP@50, mAP@50-95 and F1 score. 
The location accuracy of the IQI wires was determined when the 
IoU was greater than 0.5. The model for defect detection was 
evaluated using the same quantitative evaluation criteria, 
considering the defect location accuracy to be 0.3 or higher. 

III. RESULTS AND DICUSSION 

A. Analysis of Training  Loss Trend  

Fig.II showed the loss changes of YOLOv8x and Faster R-
CNN for IQI wire detection and YOLOv8s for weld joint defect 
detection. First, as shown in Fig.2 YOLOv8x converged at 
epoch 180 and Faster R-CNN at epoch 35, and the models were 
terminated early at the points. Although the validation loss was 
relatively higher than the training loss, it showed a tendency to 
converge at a certain point, indicating a stabilized learning 
pattern. In the future, we plan to use a model re-learning process 
with images of various IQI shapes to improve generalization 
performance. 

YOLOv8s is trained for a total of 1,000 epochs, with an early 
stopping patience of 80. Training loss decreased as the Epochs 
increased, and validation loss initially fluctuated but then 
decreased. This indicates that the model has the ability to 
generalize to defect detection without overfitting. However, the 
validation loss didn’t decrease enough, so in the future work, we 
will need to expand the diversity of the defect data and use 
additional augmentation techniques to improve the model’s 
detection performance  

  

(A) YOLOv8x Loss (B) Faster R-CNN Loss 

 

(c) YOLOv8s Loss 

FIGURE II. TRAINING AND VALIDATION LOSS FOR EACH 

DETECTION MODELS 

B. Analysis of Quantitative Metrics for the models 

As shown in Table V, the YOLOv8x model achieved 
excellent performance in IQI wire detection using a total of 150 
validation images, demonstrating consistent detection rates 
across various RT image qualities. Conversely, the Faster R-
CNN model showed relatively lower performance. This can be 
interpreted as a susceptibility to duplicate and low-quality RT 
images.  

Meanwhile, the YOLOv8s model, evaluated using 350 
validation images, recorded high precision values. This 
indicates a relatively low rate of over-detection, indicating that 
the learning model achieves a certain level of reliability in defect 
detection. However, some small sized defects were missed, 
resulting in a somewhat low recall value. This suggests a lack of 
small sized defect data. Therefore, in the future work, we plan 
to secure defect data of various sizes to enhance model 
reliability 

TABLE V. QUANTITATIVE METRICS FOR THE MODELS 

Model Precision Recall mAP@50 
mAP@50-

95 
F1 

score 

YOLOv8x 0.987 0.972 0.992 0.784 0.979 

Faster 

R-CNN 
0.338 0.528 0.483 0.338 0.206 

 YOLOv8s 0.783 0.609 0.668 0.243 0.685 

  

C. Test image Detection results 

      Table III provides a visual comparison of IQI and defect 

prediction results using test images. 
First, in the IQI wire detection performance evaluation using 

96 test images, the YOLOv8x model showed relatively stable 
detection performance even in low quality images, with an 
accuracy rate of approximately 55% in recognizing wires. 
Meanwhile, the Faster R-CNN model detected wires in only 
about 48%, which is lower than YOLOv8x. Additionally, a total 
of 41 cases of duplicate detection were identified. These 
performance differences are due not only to the structural 
characteristics of the models, but also to the influence of the 
labeling strategy performed by non-experts. Wire patterns that 
had low contrast were difficult to identify even with the eyes 
and were excluded form the manual labeling process. Under 
these conditions, YOLOv8x learned the labeled wire patterns 
consistently and showed high detection accuracy that aligned 
well with the given correct data. Meanwhile, Faster R-CNN 
showed a tendency to detect structural patterns in unlabeled 
areas as wires, which were counted as duplicate of false 
detections in the evaluation process. This characteristic of Faster 
R-CNN suggests that it can identify the boundaries of individual 
wires more precisely when the image quality is high enough. 
Therefore, the performance differences observed in this study 
do not necessarily indicate the superiority of a specific model, 
but rather, the different result of each model to varying image 
quality. 

Second, the performance evaluation of pipe welding defect 
detection using 61 test images revealed that 41 images 
accurately detected defects, demonstrating a certain level of 



reliability. However, in some images, small defects were missed, 
resulting in a lower detection accuracy. This is likely due to the 
insufficient representation of small defects in the training data. 
Additionally, due to the limitations of the GPU memory used in 
the experiment, other hyperparameters had to be set to fixed 
values, which have prevented the optimal detection of defects. 
Future studies will include additional data with a variety of 
defect sizes, as well as hyperparameter optimization in a high 
quality computing environment, to improve the model’s 
generalization performance and detection accuracy. 

(a) IQI prediction 
results for YOLOv8x 

(b) IQI prediction 
results for Faster R-
CNN 

(c) Defect prediction 
results for  YOLOv8s 

FIGURE III. VISUALIZATION OF IQI AND DEFECT PREDICTIONS  

 

IV. CONCLUSION 

The objective of this study was to automate RT image-based 
pipe welding joint inspection. We compared and evaluated the 
performance of object detection models for IQI wire detection 
and weld joint defect detection. A dataset was built using images 
that included various IQI shapes and defects and the models’ 
performance metrics were analyzed. 

In the IQI detection results, YOLOv8x showed excellent 
performance in most indicators and high robustness. Faster R-
CNN showed a tendency to detect more precisely in high-
quality images, but performance degradation was confirmed due 
to some images with duplicate detections. 

Additionally, YOLOv8x demonstrated consistent detection 
performance when evaluated using test images. In the result of 
detecting welding defects, the YOLOv8s model recorded a high 
accuracy, but due to the absence of small defects, it recorded a 
low recall value. This is likely due to the limited size of the data 
set. However, it accurately detected defects in 41 of the 61 test 
images, achieving an approximate success rate of 67%. The 
results of this study demonstrate the effectiveness of developing 
automated pipe welding defect inspection technology using 
object detection models and suggest the possibility of using 
models complementarily depending on the quality of the images. 

The results for this study demonstrate the feasibility and 
effectiveness of applying object detection models to the 
automated inspection of ship pipe IQI and defect detection. In 
particular, we confirmed that the detection characteristics of the 
models differ depending on the image quality. Future research 
will involve building a dataset and performing hyperparameter 
optimization in an upgraded computer environment to further 
improve detection accuracy and generalization performance. 
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