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Abstract—A Cybernetic Avatar (CA) teleoperation system is a
robotic system designed to act as human surrogates in remote
environments. This technology is an important innovation for
achieving society 5.0 and industry 5.0. However, using conven-
tional communication technologies, the communication between
the teleoperator (TO) and CA will require more resources in
terms of bandwidth usage and latency because the amount of
data generated by the CA operation increases rapidly, especially
in a multiple operators and avatars scenarios. This will lead to a
communication bottleneck problem, especially in resource limited
situations, where the bandwidth is not sufficient to efficiently
transmit the large amount of data instantly. Many approaches
have been proposed to address this challenge, but one promising
approach is semantic communication, which consist of transmit-
ting the meaning of data rather than the raw data. However, the
presence of noise at the source of such communication drastically
affects its reconstruction performance. In this paper, we proposed
a semantic communication model with source noise reduction for
a CA teleoperation system. We used this model to improve the
performance of the denoising operation. Simulation results show
an improvement on the reliability of the CA teleoperation in the
presence of source noise.

Index Terms—communication systems, semantic communica-
tion, noise reduction, denoising autoencoder, teleoperation sys-
tem, cybernetic avatar.

I. INTRODUCTION

In recent years, the need to advance the human society
toward a state of freedom from the limitation of body, brain,
space and time, has led to a shift in the focus toward
Cybernetic Avatar (CA) development, because as explained
in [1], CAs are considered as the future of the human society.
CAs are robotic systems design to act as human surrogate
in remote environments and can be used in many situations
such as in disaster management, medical operations, and as
assistance to the aging population.

Furthermore, with the advancement in 5G and beyond 5G
(B5G) technologies, CA teleoperation systems will lead to an
advancement in human civilization, where CA assistants will
be present in almost all activities in human life to overcome
our human limitations. More so, as explained in [2], the ultra-
fast data rates, low latency, and massive network capacity
for both real-time and near real-time communication using
the 5G and B5G technologies will increase the availability
and reliability of CA teleoperation services, creating a more
seamless user experience.
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However, as the number of CA and teleoperators (TO)
increases on a given teleoperation scenario such as in [3], the
amount of data generated to be transmitted between the CA
and TO in real-time increases significantly, possibly leading to
a communication bottleneck, where the bandwidth is not suffi-
cient to efficiently transmit the large amount of data instantly.
This is a crucial issue for CA teleoperation systems which
depends on the reliability of real-time communication between
the CA and TO. Many approaches have been proposed to
address this issue but one promising approach is the use of
semantic communication (SemCom) technology.

SemCom is a communication technique in which the mean-
ing or intent of data rather than the raw data are transmitted.
It drastically reduces the amount of data to be transmitted
as described in [4], enabling the possibility of eliminating
communication bottleneck in a resource limited and time-
constrained situation, such as in a multiple CAs and TOs
teleoperation. While the 5G and B5G technologies provide
seamless connectivity, semantic communication technologies
provide a resource economy to the CA and TO communica-
tion. A general architecture of semantic communication with
source noise in a CA teleoperation is presented in Figure 1.

One of the major issue that can affect communication is
noise at the source, which can corrupt the actual information
to be communicated. Similar to conventional communication,
noise introduce at the source of a SemCom model would affect
the output at the receiving end of the the model, leading to a
high reconstruction error. Therefore, the presence of corrupt
information at the source would definitely lead to corrupt
output if the noise is not eliminated or reduced. Reducing noise
at the source is imperative in communication technology and
it is generally done using denoising techniques.

Different denoising techniques have been developed for
communication technology such as filtering based techniques
(e.g., Median, Gaussian, Wiener, and Kalman filters), trans-
form based techniques (e.g., Wavelet and Fourier transforms),
and machine learning based techniques (e.g., CNNs and
GANSs). These denoising techniques reduce the source noise
associated with the transmitted signal, enabling a denoised
output at the receiving end of the communication. The major
objective in all denoising techniques is to mitigate noise
without distorting the original source signal. In this paper, we
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Fig. 1. General architecture of semantic communication with source noise in a CA teleoperation system

use a machine learning based denoising technique to reduce
source noise in CA teleoperation.

In a CA teleoperation, an effective denoising technique is
necessary because the CA teleoperation requires a reliable
end-to-end (E2E) communication as discussed in [3]. To
achieve this, we enhance the CA teleoperation with a SemCom
model, where meaning must be consistently preserved and
interpreted across the entire communication path—from the
TO’s command interface to the CA’s actuators and sensors,
and even further to the service user interaction. This makes the
problem far more complex, requiring not only noise reduction
but also issues of timing, reliability, cross-layer semantics
alignment, and multi-agent context sharing.

In this paper, we address these challenges by proposing
a semantic communication model for noise reduction in CA
teleoperation. The proposed model operates at the application
layer of the TCP/IP protocol stack and can support both
actuation and sensing signals. Our contributions are as follows:

e A denoising SemCom model at the application layer
tailored for CA teleopeartion.

o Simulation and evaluation of the denoising effect of the
SemCom model on CA teleoperation.

The rest of the paper is divided as follows; Section II
discusses about related works in denoising techhniques and
CA teleoperation system. Section III discusses about our
proposed model. Section IV is about experiment and results.
We conclude in Section V.

II. RELATED WORKS

There are many researches on denoising techniques but very
few on SemCom denoising application to teleoperation system.

Gul et al. [5], present a denoising autoencoder (DAE)
to enhance sensing reliability by mitigating the effects of
abnormal sensing reports and noise disturbances at a Fusion
Center. The autoencoder produces cleaned energy data, which
is fed into a machine learning classifier to estimate channel
availability and accumulate global decisions. They further
perform performance analysis which shows that a combination
of DAE and Ensemble Classifier yields high accuracy, F1-
score, and Matthew’s Correlation Coefficient.

Sabera et al. [6], propose a GAN-based architecture for
denoising ECG signals. They demonstrated its efficacy in
removing both white noise and motion artefacts from ECG
data. Results from their experiment indicate that GANs can
outperform conventional denoising methods, leading to clearer
and more reliable ECG signals for further clinical analysis.

Ramadhan et al. [7], proposed a convolutional autoencoder
with sequential and channel attention (CAE-SCA) to address
the issue of noise and desired signal frequencies overlapping in
ECG signals. Experimental results give an average SNR value
of 16.187 dB, RMSE of 0.059, and PRD value of 18.529 in the
MIT-BIH database. While in the SHDB-AF dataset, the model
obtained 15.308 dB of SNR, 0.049 of RMSE, and 19.220 of
PRD. These results demonstrate their CAE-SCA outperforms
the selected state-of-the-art methods across different metrics.



Mahaseni et al. [8], proposed a method for reconstructing
EEG signals using a variant of the variational autoencoder
(VAE) called beta-VAE. They evaluated their proposed model
on DEAP dataset and show that it learns a compressed repre-
sentation of the EEG signal in an unsupervised manner, and the
reconstructed signal contains less artifact. Results shows that
their approach has a potential for improving the analysis and
understanding of EEG signals in clinical and research settings.

Cho et al. [9], propose GoonDAE, a novel denoising-
based real-time driver assistance method that enables stable
teleoperated off-road driving. They introduce a denoising
autoencoder (DAE) based on a skip-connected long short-
term memory (LSTM) to assist the unskilled driver control
input through denoising. Experiments in the simulated off-
road environment show that GoonDAE significantly improves
the driving stability of unskilled drivers.

Samarathunga et al. [10], analyze a framework for semantic
image transmission that independently and jointly models
semantic and technical noise while employing Turbo codes
for robust error detection and correction. They systematically
examine their individual and combined impacts through seven
experimental scenarios and benchmark the results against
state-of-the-art image codecs. The results show that joint
noise modeling not only improves semantic fidelity, but also
enhances overall system robustness, and that Turbo coding
proves effective in mitigating both noise types.

While these works focus on the use of denoising techniques
to different applications, they are limited in their use of
SemCom for performance improvement of CA teleoperation.

III. MODELING

Our proposed model uses a SemCom to enhanced CA tele-
operation, where the input signal from the TO is transmitted
to the CA as a semantic encoded signal. This signal can
represents the actuation or sensing signal of the TO for the
CA to execute. Upon receiving the signal, the CA semantically
decode them and execute the actions of the TO. If noise is
introduce at the source to corrupt the input signal of the TO,
this corrupted signal will be transmitted to the CA, affecting
the desire output of the TO on the CA.
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Fig. 2. Proposed architecture for a SemCom model with source noise

Figure 2 illustrate the SemCom model in a CA teleoper-
ation system with source noise, /N, and TO signal, X. The
observable space, X , of the SemCom model representing
the corrupt signal from TO. These are compressed to the
latent space, Z, and transmitted via a communication channel
to the CA. The CA then decode the transmitted semantic
information to execute the actions of the TO. Assuming that
the communication channel is perfectly noiseless with no
information loss, then the trallsmitted semantic code Z at the
transmitter will be equal to Z at the receiver.

The objective of the SemCom model is to make sure that
the input signal X and output signal X are identical in the
presence of noise N. To model the semantic encoder and
decoder for this case study, we use a denoising autoencoder
in which an encoder, fy, encode and compress X to Z, which
is then transmitted to the CA and receive at decoder, fy, as
Z. The decoder reconstruct X by generating X from Z.

Mathematically, the encoder is represented as,

fo:X—=2Z (1)

Z = fs(X) (2)
where X = X + N, N ~ N(0,0%1), fe is the encoding
function with parameter ¢, X € R"™ represent the signals of
the TO, Z € R™ represented the encoded semantic data, and
n > m with n,m € N.

Similarly, the decoder is represented as,

fo:Z—=X 3)

R = f,(2) )
where fy, is the decoding function with parameter ), Z eR™
represented the transmitted semantic code, X eRrn represent
the reconstructed output of the decoder, and n > m with
n,m € N.

In this paper, we consider a perfectly noiseless channel,
hence Z = Z. However, in a noisy channel where most likely
Z # Z, the amount of channel noise would further affect the
reconstruction performance of the model as discussed in [4].

The introduction of noise at the source will definitely also
affect the reconstruction performance and decoded output of
the SemCom model. The objective of this proposed SemCom
model is to reduce the reconstruction error due to source
noise during teleoperation training. This is because while
the optimization of the SemCom model will improve its
reconstruction performance, any noise introduce at the source
can affect this reconstruction performance.

The optimization strategy consist of searching the optimal
parameters of the encoder and decoder that minimize the error
in the SemCom such that X' = X In addition to source noise,
any difference between X and X is considered to be caused
by a reconstruction error in the model. This error is generally
measured using a loss function defined over X and X to
optimize the parameters of the encoder and decoder. Reducing
this error is essential in improving the reconstruction accuracy.

Different loss functions can be used to model the recon-
struction error such as the mean square error, binary cross
entropy, cosine loss, and so on. As shown in Figure 3, binary
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Fig. 3. SemCom with binary signals at the TO and CA

data with additive white Gaussian noise (AWGN) were used to
represent the corrupted TO signals. Further more, to account
for the occurrence of sparsity in the data, we use cosine loss.
The cosine loss measures the dissimilarity between vectors
and it is expressed with respect to our case study as follows,
X Lulfs() s
R | X[ fo (fo (X))
where £(X,X) € [0,1] is the cosine loss function, X is
the source information, fy(fs(X)) = X is the reconstructed
information, ¢ represents the parameters of the encoder, and
¢ represents the parameters of the decoder.

Optimizing the model to reduce error entails minimizing
L(X, X). We achieve this by searching the optimal | parameters
of the encoder and decoder that minimize £(X, X), thereby
increasing the similarity between X and X. The optimization
process of L(X, X) is expressed as follows,

LX,X)= 1

- Sy X f(fe(X))
mip L&, X) =min -Gy ©
st. X=X @)

It is worth noting that the loss function does not explicitly
take into account the corrupted TO signal X but instead
the uncorrupted signal X. This implies that the model is
trained to reduce the source noise by adapting its effects on
the parameters of the decoder through optimization of the
reconstruction error.

An important aspect of this optimization is that unlike in
most machine learning models where over-fitting of the model
to the data is avoided, in the case of CA teleoperation where
all the commands and their respective binary codes are known
and well defined, over-fitting becomes an advantage to the
model. In this case, the optimal parameters will be those at
L(X,X) = 0. However, if some unknown instances of the
commands exist and can be initiated by the TO, such as new
scenario, then generalization of the model over the input space
is essential, as it is done in most autoencoder optimization and
machine learning processes.

Evaluating the reliability in performance of the SemCom
model is an important aspect in our research. Since the noise
is reduced by adapting the decoder parameters to reduce
the reconstruction error, we focus more on evaluating the
noise reduction performance of the model, specifically the

reconstruction performance of the decoder. The encoding and
communication performances of the SemCom model where
not considered in this paper. Hence, the compression perfor-
mance of the model such as compression size, ratio, gain, and
factor were not considered.

The denoising performance metrics of the model are group
into two main categories; (1) evaluation metrics useful for
assessing the model’s ability to correctly classify each data
point as “original signal” (positive) or “noise” (negative) and,
(2) evaluation metrics that focus on the quality of the denoised
signal compared to the original, clean data.

Regarding the performance metrics useful for assessing
the model’s ability to correctly classify each data point, we
considered the denoising accuracy, precision, recall, and F-
score as define below.

Denosi . TP + FP .
enosing accuracy =
g Y~ TP+FP+ IN + FN
Denoisi .. A TP ©)
enoising precision £
gp TP + FP
TP
Denoising recall & ———— (10)
TP + FN
2(Precisi Recall
Denoising F-score £ (Precision x Reca (1

Precision + Recall
where TP is True positive, FP is False positive (Type I Error),

TN is True negative, and FN is False negative (Type II Error).

Regarding the performance metrics useful for assessing
the quality of the denoised signal compared to the clean
data, we mainly considered the cosine loss. For performance
comparative analysis, we consider other metrics Signal-to-
Noise-Ratio (SNR), SNR improvement (SNRI), Mean square
error (MSE), and Binary cross entropy (BCE) as define below.

1
SNR £ — (normalized linear signal power) (12)
o
SNRdenoised
SNRJ & —_——1oneC (13)
SNRnoisy
1< .
MSE 2 - > (i — i) (14)
i=1
1< R .
BCE = - > (yilog(yi) + (1 —yi)log(1 —4;)) ~ (15)

i=1
where o is noise variance, y is the clean signal, y is the
denoised signal, and n is the number of samples.

2

More so, apart from model performance metrics, system
performance metrics of the denoising operation such as the
denoising time, size (space), and rate are considered and
defined below. The denoising time and space captures the total
system time and memory used for the denoising operation. For
simplicity, only the memory associated to the datasize of the



signals was considered in this paper.

Denosing time (T) £ Z th —t; (16)
i=1
i=n
Denosing size (S) £ Z S 17
i=1
.. A S
Denoising rate = T (13)

where n is number of samples, ¢ is time before denoising a
sample, ¢’ is time after denoising a sample, 7T is total denoising
time, s is data size per sample, S is total datasize.

Depending on the performance expectations of the exper-
iment and characteristics of the denoising model, other per-
formance metrics such as Structural Similarity Index (SSIM),
Correlation Coefficient, Peak Signal-to-Noise Ratio (PSNR),
Root Mean Square Error (RMSE), and Percent Root Mean
Square Difference (PRD) can be used.

IV. EXPERIMENT AND RESULT

The proposed denoising SemCom model was trained and
tested on a simulated CA teleoperation system with a Gaus-
sian source-noise. Backpropagation training technique with
stochastic gradient descent (SGD) optimization were used to
minimize the cosine loss in the model, thereby reducing the
reconstruction error.

A. Experiment description

The experiment consists of a simulated TO and CA, logi-
cally connected via a simulated application layer communica-
tion link, using a publisher-subscriber communication model,
mainly MQTT protocol. MQTT was used due to its adaptation
to resource-constrained devices and networks, such as those
associated with the TO and CA sensing, communication, and
control operations.

An autoencoder architecture was used to model the pro-
posed SemCom, and the simulation parameters of the model
are presented in Table I. The data was generated from the
simulated TO teleoperation, then an AWGN was introduce to
corrupt the data before being encoded by the SemCom model
and transmitted to the CA.

The results of the simulation together with performance
evaluation are presented in the next section. Comparitive per-
formance analysis were done with conventional binary denois-
ing techniques. The conventional binary denoising techniques
used include Median filter (MF), Least Mean Squares (LMS)
fitler, Denoising Generative Adverserial Network (DnGAN),
and Binary Discrete Fourier Transform (BDFT).

B. Results and Explanation

After training the proposed denoising SemCom model with
data generated from the simulated CA teleoperation system,
we evaluate the reconstruction error using cosine loss for dif-
ferent test scenarios with specific noise variances as shown in
Figure 4. From the experiment, a higher noise value produces a
higher reconstruction error, which indicates a low performance
value of the denoising operation and model generalization.

TABLE I
SIMULATION PARAMETERS
Encoder/Decoder
Model type DNN
Observation dimension 15
Latent dimension 5
Number of hidden layers 3
Symbol rate (symbol/sec) 5 Bd
Optimization logic SGD
Loss function Cosine loss
Learning rate 0.001
Learning epoch 50
Learning approach Back-prop
Source noise model AWGN
Source noise intensity (variance) [0,0.1]
Communication channel
Model type Noiseless
Protocol model Pub-Sub
Protocol standard MQTT
Capacity per channel (bit/symbol) 1
Packet loss probability per channel 0
Number of parallel channels 5
Dataset
Total observation instances 1400
Training instances 500
Test instances per test scenario 300
Number of test scenario 3
Observation features 15
Total transmission instances 1400
Packets per transmission 5
Semantic features per transmission 5
Encoded label per transmission 1

While the model generalization performance can be im-
proved using techniques such as cross-validation and regular-
ization during training, improving the denoising performance
requires further minimization of the reconstruction error,
which can lead to overfitting. Hence, a trade-off arises between
improving denoising performance and reducing overfitting. We
simply prioritize the former in this paper.

Furthermore, assuming a normalized signal power, we com-
pare the quality of the denoised signal from our model to that
of some conventional binary denoisers techniques using the
denoised SNR (DnSNR), SNRI, MSE, and BCE metrics for a
noisy input with a variance of 0.05 and corresponding denoised
output as shown in Figure 5. In the figure, our SemCom model
has a denoised SNR of 110 better than the other models.

Lastly, on Table II, we compare the performance of our de-
noising model with conventional binary denoising techniques
using all the metrics presented in section III. As shown on
Table II, our model has a DnSNR of 110, SNRI of 5.5, and
denoising accuracy of 94.5%, better than the other models.

V. CONCLUSION

In this paper, we proposed and simulated a SemCom model
with source noise reduction in a CA teleoperation. We perform
experiments and evaluate its performance with respect to
conventional binary denoising techniques. The results show
that the introduction of noise highly impact the performance
of CA teleoperation. However, our proposed SemCom model
shows a DnSNR of 110, SNRI of 5.5, denoising accuracy of
94.5%, and F-score 91.6% better than the other models.
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODELS
Performance metrics MF LMS DnGAN | BDFT | SemCom
DnSNR 97 91 102 89 110
SNRI 4.85 4.55 5.1 4.45 5.5
MSE 30 35 29 49 21
BCE 19 23 15 29
Denoising accuracy 84% 82% 87.9% 81% 94.5%
Denoising precision 86.1% 85% 89% 80.4% 92%
Denoising recall 87.8% 86.1% 88% 82% 91.1%
Denoising F-score 86.9% 85.5% 88.5% 81.2% 91.6%
Denoising time 2 sec 3 sec 10 sec 6 sec 4 sec
Denoising size Skb 5kb Skb 5kb Skb
Denoising rate 2.5kbps | 1.7kbps 500bps 833bps | 1.25kbps
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