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Abstract—While adversarial robustness and differential pri-
vacy are recognized as vital for trustworthy machine learning,
the systems-level costs of these features remain unsystematized
and poorly understood. The performance-centric paradigm of
ML systems, exemplified by benchmarks like MLPerf, has
been structurally blind to the unique computational patterns of
trustworthy workloads, creating a significant knowledge gap for
practitioners and hardware designers.

This paper presents the cross-domain, energy-aware mea-
surement study of the hidden “trust tax” in deep learning.
We evaluate three representative tasks: vision (ResNet-18), NLP
(DistilBERT), and tabular (MLP). We quantify the cost of
standard privacy (DP-SGD) and robustness (PGD) defenses. On
a single NVIDIA V100 GPU, we find this tax is steep: PGD
adversarial training increases wall-time and energy by 4.07×,
while DP-SGD (ϵ = 8) raises the cost by 3.55× and slashes clean
accuracy from 87% to ≈ 56%.

Our micro-architectural profiling reveals the root cause of
this tax: trust algorithms like per-example gradient clipping and
iterative attacks under-utilize specialized hardware like tensor
cores, creating memory-bound bottlenecks. By providing the
cross-domain systematization of these costs, our work serves as
a foundational reference and public dataset, laying the empirical
groundwork for the next generation of trust-aware compilers,
schedulers, and hardware.

Index Terms—Trustworthy AI, Differential Privacy, Adversar-
ial Robustness, ML Systems, Benchmarking

I. INTRODUCTION

In 2016, a major AI technology firm initiated a partnership
with the Royal Free London NHS Foundation Trust to build
a clinical app called Streams, designed to detect acute kidney
injury [1]. The app’s goal was laudable: to improve patient
outcomes by providing clinicians with faster alerts. To achieve
this speed, the technology partner was given access to a vast
trove of patient data, covering 1.6 million individuals over a
five-year period. However, a 2017 investigation by the UK’s
Information Commissioner’s Office (ICO) concluded that this
data sharing arrangement lacked a valid legal basis, ruling that
the Trust had breached UK data protection law by failing
to ensure patient privacy [2]. The system, while potentially
performant, was not trustworthy.

While a subsequent audit commissioned by the Trust argued
a lawful basis existed, the initial regulatory finding and the
ensuing public controversy underscore a critical point at the
heart of modern AI infrastructure: a system can be optimized
for performance yet remain fundamentally untrustworthy. This
incident is not an isolated case of legal debate; it is a canonical
example of a deeper, systemic disconnect. For the past decade,
the community building the tools to deploy machine learning
has been driven by a myopic focus on performance. In parallel,
it has become established that real-world deployments require
strong, non-functional guarantees of trustworthiness, including
privacy, adversarial robustness, and fairness. These two worlds
have been dangerously disconnected.

This paper asks a simple, unanswered question: What does
safety really cost? We empirically measure the computational,
monetary, and energy overhead - the trust tax - incurred by
today’s two most widely-used defenses. In this work, we define
’trust’ as the rigorous guarantee of data privacy (enforced
via DP-SGD) and system robustness against evasion attacks
(enforced via PGD adversarial training).

Our Contributions are:

• A cross-domain benchmark suite covering vision, NLP,
and tabular data, with baseline, PGD, and DP-SGD
training runs on identical V100 GPUs.

• The first end-to-end measurement of wall-time, dollar,
and kilowatt-hour overheads for these defenses, across
three privacy budgets.

• A micro-architectural analysis that links the overhead
to per-example gradient computation and iterative attack
steps that starve tensor cores.

• An open dataset and tooling that enable researchers to
reproduce and extend our findings, and a discussion
of how these numbers can inform future trust-aware
systems.

Quantifying the trust tax is a prerequisite for closing the gap
between performance-centric infrastructure and safety-centric
algorithms. Our results set the stage for a next generation
of ML tools that optimize speed and trust simultaneously, a



direction we outline as future work.

II. BACKGROUND: A PERFORMANCE-FIRST ECOSYSTEM

The ML systems ecosystem is overwhelmingly driven by
benchmarks, with MLPerf being the industry standard [3].
Its suites focus exclusively on performance—time-to-train
and inferences-per-second while ignoring metrics for privacy
leakage or adversarial robustness. The recent addition of a
separate security track (AILuminate) [4] only confirms that
trust is treated as an afterthought, not a core design metric.

In response, accelerator design has converged on maximiz-
ing low-precision matrix-multiplication (GEMM) throughput,
exemplified by NVIDIA’s H100 Transformer Engine [5] and
Google’s TPUv4. This architecture is a poor match for trust
algorithms. The per-example gradients in DP-SGD and iter-
ative loops in PGD are memory-bound, leaving specialized
tensor cores chronically under-utilized [6]. Similarly, compiler
optimizations like operator fusion [7] are validated on speed
and numerical equivalence, not their impact on robustness or
privacy.

This performance-first bias extends to the cloud. Orchestra-
tion tools like AWS Compute Optimizer [8] and Google Cloud
Recommender [9] observe the low tensor core utilization
inherent to DP-SGD and PGD training. Misinterpreting this
as over-provisioning, they give counter-productive advice to
downsize to smaller instances, which merely lengthens training
time and increases total cost.

Together, these layers - benchmarks, hardware/compilers,
and cloud orchestration - form a performance-obsessed ecosys-
tem that systematically penalizes trustworthy workloads. This
paper provides the first concrete quantification of that penalty:
the “trust tax.”

III. METHODOLOGY: QUANTIFYING THE TRUST TAX

To quantify the systems-level costs of trust, we designed
a rigorous experimental protocol. We measure the wall-time,
energy (kWh), and monetary cost ($USD) of training baseline
models versus their robust and private counterparts across a
representative set of workloads.

A. Workloads and Models

Our benchmark suite is designed for breadth, covering
three distinct domains to ensure our findings are not domain-
specific. Table I summarizes the specific architectures and
parameter counts used for each domain.

TABLE I
BENCHMARK MODEL CHARACTERISTICS

Domain Dataset Architecture Params
Vision CIFAR-10 ResNet-18 11.2M
NLP SST-2 DistilBERT 66.4M
Tabular Rossmann 3-Layer MLP 2.4K

• Vision: Image classification on the CIFAR-10 dataset
[10] using a ResNet-18, a standard CNN architecture.

• NLP: Sentiment analysis on the SST-2 dataset [11] using
DistilBERT [12], a compact and widely-used Transformer
model.

• Tabular: Sales prediction on the Rossmann Store Sales
dataset [13] using a standard two-layer MLP.

B. Trust Configurations

For each workload, we compare the baseline against
two widely-adopted trust-enhancing training regimes, using
community-standard parameters.

• Baseline: Standard training with a cross-entropy loss (or
MSE for regression).

• Adversarial Robustness: PGD adversarial training with
10 attack steps and a threat model of L∞ = 8/255.

• Differential Privacy: DP-SGD training targeting three
distinct privacy levels (ϵ ∈ {8, 4, 2}), with a fixed
δ = 10−5 and max gradient norm of 1.0. We utilized
the Opacus library with a cryptographically secure
pseudo-random number generator, Poisson sampling,
and the RDP accountant to ensure rigorous privacy
accounting.

• Our DP-SGD implementation follows the default per-
example clipping and noise injection mechanisms in Opa-
cus, running on PyTorch and a single V100 GPU. We do
not evaluate more recent efficiency-focused variants such
as ghost clipping/book-keeping, JAX masked Poisson
DP-SGD, or fused approaches like FlashDP, nor fast ad-
versarial training methods (Free/YOPO/ATTA/M+). Our
goal is to characterize the “baseline” trust tax incurred
by standard, widely-deployed PyTorch/Opacus and PGD
training, rather than to establish a lower bound across all
possible optimizations.

C. Hardware and Measurement

To ensure a controlled comparison, all experiments were
executed on a single NVIDIA V100 (30 GB RAM) GPU
running PyTorch 2.0 and CUDA 12.1.

• Cost & Time: Wall-clock time was recorded for each
run. Monetary cost was calculated using a representative
on-demand cloud price of $2.48/hr.

• Energy: Power draw was sampled once per training step
using nvidia-smi and integrated over the run time to
calculate total energy consumption in kWh.

• Statistical Validity: All reported metrics are the av-
erage of three runs with different random seeds
{0, 2024, 2025}. Experiments were run for 120 epochs
(Vision/Tabular) and 18 epochs (NLP) to ensure full
convergence. Two outlier runs for the Rossmann baseline
were excluded due to data loading errors that prevented
model convergence.

• Robustness Evaluation: We report robust accuracy
against the PGD-10 attack used during training. We
acknowledge that stronger attacks (e.g., AutoAttack)
would likely lower this score, but PGD-10 suffices for
measuring the relative system-level overhead.



• Micro-architectural Profiling: To diagnose the root
cause of observed overheads, we used the --profile
flag to enable torch.profiler and generate kernel-
level traces readable by tools like NVIDIA’s Nsight
Compute.

• Reproducibility: To facilitate future research and verifi-
cation, the complete source code, experimental scripts,
and configuration files used in this study are publicly
archived at https://doi.org/10.5281/zenodo.17757106.

IV. RESULTS: THE HIGH COST OF TRUST

Our experiments reveal that imposing trust guarantees in-
curs a significant and multi-faceted “trust tax” in terms of
time, cost, and model accuracy. While the exact overhead is
workload-dependent, the trend is unambiguous: trustworthy
algorithms create system-level bottlenecks that are invisible
to performance-only benchmarks.

A. Headline Finding: A Tripartite Tax on Tabular Data

The starkest trade-offs appear on the Rossmann tabular
workload. As shown in Fig. 1, training a standard MLP model
is highly efficient. However, enforcing differential privacy
(ϵ = 8) with DP-SGD causes the monetary cost to nearly
triple - a 2.96× overhead.

Critically, this financial cost comes with a steep price
in model utility: the validation MAE worsens significantly,
representing a 31.2% increase in prediction error. This demon-
strates a tripartite tax: the user pays more, waits longer, and
gets a less accurate model.

B. Workload-Dependent Overheads

A summary of the trust tax across workloads is presented
in Table II. The overhead varies significantly by domain.

For the Vision task (CIFAR-10), the tax is even more severe
(see Fig. 2). PGD adversarial training increases the cost by
4.07×, while DP-SGD increases cost by 3.55× while suffering
a massive drop in accuracy (-30.4 pp).

In contrast, for the NLP sentiment analysis task, the PGD
adversarial training tax was negligible (∼1.0×). We hypoth-
esize this is due to the small model size (DistilBERT) and
dataset, where the compute intensity of the iterative attack
is less dominant compared to the data loading and baseline
overheads.

TABLE II
MEASURED OVERHEADS OF TRUST-ENHANCING METHODS

Workload Trust Task Cost Overhead Utility Penalty

Vision PGD 4.07x Gains Robustness
Vision DP-SGD (ϵ = 8) 3.55x -30.4 pp Acc
Tabular DP-SGD (ϵ = 8) 2.96x +31.2% Error
NLP PGD ∼1.0x None

C. Micro-architectural Diagnosis

Our micro-architectural profiling suggests that a substan-
tial portion of the trust tax is due to a hardware–software
mismatch, rather than being fundamentally inherent to the
algorithms themselves. During baseline training, convolution
kernels exhibit high Tensor Core utilization. In contrast, under
DP-SGD, the workload character changes completely. The
need to compute and clip per-sample gradients breaks large,
efficient matrix multiplications into a sequence of memory-
bound operations. This starves the GPU’s specialized compute
units, and as a result, Tensor Core utilization plummets.
More optimized implementations and hardware could therefore
reduce, though not necessarily eliminate, this cost. Our mea-
surements indicate that much of the observed tax is an artifact
of executing trust-based workloads on hardware that was
primarily optimized for dense, performance-oriented training.

D. Comparison of DP-SGD Privacy Budgets

Beyond the ϵ = 8 configuration highlighted in Fig. 2,
we also evaluate DP-SGD at ϵ ∈ {4, 2} on CIFAR-10.
Table III shows that the time and dollar overhead of DP-SGD
is effectively flat across these privacy budgets: all three settings
incur an ≈ 3.5× cost multiplier relative to non-DP training. In
contrast, clean accuracy drops steadily from 56.4% at ϵ = 8 to
53.3% at ϵ = 4 and 45.9% at ϵ = 2. This suggests that, for our
PyTorch/Opacus implementation on a V100, the “trust tax” in
time and energy is driven primarily by per-example gradient
computation rather than by the exact privacy level; decreasing
ϵ mainly tightens the privacy–utility trade-off without reducing
the systems overhead.

TABLE III
DP-SGD OVERHEADS ON CIFAR-10 ACROSS PRIVACY BUDGETS. EACH

ENTRY AVERAGES THREE SEEDS.

ϵ Cost Overhead Clean Acc (%)

No DP 1.00 86.7
8 3.55 56.4
4 3.55 53.3
2 3.54 45.9

V. DISCUSSION & IMPLICATIONS

Our results quantitatively establish the existence of a signif-
icant “trust tax” - a 3-4× performance and energy overhead,
when standard trust-enhancing algorithms are deployed on
contemporary, performance-optimized hardware.

A. Rethinking Systems Benchmarking for Trustworthy AI

Current industry-standard benchmarks, most notably
MLPerf, establish a performance baseline that omits the
significant overheads of trust-enforcing algorithms. Our
experiments show that the “time-to-train” for a ResNet-18
increases by 4.07× for PGD training and 3.55× for DP-SGD.
By focusing exclusively on standard training, the MLPerf
results implicitly define “performance” in a way that is
misaligned with the growing enterprise and regulatory need



Fig. 1. The Trust Tax for DP-SGD on the Rossmann tabular dataset. Training with differential privacy (ϵ = 8) incurs a 2.96× overhead in both wall-clock
time and monetary cost, while also increasing prediction error (MAE) by 31.2%.

Fig. 2. The High Cost of Trust on Vision (CIFAR-10). (A) PGD training increases cost by 4.07× to achieve 60.2% robust accuracy. (B) DP-SGD increases
cost by 3.55× while degrading clean accuracy to 56.4%.

for trustworthy models. This work motivates the creation of
a “Trust” track within established benchmarks.

B. Architectural Implications for AI Accelerators

The performance collapse we observed, particularly for DP-
SGD, is not fundamental to the algorithm but is an artifact
of its execution on architectures designed for dense matrix
algebra. The core bottleneck per-sample gradient clipping is
memory-bandwidth bound, serializing computation and lead-
ing to catastrophic under-utilization of the GPU’s Tensor
Cores. We propose that future architectures could mitigate this
bottleneck by incorporating specialized hardware (e.g., on-chip
accumulators with programmable clipping logic) for common
trust primitives.

C. Failure Modes in Cloud Resource Management

Heuristics used by automated cloud resource recommenders
are susceptible to a critical failure mode when encounter-
ing trust-based workloads. These systems typically equate
low compute utilization with over-provisioning. Our analysis
suggests this would be counter-productive. For DP-SGD, a
recommender would observe low Tensor Core activity and
advise moving from a V100 to a less powerful GPU. However,

since the workload is memory-bandwidth-bound, this would
exacerbate the bottleneck, increase training time, and likely
raise the total cost of the job.

VI. LIMITATIONS AND FUTURE WORK

Our study provides a quantitative baseline for the systems
cost of trust, but its scope necessarily opens avenues for future
investigation.

Architectural Scope: Our empirical analysis was conducted
on a single NVIDIA V100 GPU. Future work should charac-
terize how the trust tax manifests on inference-focused accel-
erators (e.g., NVIDIA T4) or next-generation hardware (e.g.,
H100) to understand if architectural evolution is mitigating
these bottlenecks.

Scope of Trust Primitives: This work focused on ad-
versarial robustness and differential privacy. A parallel line
of inquiry is to conduct a similar systems-level analysis to
quantify the “fairness tax,” providing a more complete picture
of trustworthy ML overheads.

The Utility-Performance Frontier: We acknowledge that
the utility-cost trade-off for DP-SGD is sensitive to hyperpa-
rameter tuning. A valuable future study would be to map out



the full Pareto frontier of this trade-off, jointly exploring how
tuning parameters affect the privacy-utility-performance space.

We expect more optimized DP-SGD and adversarial training
implementations to reduce the overhead we observe. Quanti-
fying that reduction on the same workloads and hardware is
an important direction for future work.

VII. RELATED WORK

Our work intersects with three primary areas of research: the
systems costs of trust algorithms, performance benchmarking,
and hardware-software co-design.

Systems Cost of Adversarial Training: The algorithmic
foundations of PGD training were established by Madry et
al. [14] Subsequent systems-level work, notably by Shafahi et
al. [15], analyzed the performance bottlenecks of adversarial
training. However, their analysis was confined to throughput
and did not extend to a holistic view of energy consumption
or direct monetary costs.

Systems Cost of Differential Privacy: The application of
differential privacy to deep learning was pioneered by Abadi
et al. [16] While follow-up work, including the Opacus library,
has significantly improved scalability, the primary focus has
remained on algorithmic convergence. The direct impact on
wall-clock time, energy, and cost across different hardware
and domains has not been systematically quantified in a single
study.

Performance Benchmarking: Industry-standard benchmarks
like MLPerf [3] have been instrumental in driving optimization
for ML training. However, their scope is explicitly limited to
standard, non-robust training regimes. While recent work has
begun to quantify the carbon footprint of large-scale models
[17], these studies focus on model scale rather than the specific
overheads of trust guarantees. To our knowledge, our work
is the first to bridge this gap by conducting a multi-metric
(time, energy, cost) and cross-domain empirical analysis of
the systems overheads of trustworthy machine learning.

VIII. CONCLUSION

This work provides a rigorous, empirical quantification of
the “trust tax” - the performance, energy, and cost over-
head incurred when implementing standard trust-enhancing
algorithms on contemporary hardware. Across representative
vision, NLP, and tabular workloads, we demonstrate that
canonical algorithms for adversarial robustness (PGD) and
differential privacy (DP-SGD) induce a 3-4× system-level tax,
often with a severe corresponding penalty in model utility.

We argue that this tax is a direct consequence of a
fundamental hardware-software mismatch, where algorithms
requiring fine-grained, per-example operations are executed on
accelerators optimized for large, dense matrix algebra. Our
findings show that this mismatch leads to catastrophic under-
utilization of compute resources, with the burden shifted to
the memory subsystem. The ultimate goal is to eliminate this
tax, making security and privacy a first-class citizen in the ML
systems stack.
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