Data-Level Parameter Sampling for
Channel-Adaptive Semantic Communications

Chan Hyung Kim', Geonhui Leef, Minju Chae', and Seung-Chan Lim?*
fSchool of ICT, Robotics and Mechanical Engineering, Hankyong National University, Anseong 17579, South Korea
School of Electronics and Electrical Engineering, Hongik University, Seoul 04066, South Korea
{cksguddl841, gunny1226, cmj3254} @hknu.ac.kr!, sclim@hongik.ac.kr*

Abstract—Although semantic communication leverages deep
learning—based joint source-channel coding to achieve robust
transmission, transceiver models trained at a fixed signal-to-
noise ratio (SNR) often fail to generalize under varying channel
conditions. To address this limitation, we propose a data-level
parameter sampling (DLPS)-based training framework. The
proposed framework employs an equivalent parallel additive
white Gaussian noise channel model to enable stochastic sam-
pling of channel parameters during end-to-end training. In the
proposed DLPS strategy, a single SNR value is assigned to each
training data sample, providing structured exposure to diverse
channel conditions and improving channel adaptability. The
simulation results show that the proposed framework maintains
strong reconstruction performance across a wide SNR range,
thus outperforming alternative sampling strategies and achieving
competitive performance with SNR-specific dedicated training
using a single unified model.

Index Terms—Generalization capability, parameter sampling,
semantic communication, transceiver design.

I. INTRODUCTION

Semantic communication has recently emerged as a promis-
ing paradigm that aims to transmit task-relevant information
rather than exact symbol- or bit-level representations [1]—
[5]. By exploiting deep learning-based joint source-channel
coding, semantic transceivers have demonstrated remarkable
robustness, particularly in low signal-to-noise ratio (SNR)
regimes. However, reliable and efficient communication over
diverse wireless channels remains a challenge in practice.

In semantic transceivers, the encoder network extracts a
latent representation of the source data, which is transmitted
through a wireless channel and then reconstructed by the
decoder network [6]-[8]. This joint source—channel coding
framework enables the neural network to learn task-oriented
representations that are inherently robust to channel impair-
ments. However, the performance of such transceivers criti-
cally depends on the channel conditions experienced during
training, and models trained at a fixed SNR often fail to
generalize when deployed in mismatched environments.

To alleviate this issue, parameter sampling techniques have
been explored to expose semantic transceivers to multiple
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channel conditions during training [9], [10]. However, existing
approaches lack a systematic analysis of sampling granularity
and therefore provide no principled way to determine how
SNR values should be sampled. This lack of granularity-aware
design prevents achieving a proper balance between channel
diversity and model adaptability, thereby motivating the need
for a more structured parameter sampling strategy.

To address the absence of granularity-aware design in ex-
isting training approaches, we propose a data-level parameter
sampling (DLPS) strategy for training of semantic commu-
nication systems. By assigning a single SNR value to each
training data sample, the proposed method provides struc-
tured exposure to diverse channel conditions and improves
channel adaptability. In the proposed training framework, an
equivalent parallel additive white Gaussian noise (AWGN)
channel model is employed to facilitate stochastic sampling of
channel parameters and to guide semantic transceivers toward
learning representations that generalize across a wide range
of SNR values. A comprehensive comparison with batch-
level and latent variable-level sampling schemes highlights
the critical role of sampling granularity in balancing channel
diversity and model adaptability. Furthermore, experimental
results demonstrate that the proposed DLPS-based training
framework achieves highly competitive performance across
a wide range of SNR conditions compared to SNR-specific
training.

The remainder of this paper is organized as follows. Section
II describes the semantic communication system model. Sec-
tion III presents the proposed DLPS-based training framework.
Section IV justifies the effectiveness of the proposed approach
through extensive simulations. Finally, Section V concludes
the paper.

II. SYSTEM MODEL

Fig. 1 illustrates the semantic communication system for
image transmission [6]. At the transmitter, an N-dimensional
input image v is mapped into a K-dimensional latent rep-
resentation x = fy(v) through the encoder network fy(-)
parameterized by weights 6. The latent variables {zj}X |
are normalized to satisfy a unit-power constraint. The latent
vector x is then transmitted over a complex baseband channel.
The corresponding received vector is given by y, whose k-th
component is given by yr = hxp + ng, where h denotes
the complex channel gain and n; represents the complex
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Fig. 1. Semantic communication system model.
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Fig. 2. Equivalent parallel AWGN channel model for training semantic
communication transceivers.

AWGN with zero mean and variance 0. Under the unit-power
normalization, the resulting SNR is given by v = |h|?/a?. At
the receiver, single-tap equalization is applied to compensate
for the channel gain. The equalized vector is defined as X,
whose k-th component is given by % = xp + ng, where
fix = h*ny/|h|? denotes the effective AWGN with zero mean
and variance 1/+. The equalized vector X is then fed into the
decoder network fy;(-), parameterized by weights ¢, which
reconstructs the image as v = fy(X).

III. PROPOSED TRAINING FRAMEWORK

Based on the equalized signal model, the latent variable
transmission between the encoder output and decoder input
can be represented as equivalent parallel AWGN channels,
as illustrated in Fig. 2. We note that the characteristics of
these equivalent channels are fully determined by their SNR
values. Training the transceiver under a fixed SNR leads to a
specialized model for that particular condition, limiting gen-
eralization ability to diverse channel conditions. To overcome
this limitation, we propose a data-level parameter sampling
(DLPS) strategy, in which the SNR (or noise variance) of each
equivalent AWGN channel is randomly sampled during train-
ing. Based on these sampled parameters, a training framework
is constructed to jointly optimize the encoder and decoder
networks, enabling the transceiver to adaptively operate across
various channel environments.

A mini-batch B = {v(®}8 is drawn from the training
dataset. During the forward pass, the i-th image sample v(?) is
transformed into a latent vector x() by the encoder f5(-). The
latent variables {xff)}szl are transmitted through the parallel
equivalent AWGN channels in the complex baseband. For the
k-th channel, the equalized signal is given by

2 =2 +a). (1)
S) denotes the effective AWGN with zero mean
and variance 1 /fy,(;), where 7,21) represents the training SNR
applied to the transmission of the k-th latent variable of
the i-th image sample. The equalized signals {i,(;)}le are

Here, n

then processed by the decoder fy;(-) to reconstruct the image
v(®. For backpropagation, the loss function is defined as
the mean-squared error between v(¥ and v(9), given by
L(0,¢) = ﬁzieB |[v(® — ¥(|]2. To minimize the loss
function, the forward pass and backpropagation are iteratively
executed, thereby enabling joint optimization of the encoder
and decoder parameters (6, ¢). To construct a transceiver that
generalizes well across diverse wireless conditions, we adopt
a parameter sampling strategy that varies the SNR applied to
the equivalent parallel AWGN channels.

Let the operating SNR range be defined as I' =
[Ymins Ymax)- In general parameter sampling, the SNR value
7,?) for the k-th latent variable of the i-th data sample can
be randomly drawn from I', and applied to the corresponding
AWGN channels. Such randomized assignment exposes the
transceiver to a wide range of channel conditions, leading to
robust reconstruction performance across the entire operating
SNR. However, the effectiveness of SNR sampling is heavily
influenced by the granularity at which the parameters {'y,(:) Yik
are sampled. To systematically control this granularity and
enhance robustness to diverse channel conditions, we propose
the DLPS strategy as follows.

The DLPS strategy assigns a single training SNR to each
data sample when modeling the equivalent parallel AWGN
channels. For the i-th data sample v(¥), one training SNR
7 is uniformly drawn from T', and applied identically to
the transmission of latent variables through all K equivalent
parallel AWGN channels, i.e.,

AD =40 ke {1,...,K}. )
Under this assignment, all latent variables within a data sample
experience the same channel distribution during the forward
pass, effectively mimicking a block-fading scenario. This per-
sample consistency is advantageous when training semantic
communication transceivers for practical fading environments,
because exposure to a unified channel condition encourages
the transceiver to learn representations that remain robust even
when the channel changes abruptly across blocks.

IV. SIMULATION RESULTS

To validate the performance of the proposed training frame-
work, we consider a semantic communication system for
image transmission [6] using the CIFAR-10 dataset. Image
reconstruction quality is evaluated using the peak signal-to-
noise ratio (PSNR). Training is performed with the Adam
optimizer using a learning rate of 1073, a mini-batch size of
256, and 20 training epochs. To validate the effectiveness of
the proposed granularity of parameter sampling, we consider
the following two benchmark strategies.

e Batch-level parameter sampling (BLPS): BLPS assigns a
single training SNR to the entire mini-batch 5. A value 7 is
randomly sampled from I', and identically applied to all K
latent variables of all |B| data samples, as 'yk,?’) = 7, Vi, k.
This approach provides a consistent channel condition within
each batch while still enabling the model to experience various
SNR values across batches.
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Fig. 3. Comparison of image reconstruction performance for different
parameter sampling granularities, with latent space dimension K = 88.

e Latent variable-level parameter sampling (LVvLPS): LvLPS
samples an independent training SNR for each latent-variable
level. For all 7 and k, the SNR values fy,(;) assigned to the
k-th latent variable of the ¢-th sample is randomly drawn
from I'. Thus, each latent variable is transmitted through an
equivalent AWGN channel with its own distribution, enabling
the model to experience a wide variety of channel conditions
simultaneously during training.

Fig. 3 presents the image reconstruction performance of
the three sampling strategies. The proposed DLPS method
consistently achieves the highest PSNR across the entire SNR
range. In contrast, BLPS shows the poorest reconstruction
quality under low-SNR conditions because the SNR discrep-
ancies across batches slow down convergence during training.
Although LvLPS increases channel diversity by independently
sampling SNR values for each latent variable, the resulting
high degree of randomness enlarges the loss variability and
ultimately degrades PSNR performance. Overall, DLPS pro-
vides the most effective balance between controlled channel
variability and adaptability, achieving the strongest generaliza-
tion performance among the three approaches.

Fig. 4 demonstrates a performance comparison between the
proposed DLPS-based training framework and a dedicated
training framework, in which the transceiver is trained for a
single operating SNR. Despite minor performance degradation
in a limited SNR range, the DLPS approach maintains con-
sistently competitive PSNR across the entire SNR range using
only a single unified model. In contrast, the five dedicated
models, each trained separately at {0,4,8,12,16} dB, exhibit
the highest performance only at their respective training SNRs,
while exhibiting clear degradation under mismatched SNR
conditions. These results confirm that the proposed DLPS-
based training framework offers superior generalization ca-
pability and channel adaptability by exposing the model to
diverse channel conditions within a single training process.

V. CONCLUSION

In this paper, we propose a DLPS-based training frame-
work to enhance the generalization capability and channel
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Fig. 4. Performance comparison between the proposed DLPS-based training
and SNR-specific training (Baseline), with latent space dimension K = 264.

adaptability of semantic communication transceivers across di-
verse wireless environments. By leveraging equivalent parallel
AWGN channel modeling, the proposed framework stochas-
tically samples channel parameters (i.e., SNRs) at the data-
sample level, thereby enabling the encoder and decoder to
experience a wide range of channel conditions within a single
training process. Simulation results demonstrate that the pro-
posed DLPS strategy outperforms other sampling-granularity
methods and achieves highly competitive performance com-
pared to dedicated SNR training. These findings confirm
that the DLPS-based training framework effectively improves
the robustness and adaptability of semantic communication
systems under diverse channel conditions.
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