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Abstract—Molecular property prediction plays a central role in
drug discovery, toxicity assessment and computational chemistry.
However, most real world datasets in these domains are extremely
small and recent large foundation models struggle to generalize in
low-data and geometry-sensitive scenarios. To address this
problem, we propose a knowledge-guided graph neural network
(GNN) framework designed specifically for data-efficient molec-
ular learning. The first contribution is a lightweight architecture
that incorporates fundamental chemical priors. These priors such
as functional groups and molecular descriptors to guide
representation learning without relying on large scale pretraining.
The second contribution is transfer learning embedding level
knowledge distillation strategy where a pretrained teacher GNN
transfers high-level structural knowledge to a compact student
model suitable for small molecule datasets. Preliminary expert
feedback from 16 domain specialists indicates that the proposed
design is both feasible and relevant for drug discovery use cases
although experimental validation is planned as future work. The
framework is expected to deliver improved performance in cold-
start and low data settings. The conceptual study outlines a
promising direction for efficient molecular property prediction
using knowledge-augmented GNNs.

Index Terms—graph neural networks, molecular property
prediction, data-efficient molecular learning, transfer learning,
knowledge distillation, chemical priors

1. INTRODUCTION

Molecular property prediction is a fundamental component
of drug discovery, toxicity screening and chemical design. Ma-
chine learning approaches have shown substantial promise in
automating these tasks; however, real-world molecular datasets
are often extremely small, with only a limited number of
labeled compounds available. In such low-data settings, large
pretrained molecular language models and SMILES-based
transformers frequently struggle to generalize, particularly
when geometric interactions and subtle structural variations
dominate molecular behavior [1], [2], [3].

Graph neural networks (GNNs) have emerged as a pow-
erful alternative by representing molecules as graphs and
explicitly modeling atomic connectivity and local chemical
environments [4], [5]. Despite their favorable inductive bias,
GNNss trained from scratch on small datasets often fail to learn
robust structure—property relationships due to insufficient
supervision. Recent studies suggest that incorporating chemi-
cal knowledge, transfer learning and distilled representations
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can significantly improve learning efficiency under data-scarce
conditions [6], [7], [8].

Motivated by these observations, this paper proposes a
knowledge-guided GNN framework tailored for low-data
molecular property prediction. The framework integrates
lightweight chemical priors into the representation process and
employs embedding-level knowledge distillation to transfer
structural information from a pretrained teacher GNN to a
compact student model. Preliminary expert feedback from
chemistry and bioinformatics researchers indicates that the
proposed design is both feasible and relevant for practical
early-stage drug discovery applications.

II. BACKGROUND AND MOTIVATION

Accurate molecular property prediction plays a central role
in modern drug discovery pipelines, where experimental assays
are costly and time consuming. While deep learning models
have achieved strong performance on large molecular datasets,
their effectiveness degrades significantly when only limited
labeled data are available. This challenge is particularly pro-
nounced for tasks that require sensitivity to subtle structural
differences between molecules.

Graph neural networks provide a more suitable inductive
bias for molecular learning by explicitly encoding atomic con-
nectivity and local chemical environments [4], [5]. However,
when trained on small datasets, GNNs often lack sufficient
supervision to learn stable and generalizable representations.
This limitation motivates the use of transfer learning strategies
that reuse structural knowledge learned from large, unlabeled
molecular corpora.

Pretrained molecular GNNs such as GROVER and
Chemprop have demonstrated that transferable structural pri-
ors can improve downstream molecular property prediction [7],
[8]. Building on this idea, embedding-level knowledge
distillation offers an effective mechanism for compressing rich
pretrained representations into lightweight student models,
improving data efficiency while preserving essential struc-
tural information [6]. Together, these considerations motivate
frameworks that combine transfer learning, distillation and
chemically meaningful priors to address the challenges of low-
data molecular prediction.



III. RELATED WORK

Molecular property prediction has been extensively stud- ied
using both graph-based and language-based architectures.
Early work on message passing neural networks (MPNNs)
demonstrated that GNNs can effectively model atom—bond
interactions and outperform traditional descriptor-based meth-
ods on quantum chemistry tasks [5]. The Graph Isomorphism
Network (GIN) further established the expressive power of
GNNss for distinguishing subtle structural variations critical to
chemical activity prediction [4].

Large-scale molecular pretraining has significantly ad-
vanced the field. Models such as GROVER introduced self-
supervised graph transformers trained on millions of molecules
and achieved strong performance across multiple MoleculeNet
benchmarks [7], [8]. Similarly, Chemprop leveraged directed
message passing and ensemble strategies to set competitive
baselines for molecular property prediction. Despite these
successes, pretrained GNNs still require moderate amounts
of labeled data for fine-tuning and often exhibit unstable
performance in low-data regimes [2].

Transformer-based molecular foundation models have also
gained attention. ChemBERTa-2 adapted masked language
modeling to SMILES representations [3], while MolE in-
troduced multiscale architectures incorporating both 2D and 3D
structural information [9]. However, benchmarking studies
consistently show that large language models struggle to
generalize reliably under data-scarce and structure-sensitive
molecular settings [2].

Knowledge distillation has been widely explored as a model
compression and representation learning technique, including
for graph-structured data [6]. In parallel, integrating domain
knowledge such as functional group indicators and physic-
ochemical descriptors has been shown to improve molecular
prediction performance [10]. In contrast to prior work, the pro-
posed framework combines embedding-level distillation from
pretrained molecular GNNs with lightweight chemical priors
specifically designed for low-data molecular property predic-
tion. This integration aims to preserve transferable structural
knowledge while guiding learning with chemically meaningful
inductive biases, addressing a gap between general-purpose
distillation methods and practical early-stage molecular dis-
covery constraints.

IV. PROPOSED FRAMEWORK

This section describes the proposed knowledge-guided GNN
framework designed to improve molecular property prediction
under low-data conditions. The approach integrates three key
components: (A) a pretrained teacher GNN used for transfer
learning, (B) a lightweight student GNN optimized for data-
efficient inference and (C) embedding-level knowledge distil-
lation to transfer structural priors alongside (D) chemical pri-
ors that guide representation learning. The overall design aims
to capture transferable structural information while keeping the
student model compact, interpretable and stable under limited
supervision.

A. Pretrained Teacher GNN (Transfer Learning)

Large molecular GNNs such as GROVER and Chemprop
have been trained on millions of unlabeled compounds and
learn rich structural representations useful across downstream
tasks [7], [8]. In the proposed framework, one such pretrained
GNN acts as the teacher model. Its parameters remain fixed and
it generates latent embeddings for molecules in the low- data
target dataset. These embeddings encode transferable chemical
knowledge related to atomic environments, molec- ular
substructures and topology. Using a frozen teacher also ensures
computational efficiency, as no gradient updates are required
for the high-capacity model during training. This setup allows
the student model to benefit from broad chemical knowledge
even when the downstream dataset contains only a few
hundred samples.

B. Lightweight Student GNN

A compact GNN such as Graph Convolutional Network
(GCN) or Graph Isomorphism Network (GIN) serves as the
student model. This model is intentionally small to avoid
overfitting in low-data scenarios. Without guidance, such
lightweight architectures struggle to learn robust structure-
property relationships. However, when paired with a strong
teacher model, they can approximate more expressive molec-
ular representations while maintaining data efficiency. The
reduced parameter count also leads to faster training, lower
memory usage and enhanced stability across small random
initialization seeds, which is an important property when
dealing with datasets that contain limited structural diversity.

C. Embedding-Level Knowledge Distillation

To transfer structural priors from the teacher to the student,
we employ embedding-level knowledge distillation [6]. During
training, the student is encouraged to align its intermediate
representations with the teacher’s embeddings using a com-
bination of L1 distance and cosine similarity losses. This
encourages the student model to mimic the teacher’s internal
representation space while still optimizing directly for the
downstream prediction objective. The dual-objective training
setup helps the student capture both local atomic interactions
and broader molecular patterns. By aligning embeddings at
intermediate layers rather than only at the prediction layer, the
framework preserves more nuanced structural information that
is often lost in output-level distillation.

D. Integration of Chemical Priors

To improve inductive bias and stabilize learning under
limited supervision, the proposed framework incorporates
lightweight chemical priors derived directly from molecular
structure. These priors are designed to be task-agnostic, inex-
pensive to compute, and free from information leakage.

Specifically, the framework considers functional group indi-
cators extracted using cheminformatics toolkits such as RDKit,
including the presence of common moieties (e.g., aromatic
rings, hydroxyl groups, amines). These signals can be repre-
sented as binary or count-based features and integrated either



as auxiliary prediction targets or as additional inputs following
graph-level pooling.

In addition, simple physicochemical descriptors such as
molecular weight, hydrogen bond donors and acceptors, and
topological polar surface area may be concatenated with
learned graph embeddings to provide coarse-grained chemical
context. Unlike learned representations, these descriptors en-
code well-established chemical heuristics and can help anchor
the model’s latent space in low-data regimes.

Finally, graph-native structural attributes including atom
degree, aromaticity flags, and ring membership are retained as
node-level features, reinforcing chemically meaningful mes-
sage passing without increasing model complexity. Impor-
tantly, all priors are derived solely from molecular structure and
do not rely on external knowledge graphs or bioactivity
annotations, ensuring robustness and generalizability to unseen
compounds.

E. Preliminary Practical Validation

Informal feedback collected from 16 researchers in chem-
informatics and computational chemistry indicated that the
proposed combination of transfer learning, distillation and
chemical priors is feasible, interpretable and well aligned with
the constraints of low-data molecular tasks. Many experts
emphasized that the separation between a fixed teacher and
a lightweight student is particularly useful in early-stage drug
discovery where computational resources and labeled data are
limited. This early validation supports the practical relevance
of the design and its applicability to drug discovery workflows.

V. FUTURE EVALUATION PLAN

Although the proposed framework is conceptual, future work
will involve systematic empirical evaluation on standard
molecular property prediction benchmarks such as ESOL,
BACE and ClinTox using scaffold-based splits to prevent
overly optimistic performance estimates. In addition to full
benchmark datasets, reduced-size subsets from MoleculeNet
will be explored to explicitly study how model performance
degrades as the amount of labeled data decreases [7].

To assess robustness, activity-cliff-oriented evaluation will
be conducted. Activity cliffs, which consist of structurally
similar molecules exhibiting large differences in properties, are
known to expose limitations in many machine learning models
for chemistry. Evaluating student models in these scenarios will
help determine whether embedding-level knowledge dis-
tillation improves sensitivity to subtle structural variations.
Performance will be quantified using standard metrics such as
RMSE for regression tasks and ROC-AUC for classification
tasks, together with activity-cliff-specific indicators suggested
in recent studies [6].

Further experiments will focus on cold-start settings, where
only a small number of labeled samples are available for fine-
tuning. This scenario is common in early-stage drug discovery
and directly reflects the target use case of the proposed frame-
work. Comparisons will be performed against multiple base-
lines, including (i) a student-only GNN trained from scratch,

(i1) a frozen teacher embedding model without distillation and
(iii) standard pretrained GNN baselines. These comparisons
will enable a clear analysis of the contribution of transfer
learning, distillation and chemical priors. To evaluate training
stability and reproducibility, experiments will be repeated
across multiple random seeds and data subsampling ratios,
addressing known concerns regarding performance variance in
low-data molecular learning [2].

VI. CONCLUSION

This paper presented a knowledge-guided graph neural net-
work framework for molecular property prediction in low-data
settings. By combining pretrained teacher GNNSs, lightweight
student architectures, embedding-level knowledge distillation
and simple chemical priors, the approach aims to improve
structural representation learning without relying on large
datasets.

Although the work is conceptual, implementation of the
proposed framework has been initiated, with experimental val-
idation planned as ongoing work. Future efforts will focus on
completing the prototype, benchmarking against existing GNN
and transformer-based models, and assessing robustness under
challenging conditions such as scaffold splits and activity cliffs.
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