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Abstract—Molecular property prediction plays a central role in 
drug discovery, toxicity assessment and computational chemistry. 
However, most real world datasets in these domains are extremely 
small and recent large foundation models struggle to generalize in 
low-data and geometry-sensitive scenarios. To address this 
problem, we propose a knowledge-guided graph neural network 
(GNN) framework designed specifically for data-efficient molec- 
ular learning. The first contribution is a lightweight architecture 
that incorporates fundamental chemical priors. These priors such 
as functional groups and molecular descriptors to guide 
representation learning without relying on large scale pretraining. 
The second contribution is transfer learning embedding level 
knowledge distillation strategy where a pretrained teacher GNN 
transfers high-level structural knowledge to a compact student 
model suitable for small molecule datasets. Preliminary expert 
feedback from 16 domain specialists indicates that the proposed 
design is both feasible and relevant for drug discovery use cases 
although experimental validation is planned as future work. The 
framework is expected to deliver improved performance in cold- 
start and low data settings. The conceptual study outlines a 
promising direction for efficient molecular property prediction 
using knowledge-augmented GNNs. 

Index Terms—graph neural networks, molecular property 
prediction, data-efficient molecular learning, transfer learning, 
knowledge distillation, chemical priors 

 

I. INTRODUCTION 

Molecular property prediction is a fundamental component 

of drug discovery, toxicity screening and chemical design. Ma- 

chine learning approaches have shown substantial promise in 

automating these tasks; however, real-world molecular datasets 

are often extremely small, with only a limited number of 

labeled compounds available. In such low-data settings, large 

pretrained molecular language models and SMILES-based 

transformers frequently struggle to generalize, particularly 

when geometric interactions and subtle structural variations 

dominate molecular behavior [1], [2], [3]. 

Graph neural networks (GNNs) have emerged as a pow- 

erful alternative by representing molecules as graphs and 

explicitly modeling atomic connectivity and local chemical 

environments [4], [5]. Despite their favorable inductive bias, 

GNNs trained from scratch on small datasets often fail to learn 

robust structure–property relationships due to insufficient 

supervision. Recent studies suggest that incorporating chemi- 

cal knowledge, transfer learning and distilled representations 

can significantly improve learning efficiency under data-scarce 

conditions [6], [7], [8]. 

Motivated by these observations, this paper proposes a 

knowledge-guided GNN framework tailored for low-data 

molecular property prediction. The framework integrates 

lightweight chemical priors into the representation process and 

employs embedding-level knowledge distillation to transfer 

structural information from a pretrained teacher GNN to a 

compact student model. Preliminary expert feedback from 

chemistry and bioinformatics researchers indicates that the 

proposed design is both feasible and relevant for practical 

early-stage drug discovery applications. 

 

II. BACKGROUND AND MOTIVATION 

Accurate molecular property prediction plays a central role 

in modern drug discovery pipelines, where experimental assays 

are costly and time consuming. While deep learning models 

have achieved strong performance on large molecular datasets, 

their effectiveness degrades significantly when only limited 

labeled data are available. This challenge is particularly pro- 

nounced for tasks that require sensitivity to subtle structural 

differences between molecules. 

Graph neural networks provide a more suitable inductive 

bias for molecular learning by explicitly encoding atomic con- 

nectivity and local chemical environments [4], [5]. However, 

when trained on small datasets, GNNs often lack sufficient 

supervision to learn stable and generalizable representations. 

This limitation motivates the use of transfer learning strategies 

that reuse structural knowledge learned from large, unlabeled 

molecular corpora. 

Pretrained molecular GNNs such as GROVER and 

Chemprop have demonstrated that transferable structural pri- 

ors can improve downstream molecular property prediction [7], 

[8]. Building on this idea, embedding-level knowledge 

distillation offers an effective mechanism for compressing rich 

pretrained representations into lightweight student models, 

improving data efficiency while preserving essential struc- 

tural information [6]. Together, these considerations motivate 

frameworks that combine transfer learning, distillation and 

chemically meaningful priors to address the challenges of low- 

data molecular prediction. 



III. RELATED WORK 

Molecular property prediction has been extensively stud- ied 

using both graph-based and language-based architectures. 

Early work on message passing neural networks (MPNNs) 

demonstrated that GNNs can effectively model atom–bond 

interactions and outperform traditional descriptor-based meth- 

ods on quantum chemistry tasks [5]. The Graph Isomorphism 

Network (GIN) further established the expressive power of 

GNNs for distinguishing subtle structural variations critical to 

chemical activity prediction [4]. 

Large-scale molecular pretraining has significantly ad- 

vanced the field. Models such as GROVER introduced self- 

supervised graph transformers trained on millions of molecules 

and achieved strong performance across multiple MoleculeNet 

benchmarks [7], [8]. Similarly, Chemprop leveraged directed 

message passing and ensemble strategies to set competitive 

baselines for molecular property prediction. Despite these 

successes, pretrained GNNs still require moderate amounts 

of labeled data for fine-tuning and often exhibit unstable 

performance in low-data regimes [2]. 

Transformer-based molecular foundation models have also 

gained attention. ChemBERTa-2 adapted masked language 

modeling to SMILES representations [3], while MolE in- 

troduced multiscale architectures incorporating both 2D and 3D 

structural information [9]. However, benchmarking studies 

consistently show that large language models struggle to 

generalize reliably under data-scarce and structure-sensitive 

molecular settings [2]. 

Knowledge distillation has been widely explored as a model 

compression and representation learning technique, including 

for graph-structured data [6]. In parallel, integrating domain 

knowledge such as functional group indicators and physic- 

ochemical descriptors has been shown to improve molecular 

prediction performance [10]. In contrast to prior work, the pro- 

posed framework combines embedding-level distillation from 

pretrained molecular GNNs with lightweight chemical priors 

specifically designed for low-data molecular property predic- 

tion. This integration aims to preserve transferable structural 

knowledge while guiding learning with chemically meaningful 

inductive biases, addressing a gap between general-purpose 

distillation methods and practical early-stage molecular dis- 

covery constraints. 

IV. PROPOSED FRAMEWORK 

This section describes the proposed knowledge-guided GNN 

framework designed to improve molecular property prediction 

under low-data conditions. The approach integrates three key 

components: (A) a pretrained teacher GNN used for transfer 

learning, (B) a lightweight student GNN optimized for data- 

efficient inference and (C) embedding-level knowledge distil- 

lation to transfer structural priors alongside (D) chemical pri- 

ors that guide representation learning. The overall design aims 

to capture transferable structural information while keeping the 

student model compact, interpretable and stable under limited 

supervision. 

A. Pretrained Teacher GNN (Transfer Learning) 

Large molecular GNNs such as GROVER and Chemprop 

have been trained on millions of unlabeled compounds and 

learn rich structural representations useful across downstream 

tasks [7], [8]. In the proposed framework, one such pretrained 

GNN acts as the teacher model. Its parameters remain fixed and 

it generates latent embeddings for molecules in the low- data 

target dataset. These embeddings encode transferable chemical 

knowledge related to atomic environments, molec- ular 

substructures and topology. Using a frozen teacher also ensures 

computational efficiency, as no gradient updates are required 

for the high-capacity model during training. This setup allows 

the student model to benefit from broad chemical knowledge 

even when the downstream dataset contains only a few 

hundred samples. 

B. Lightweight Student GNN 

A compact GNN such as Graph Convolutional Network 

(GCN) or Graph Isomorphism Network (GIN) serves as the 

student model. This model is intentionally small to avoid 

overfitting in low-data scenarios. Without guidance, such 

lightweight architectures struggle to learn robust structure- 

property relationships. However, when paired with a strong 

teacher model, they can approximate more expressive molec- 

ular representations while maintaining data efficiency. The 

reduced parameter count also leads to faster training, lower 

memory usage and enhanced stability across small random 

initialization seeds, which is an important property when 

dealing with datasets that contain limited structural diversity. 

C. Embedding-Level Knowledge Distillation 

To transfer structural priors from the teacher to the student, 

we employ embedding-level knowledge distillation [6]. During 

training, the student is encouraged to align its intermediate 

representations with the teacher’s embeddings using a com- 

bination of L1 distance and cosine similarity losses. This 

encourages the student model to mimic the teacher’s internal 

representation space while still optimizing directly for the 

downstream prediction objective. The dual-objective training 

setup helps the student capture both local atomic interactions 

and broader molecular patterns. By aligning embeddings at 

intermediate layers rather than only at the prediction layer, the 

framework preserves more nuanced structural information that 

is often lost in output-level distillation. 

D. Integration of Chemical Priors 

To improve inductive bias and stabilize learning under 

limited supervision, the proposed framework incorporates 

lightweight chemical priors derived directly from molecular 

structure. These priors are designed to be task-agnostic, inex- 

pensive to compute, and free from information leakage. 

Specifically, the framework considers functional group indi- 

cators extracted using cheminformatics toolkits such as RDKit, 

including the presence of common moieties (e.g., aromatic 

rings, hydroxyl groups, amines). These signals can be repre- 

sented as binary or count-based features and integrated either 



as auxiliary prediction targets or as additional inputs following 

graph-level pooling. 

In addition, simple physicochemical descriptors such as 

molecular weight, hydrogen bond donors and acceptors, and 

topological polar surface area may be concatenated with 

learned graph embeddings to provide coarse-grained chemical 

context. Unlike learned representations, these descriptors en- 

code well-established chemical heuristics and can help anchor 

the model’s latent space in low-data regimes. 

Finally, graph-native structural attributes including atom 

degree, aromaticity flags, and ring membership are retained as 

node-level features, reinforcing chemically meaningful mes- 

sage passing without increasing model complexity. Impor- 

tantly, all priors are derived solely from molecular structure and 

do not rely on external knowledge graphs or bioactivity 

annotations, ensuring robustness and generalizability to unseen 

compounds. 

E. Preliminary Practical Validation 

Informal feedback collected from 16 researchers in chem- 

informatics and computational chemistry indicated that the 

proposed combination of transfer learning, distillation and 

chemical priors is feasible, interpretable and well aligned with 

the constraints of low-data molecular tasks. Many experts 

emphasized that the separation between a fixed teacher and 

a lightweight student is particularly useful in early-stage drug 

discovery where computational resources and labeled data are 

limited. This early validation supports the practical relevance 

of the design and its applicability to drug discovery workflows. 

V. FUTURE EVALUATION PLAN 

Although the proposed framework is conceptual, future work 

will involve systematic empirical evaluation on standard 

molecular property prediction benchmarks such as ESOL, 

BACE and ClinTox using scaffold-based splits to prevent 

overly optimistic performance estimates. In addition to full 

benchmark datasets, reduced-size subsets from MoleculeNet 

will be explored to explicitly study how model performance 

degrades as the amount of labeled data decreases [7]. 

To assess robustness, activity-cliff-oriented evaluation will 

be conducted. Activity cliffs, which consist of structurally 

similar molecules exhibiting large differences in properties, are 

known to expose limitations in many machine learning models 

for chemistry. Evaluating student models in these scenarios will 

help determine whether embedding-level knowledge dis- 

tillation improves sensitivity to subtle structural variations. 

Performance will be quantified using standard metrics such as 

RMSE for regression tasks and ROC-AUC for classification 

tasks, together with activity-cliff-specific indicators suggested 

in recent studies [6]. 

Further experiments will focus on cold-start settings, where 

only a small number of labeled samples are available for fine- 

tuning. This scenario is common in early-stage drug discovery 

and directly reflects the target use case of the proposed frame- 

work. Comparisons will be performed against multiple base- 

lines, including (i) a student-only GNN trained from scratch, 

(ii) a frozen teacher embedding model without distillation and 

(iii) standard pretrained GNN baselines. These comparisons 

will enable a clear analysis of the contribution of transfer 

learning, distillation and chemical priors. To evaluate training 

stability and reproducibility, experiments will be repeated 

across multiple random seeds and data subsampling ratios, 

addressing known concerns regarding performance variance in 

low-data molecular learning [2]. 

VI. CONCLUSION 

This paper presented a knowledge-guided graph neural net- 

work framework for molecular property prediction in low-data 

settings. By combining pretrained teacher GNNs, lightweight 

student architectures, embedding-level knowledge distillation 

and simple chemical priors, the approach aims to improve 

structural representation learning without relying on large 

datasets. 

Although the work is conceptual, implementation of the 

proposed framework has been initiated, with experimental val- 

idation planned as ongoing work. Future efforts will focus on 

completing the prototype, benchmarking against existing GNN 

and transformer-based models, and assessing robustness under 

challenging conditions such as scaffold splits and activity cliffs. 
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