
Secure Majority Voting for Multi-Rater Labelling
1st Taejeong Kim

Dept. of Electronic Engineering
Hanyang University

Seoul, Korea
birdy0212@hanyang.ac.kr

2nd Dong-Joon Shin
Dept. of Electronic Engineering

Hanyang University
Seoul, Korea

djshin@hanyang.ac.kr

Abstract—Majority voting over binary labels is a fundamental
operation in many machine learning pipelines, such as weak
supervision, multi-rater annotation, and 1-bit compressed opti-
mization. In these settings, individual labels or bits are often
sensitive, while only the final majority voting outcome needs
to be revealed. This paper presents a compact description of
how to securely compute the majority vote by combining 1-bit
multi-party computation (MPC) based on binary Reed–Muller
(RM) codes with efficient majority circuits. The RM-based secret
sharing keeps all inputs, intermediate values, and outputs in the
1-bit domain. The majority function is realized as a Boolean
circuit using 3-input majority gates, interpreted over the shares
as additions and multiplications in F2. We outline the protocol,
discuss its security and communication complexity, and highlight
why the RM–MPC framework is particularly well-suited for
secure majority voting on binary data.

Index Terms—MPC, Multi-Rater Labelling, Secret Sharing,
RM codes

I. INTRODUCTION

Binary decisions of the form yes/no or positive/negative
appear in many modern AI systems. Examples include whether
a medical image shows a disease, whether a piece of content
violates a policy, or whether a classifier predicts a sample
as positive or negative. In practice, such decisions are often
made by multiple agents—experts, models, or heuristic rules—
and combined by majority voting. In crowd labeling, several
annotators vote on a sample and the final label is determined
by majority. In weak supervision, a set of noisy labeling
functions output 0/1 labels and a label model aggregates them
and decide by majority vote. In multi-rater medical annotation,
two or more clinicians each provide a binary diagnosis, and a
consensus label is determinded by majority vote.

While the majority outcome is typically the only quantity
required by downstream training or inference, the individual
0/1 labels are sensitive. In medical or financial domains,
revealing which expert or institution voted “1” on which
sample may leak private diagnostic criteria, internal policies,
or even legal exposure. In learning systems, revealing per-
source labels may expose proprietary models or heuristic
rules. Consequently, there is a strong motivation to compute
the majority vote in a privacy-preserving way: only the final
aggregate bit should be revealed, and all individual inputs must
remain secret.

This work was supported by the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea government(MSIT)(No. RS-2024-
00409492).

Generic MPC or homomorphic encryption can be used
to implement such functionality, but they often operate over
larger fields and require arithmetic circuits that are unneces-
sarily heavy even when all inputs are binary. To accommodate
the cases mentioned above, we consider the following setting
This paper focuses on a setting:

• the inputs are bits x1, . . . , xn ∈ {0, 1};
• the desired output is the majority bit

Maj(x1, . . . , xn) = 1
[n∑
i=1

xi ≥ T
]
,

the indicator function that equals 1 if
∑n
i=1 xi ≥ T and

0 otherwise; and
• we wish to keep the 1-bit representation throughout the

computation.

For this special but important case, 1-bit MPC based on
binary Reed–Muller(RM) codes and majority circuits provides
a natural and efficient solution.

II. PRELIMINARIES

A. RM Codes and 1-Bit Secret Sharing

Let F2[x1, . . . , xm] denote the ring of multivariate polyno-
mials over the field F2. For a polynomial f and point u ∈ Fm2 ,
f(u) is the evaluation of f at u. The binary RM code of order
r and length 2m is defined as

RM(r,m) , {(f(u))u∈Fm
2

: f ∈ F2[x1, . . . , xm], deg(f) ≤ r}.

In the 1-bit secret sharing scheme that we consider, the number
of parties n is set to 2m − 1, and a code RM(r,m) with r =
b(m− 1)/2c is used. A binary secret s ∈ {0, 1} is embedded
as the first coordinate of a random codeword (c0, c1, . . . , cn) ∈
RM(r,m) with c0 = s. Each party Pi,1 ≤ i ≤ n, receives a
single bit cπ(i) for a random permutation π on {1, 2, ..., n};
these bits serve as the shares of s [1].

This construction has two key properties. First, each share
is a single bit, and the linear operation XOR on secrets
correspond to the bit-wise XOR of the shares, since RM(r,m)
is a linear code. Second, the algebraic structure of RM codes
allows efficient handling of Boolean circuits when combined
with standard MPC techniques.

B. 1-Bit MPC over F2

To evaluate Boolean circuits securely, we need to support
addition and multiplication of shared bits. Let [s]RM =
(sRM

1 , . . . , sRM
n) denote the RM shares of a secret s ∈ {0, 1},

and let [s]n-of-n denote an n-out-of-n sharing where s =∑n
i=1 s

n-of-n
i over F2.

a) Addition: The notation ⊕ denotes XOR gate. Given
RM shares [a]RM and [b]RM, each party Pi locally computes
cRM
i = aRM

i ⊕ bRM
i . The resulting vector cRM

i is again an RM
codeword sharing the secret c = a⊕ b [1].

b) Multiplication: For multiplication, the component-
wise product aRM

i bRM
i corresponds to the evaluation of the

product polynomial f · g, whose degree may exceed r and
thus leave the code RM(r,m). To bring the result back into the
code, a standard trick is used: for each multiplication gate, a
random mask s ∈ {0, 1} is pre-shared in both RM form [s]RM

and n-out-of-n form [s]n-of-n in the offline phase. During the
online phase, parties locally compute

dn-of-n
i = aRM

i bRM
i ⊕ sn-of-n

i

and send dn-of-n
i to a designated aggregator. The aggregator

sums all dn-of-n
i to obtain

d =

n⊕
i=1

dn-of-n
i = a · b⊕ s,

and broadcasts d to all parties. Each party then sets

cRM
i = sRM

i ⊕ dRM,

where dRM is the RM share of the constant d (all-zero
codeword if d = 0, all-one codeword if d = 1). The resulting
vector (cRM

i)i shares the product bit a · b and still lies in
RM(r,m), so it can be used as input to further gates [1].

By composing these addition and multiplication gadgets,
any Boolean circuit can be evaluated securely on 1-bit shares.
Note that the precomputation of random masks can be done
offline, independent of the actual inputs.

In summary, a 1-bit MPC protocol over F2 based on
RM codes represents each secret bit as an RM codeword
share and implements addition and multiplication gates by
local operations on these shares. Addition corresponds to
component-wise XOR, while multiplication uses preprocessed
random masks shared both in RM form and n-out-of-n form
so that the (potentially high-degree) product of codewords can
be re-randomized and brought back into RM(r,m) with one
round of communication. By composing these gadgets, any
Boolean circuit can be securely evaluated on 1-bit RM shares,
with the preprocessing of random masks being independent of
the actual inputs [1].

C. Majority Voting Circuit

The target function in this work is the majority (or more
generally, threshold) function. For n binary inputs x1, . . . , xn,
the T -out-of-n threshold function outputs 1 if at least T of its
inputs are 1, and 0 otherwise. The majority vote corresponds
to T = dn/2e.

Fig. 1. (4/7) majority circuit

A convenient building block is the 3-input majority gate
defined as

maj(x1, x2, x3) =

{
1, if at least two inputs are 1,

0, otherwise.

This gate can be implemented by three AND gates and two
XOR gates:

maj(x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3x1. (1)

Interpreting XOR as addition and AND as multiplication over
F2, this representation is directly compatible with the 1-bit
MPC primitives.

For general n, threshold functions can be realized by
connecting 3-input majority gates in a diamond-shaped net-
work. As shown in Figure 1, each gate in the network is
associated with an (a/b) function: it outputs 1 if at least a
of its b designated inputs (original input bits or outputs of
upper gates) are 1 and 0 otherwise. By layering these gates
appropriately, one can construct an (a/n) circuit for arbitrary
a and n, with the number of 3-input majority gates bounded
by a(n− a+ 1)− 1. The depth of the network grows linearly
in n, but gates in the same row are independent and can be
evaluated in parallel[2].

In our setting, we instantiate such a circuit for the desired
threshold T . All inputs and gate outputs are represented by
RM shares, and each 3-input gate is evaluated using one secure
multiplication gadget per AND gate in its decomposition as is
Equation(1).

III. SECURE MAJORITY VOTING PROTOCOL

We now describe the protocol that securely computes the
majority bit of n private inputs x1, . . . , xn ∈ {0, 1}.

A. Setting and Threat Model

There are n parties P1, . . . , Pn. where each Pi holds a
private bit xi. The goal is to compute y = Maj(x1, . . . , xn)
such that:
• y is revealed to an agreed party (e.g., all parties or a

server),
• no coalition of fewer than a specified number of parties

learns any additional information about the individual
inputs beyond what is implied by y.

We assume a semi-honest adversary model: corrupt parties
follow the protocol, but try to infer extra information from
the messages they see. The RM-based sharing is instantiated
with parameters such that individual shares are statistically
independent of the secret, up to the chosen privacy threshold.

B. Protocol Description

We now describe the secure majority voting protocol based
on 1-bit RM–MPC. There are n parties P1, . . . , Pn, where
each party Pi holds a private bit xi ∈ {0, 1}. The goal is
to compute the majority bit y = Maj(x1, . . . , xn) without
revealing any individual xi.

In the preprocessing (offline) phase, the parties first fix a
majority circuit C for n inputs, built from 3-input majority
gates. Let B denote the number of AND gates in this circuit.
For each AND gate index j ∈ {1, . . . , B}, a random mask
bit sj is sampled and then shared in two ways: as RM shares
[sj]

RM and as n-out-of-n shares [sj]
n-of-n. These shares are

distributed so that each user Pi receives one RM share sRM
j,i

and one n-out-of-n share sn-of-n
j,i for every AND gate j. This

preprocessing depends only on the circuit structure, not on the
actual inputs.

In the online phase, each user Pi first secret-shares their
input bit xi by encoding it as RM shares [xi]

RM and distribut-
ing the shares so that every user holds one share of each input.
With these shares in place, all XOR gates of the circuit C are
evaluated locally: since XOR corresponds to addition in F2,
each party simply adds the corresponding RM shares to obtain
the output shares for every XOR gate.

For each AND gate g in the circuit C, a standard masked
multiplication is performed using the pre-shared masks. Sup-
pose that a some party Pi has the RM shares aRM

i and bRM
i

of the two inputs to the AND gate of g. Let sRM
j,i and sn-of-n

j,i

be the RM and n-out-of-n shares of the mask sj associated
with this gate. Then Pi computes

dn-of-n
i = aRM

i bRM
i ⊕ sn-of-n

j,i

and sends dn-of-n
i to the designated aggregator. The aggregator

XORs all received values to obtain

d =
⊕
i

dn-of-n
i = a · b⊕ sj ,

and broadcasts this single bit d to all parties. Each party Pi
then reconstructs the output share of the gate by setting

cRM
i = sRM

j,i ⊕ dRM,

where dRM is the RM share of the public bit d (the all-zero
codeword if d = 0, and the all-one codeword if d = 1).
Repeating this procedure for every AND gate yields RM shares
for all internal nodes of the circuit.

After all gates in C have been evaluated, each user Pi holds
an RM share yRM

i of the circuit output, which encodes the
majority bit y. In the final reconstruction step, the parties
send their output shares yRM

i to the designated decoder (or
exchange them among all users), and the decoder applies the
RM decoding algorithm to recover the plaintext output y. This
bit is then delivered to the intended recipients.

In summary, all operations in the protocol are performed on
1-bit shares; no large moduli or heavy ciphertext arithmetic
are involved. XOR gates require only local computation on
the shares, while each AND gate incurs a single round of
communication. The final decoding step can be implemented
either centrally by a server or in a decentralized manner by
the users themselves.

IV. SECURITY AND COMPLEXITY

A. Security

We briefly summarize the privacy guarantee of the RM-
based secret sharing. A secret bit s ∈ {0, 1} is embedded as
the first coordinate of a random codeword c = (c0, . . . , cn) ∈
RM(r,m) with c0 = s, and each party Pi receives its share
ci. For any subset S ⊆ {1, . . . , n}, let

Views(S) = (ci)i∈S

denote the shares observed by S when the secret is s. Privacy
means that coalitions of size at most t cannot distinguish s = 0
from s = 1:

∆
(
View0(S),View1(S)

)
≤ εn for all S, |S| ≤ t, (2)

where εn is negligible in n. Here, ∆(·, ·) denotes the statistical
distance between two distributions, i.e., for random variables
X,Y over a common finite domain X ,

∆(X,Y) , 1
2

∑
x∈X

∣∣Pr[X = x]− Pr[Y = x]
∣∣.

For suitable parameters (r,m), the structure of binary RM
codes and their duals implies the existence of a threshold t
arbitrarily close to n/2 (see, e.g.,[1]). Equivalently, for any
fixed δ > 0 and

t =
(1

2
− δ
)
n,

Equation (2) holds with εn ≤ 2−Ω(n). Thus, any coalition con-
trolling strictly less than 50% of the shares learns essentially
no information about the secret bit s [2],[3].

Since 1-bit RM MPC protocol only reveals the final majority
y = Maj(x1, . . . , xn) in plaintext and keeps all intermediate
values secret-shared and masked, any adversary corrupting
fewer than 50% of parties learns nothing about the honest
users’ inputs beyond what is implied by the output y itself.

B. Communication and Round Complexities

Let B denote the number of 3-input majority gates in the
chosen threshold circuit. Each such gate uses three AND gates
and two XOR gates, so the total number of AND gates is 3M .
For each AND gate, every user sends and receives one bit,
resulting in a per-user communication cost proportional to 6M
bits, plus a constant number of bits for output reconstruction.
XOR gates are free in terms of communication because they
are locally evaluated.

The circuit depth grows linearly with n as shown in Figure
1, and gates in each layer can be evaluated in parallel.
Consequently, the total number of MPC rounds is linear in
n plus a small constant for reconstruction. While optimizing
the majority network to minimize the number of AND gates
is an interesting direction, even straightforward constructions
in this work already yield a practical secure majority primitive
for moderate numbers of users.

V. CONCLUSION

This paper extracted and highlighted the core mechanism
of combining 1-bit RM MPC with the majority circuits to
securely compute majority vote on binary inputs. The RM-
based sharing keeps all values in the 1-bit domain, while the
majority circuit provides a structured way to realize threshold
functions using only AND and XOR gates. Together, they form
an efficient building block for privacy-preserving majority
decisions in applications such as weak supervision, crowd
labeling, and multi-rater annotation. Future work includes op-
timizing majority circuits for lower multiplicative complexity
and integrating this primitive into concrete end-to-end AI
pipelines.

REFERENCES

[1] Applebaum, B. and Kachlon, E. Stochastic Secret Sharing with 1-Bit
Shares and Applications to MPC. In Annual International Cryptology
Conference, pp.4-13. Springer, 2024.

[2] Amarel, Saul, G. Cooke, and Robert O. Winder. Majority gate networks.
In IEEE Transactions on Electronic Computers 1, 2006.

[3] Kudekar, S., Kumar, S., Mondelli, M., Pfister, H. D., and Urbanke, R.
Reed-muller codes achieve capacity on erasure channels. In Proceedings
of the forty- eighth annual ACM symposium on Theory of Computing,
pp. 658–669, 2016.

