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Abstract — The growing deployment of on-device large
language models (LLMs) on smartphones has accelerated the
adoption of memory-mapped I/O (mmap) as the default
mechanism for loading model weights. Unlike traditional system
call based access, mmap defers data loading to page faults, making
storage activity invisible at the system-call level and requiring
kernel-level tracing to understand real execution behavior. This
paper uses ftrace to collect page-fault-driven page-cache loading
events for mmap-based model access and uses this approach to
analyze four representative on-device LLM workloads: text
interaction, vision-language reasoning, audio transcription, and
text-to-image generation. Our measurements show that mmap-
based execution continues to perform large, predominantly
sequential scans of model-weight files at each configuration or
inference phase, with effective working-set sizes ranging from
approximately 500 MB to over 3 GB. These findings indicate that
the primary bottleneck for on-device LLM performance is the
amount of DRAM available to maintain model pages in the page
cache, rather than the choice of 1/0O interface. Ensuring sustained
inference performance thus requires keeping a substantial portion
of model weights resident in memory. Otherwise, page eviction
leads to repeated major faults and degraded latency. The results
highlight the need for memory-aware model deployment
strategies, OS-level LLM-informed caching policies, and
footprint-reduction techniques to support increasingly large
models on resource-constrained mobile devices.
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[. INTRODUCTION

Recent advances in mobile hardware and model
compression technologies have accelerated the deployment of
on-device large language models (LLMs) [1-3]. Modern
smartphones are now capable of running multi-billion parameter
models locally, enabling interactive Al features such as
conversational assistants [4], vision-language reasoning [5], and
audio transcription [6] without relying on remote servers [7, 8].
As these models typically consist of hundreds of megabytes to
several gigabytes of weight files stored on local flash storage,
the manner in which LLM applications access model files has
become a primary determinant of end-to-end inference latency.
Prior work has shown that storage bottlenecks can significantly
degrade on-device Al responsiveness, especially during initial
model loading and repeated inference cycles [9, 10].
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Research on Al inference performance has traditionally
centered on cloud-based execution, where mobile devices
function as thin clients and the primary challenge lies in
scheduling multi-tenant workloads [11, 12]. In contrast, on-
device inference presents a fundamentally different set of
constraints. Because execution occurs on resource-limited
personal devices and serves a single user at a time, efficient
memory utilization and the mitigation of storage bottlenecks
become essential for stable inference latency [13, 14].

A growing body of system-level studies has analyzed storage
behaviors of Al workloads using traditional file I/O system calls
such as read() and write() [15]. These analyses model 1/O
volume, sequentiality, and cache hit ratios in terms of explicit
read/write requests observable at the system-call layer.
However, modern commercial LLM applications rarely rely on
system call operations. Instead, they increasingly adopt
memory-mapped I/O (mmap) to load model weights [16]. With
mmap, the model file is mapped into the application’s virtual
address space, and physical data loading is deferred until the
corresponding virtual pages are actually accessed. This demand-
paging mechanism eliminates explicit read calls and performs
data transfers implicitly through major page faults, thereby
reducing redundant copying between kernel and user space and
improving temporal locality for large, read-intensive model
parameters.

While mmap offers substantial benefits for inference
workloads, it fundamentally changes the observability and
structure of storage accesses. Unlike explicit file I/O, mmap-
based accesses do not emit system calls that reflect data-transfer
events. The actual I/O occurs inside the kernel’s page-fault
handler path, where page faults trigger filesystem operations
such as readpage. As a result, existing read/write-based analyses
fail to capture when and how LLM applications truly access
their model files. In particular, the latency-critical major page
faults during initial model loading are invisible at the user level
and cannot be accurately measured through tools such as strace
[17]. Thus, understanding the performance characteristics of
modern on-device LLMs requires page-fault-level tracing and
analysis of memory-mapped execution.

Accordingly, this work examines the file access behavior of
on-device LLM applications through page-fault-level tracing.
Because the demand-paging behavior of mmap-based loading is
not visible from file-I/O system calls, we use ftrace [18] to



capture kernel executions of fault-handling routines and relevant
address_space operations, and post-process these events to
observe how model file is actually retrieved during execution.
Our event-level analysis shows that mmap-based LLM
applications still exhibit large, long-range sequential scans of
their model-weight files—mirroring the sequential patterns
previously reported under read/write-based analyses and
standing in sharp contrast to the largely non-sequential behavior
of non-Al workloads. By revealing these distinct access
behaviors, this study provides a clearer view of how on-device
LLM inference interacts with the underlying storage system.
The contributions of this work are as follows:

e mmap-aware trace extraction tool.
In contrast to prior studies that rely on system-call-level file-
I/O logs, we trace page-fault events to observe demand-
paging behavior that system-call traces cannot reveal.

¢ Characterization of page-fault-level LLM access patterns.
Using real-world LLM applications, we analyze how model
weights are accessed under demand paging and show that
mmap-driven loading produces highly selective and non-
sequential access flows, fundamentally different from the
repetitive and largely sequential scans reported in prior file-
I/O-based Al workload studies.

e Comparison with traditional file I/O behaviors.

Based on the measured working-set sizes and reuse
characteristics of mmap-based LLM execution, we show that
memory capacity—not the choice of I/O interface—
dominates inference stability on mobile hardware. These
findings highlight practical optimization directions, including
working-set reduction, eviction-aware page management, and
transition-aware prefetching.

The remainder of this paper is organized as follows. Section
II provides preliminaries on traditional file /O and memory-
mapped /O, focusing on the aspects relevant to interpreting
mmap-induced storage behavior. Section III describes our
mmap-aware  tracing methodology and experimental
environment. Section IV presents detailed analyses of page-
fault-level model access patterns. Section V discusses system-
level implications. Finally, Section VI concludes the paper.

II. PRELIMINARIES

Modern on-device LLM applications increasingly adopt
memory-mapped /O as the default mechanism for loading large
model files. Unlike traditional read-based file access, mmap
exposes file contents directly through the virtual address space
and shifts actual data loading to the moment a page is touched.
Because the primary objective of this work is to analyze such
demand-paging behavior through page-fault traces, this section
provides a brief overview of the mechanisms underpinning
traditional file /O and mmap. The goal is not to give a full OS-
level description, but to clarify the aspects that affect how
storage activity appears in the traces analyzed in later sections.

A. Cold Access

In traditional file I/O, an application explicitly issues a
system call (e.g., read) to request data at a specific file offset.
The kernel then checks the page cache and, upon a miss, loads
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Fig. 1. Comparison of read/write and mmap paths during warm access.

the corresponding file page from storage before copying it into
the user’s buffer. Thus, the initiation of a cold access is tied
directly to system-call execution.

Under mmap, a file region is first mapped into the process’s
address space without reading any data. The file contents are
brought into memory only when the application first
dereferences a mapped virtual address. This produces a page
fault, which the kernel handles by fetching the corresponding
file page from storage and inserting it into the page cache. After
the page table is updated, the original instruction completes
normally.

Although the initial trigger differs—explicit system call
versus implicit page fault—the internal path for obtaining a cold
page (page-cache lookup, offset translation, block I/0, and page-
cache population) is essentially identical for both mechanisms.
The difference lies in what is observable externally: storage
activity initiated by mmap does not appear in system-call traces,
because the cause is a CPU page fault rather than a user-visible
read request.

B. Warm Access

Once file pages are resident in the page cache, the reuse
paths of the two mechanisms diverge significantly. In read-
based 1/0, each re-access still requires invoking a system call,
entering the kernel, checking the page cache again, and copying
data into a user buffer as shown in Figure 1(a). Even though no
disk I/O occurs, the application repeatedly incurs syscall and
copying overheads.

In contrast, mmap enables warm accesses to bypass the
kernel entirely. If the page is cached and its page-table entry
remains valid, the CPU resolves the virtual address in user space,
and the access completes as a normal memory operation. No



page fault, system call, or copying is involved. This behavior
makes mmap particularly well suited for LLM inference, where
certain parts of the model may be repeatedly referenced across
multiple tokens or prompts. Figure 1(b) illustrates the warm-
access path of mmap, in contrast to the read/write system-call
path shown in Figure 1(a).

C. Relevance to On-Device LLMs

For on-device LLM workloads, model-weight files are large,
read-mostly, and frequently revisited. mmap therefore provides
substantial benefits by eliminating the overhead of repeated
system calls and user—kernel buffer copies during inference.
However, because mmap defers data loading to page faults,
system-call-based methods cannot reveal when or where actual
file I/O occurs. Key performance characteristics—such as which
weight-file regions are accessed, how much of the model must
remain resident to avoid major faults, and when eviction forces
reloading—are observable only through kernel-level tracing.

This study adopts a page-fault-centric approach for this
reason. Using ftrace, we capture demand-paging and filesystem
events generated during inference, reconstruct the storage access
stream at page granularity, and analyze real LLM access patterns
in Sections IIT and IV.

III. TRACE COLLECTION

In mmap-based file access, disk /O does not manifest
through explicit system calls. Instead, it is performed internally
by the kernel only when a mapped page is not present in the page
cache and a page fault occurs. As a result, storage activity leaves
no trace in user-level system-call logs, and tools such as strace
cannot observe when or how much I/O is issued during
execution.

To analyze the actual I/O behavior of mmap-based
workloads, we use ftrace, which enables tracing of internal
kernel events. In particular, we collect filesystem-level
address_space_operations (e.g., readpage and related functions)
that are invoked when the filesystem reads a page from disk. By
capturing these events, we identify storage accesses triggered by
memory-mapped I/O during application execution and obtain
visibility into the file pages loaded as a result of page faults. This
allows us to reconstruct the true I/O behavior of mmap-based
LLM workloads.

The raw trace consists of kernel events containing
timestamps, filenames, file offsets, page-cache operations, and
other relevant metadata. To enable consistent analysis of access
locality and reuse patterns, we normalize all events into 4 KB,
file-offset-aligned block IDs. Each block represents a fixed
region of a file. When a page fault loads data for a particular
offset, we map it to the corresponding block ID. Repeated faults
on the same offset map to the same block. Newly observed
offsets result in new block IDs. This yields a time-ordered block-
level trace that clearly exposes sequential runs, discontinuities,
and selective access patterns in the model’s weight files.

All experiments were conducted on a Samsung Galaxy S22
smartphone running a vendor-custom Android kernel [19]. The
device specification is summarized in Table 1. The S22

TABLE 1. EXPERIMENTAL DEVICE SPECIFICATIONS

Component Specification

CPU 1x Cortex-X2 @ 3.0 GHz + 3x Cortex-A710 @ 2.5 GHz +
4x Cortex-A510 @ 1.8 GHz

GPU Adreno 730

RAM 8GB

Storage 256 GB UFS 3.x

(6N Android (Linux kernel)

represents a typical mid-to-high-end mobile environment for
today’s on-device LLM applications.

To analyze mmap-based access patterns across diverse
modalities and model architectures, we evaluate four LLM
applications. These workloads originate from Google Al Edge
Gallery [20] and MediaPipe Image Generator [21]. Google Al
edge gallery includes three user-facing applications—AI Chat,
Ask Image, and Audio Scribe—which provide text interaction,
image-based queries, and audio transcription, respectively.
Although they are bundled within a single host application, these
components represent distinct usage scenarios. For clarity and to
avoid mixing semantically different operations, we extract
traces for each component separately, treating them as
independent workloads in our analysis. The workloads used in
this study are summarized as follows.

¢ Al Chat [20] (Gemma-1B-IT-q4)
Multi-turn conversational LLM. The workload includes two
configuration updates followed by several text queries. It
generates 570 MB of page-fault-driven reads.

¢ Ask Image [20] (Gemma-3n-E3-2B-it)
A vision-language model supporting image-based queries.
During the experiment, the user provides gallery or camera
images and asks related questions. This workload induces
2458.35 MB of file accesses.

¢ Audio Scribe [20] (Gemma-3n-E3-2B-it)
Speech-to-text transcription and translation. The user records
or uploads audio clips and poses follow-up questions. It
generates 3883.25 MB of model-file loads.

eImage Generator [21] (Stable Diffusion v1.5)
Text-to-image generation. Two prompts with varying seed
values are used to produce multiple images, resulting in
1818.95 MB of storage access.

IV. MMAP ACCESS CHARACTERISTICS OF ON-DEVICE LLM

Using the ftrace-based tracing method described in Section
III, we analyze the page-fault-driven memory-mapped I/O
behavior of four on-device LLM applications. For each
application, we reconstruct the time-ordered sequence of block
offsets accessed during model loading and inference. This
section presents our findings, focusing on whether modern LLM
applications still exhibit sequential model-weight scans—an
access pattern frequently observed in earlier read/write-based
studies—or whether mmap changes the underlying structure of
file access. Across all workloads, we find that sequential weight-
file traversal remains a dominant characteristic, even though the
access stream includes minor non-sequential segments
corresponding to metadata reads and application-level caches.



A. Al Edge Gallery — Al Chat

As shown in Figure 2(a), three distinct model-configuration
and inference phases were observed. During the first phase, the
application issues a long sequential scan of what appears to be
its primary model-weight file, starting from block ID 0 and
extending to approximately block 90,000. This initial scan is
followed by intermittent activity concentrated around the 90,000
block region, which corresponds to small, irregular accesses
likely associated with internal application cache files.

The second phase also begins with a sequential traversal
starting from block 0, but it extends much further—reaching
block IDs near 140,000. This indicates that the second
configuration loads a larger or differently structured model file
compared to the first phase.

During the third phase, the same weight-file range used in
the second phase is accessed again. However, block regions
between 100,000 and 140,000 do not trigger page faults and thus
do not appear in the trace. This absence suggests either that these
segments were not required by the inference path or, more likely,
that the corresponding pages remained in memory and were
accessed without causing faults.

Overall, Al Chat consistently performs large sequential
scans at the beginning of each phase, demonstrating that mmap-
based inference preserves traditional sequential weight loading
behavior, even though the triggering mechanism is page-fault
based rather than read-based.

B. Al Edge Gallery — Ask Image

The Ask Image workload consists of four image-query
phases. Each phase shows a combination of sequential weight-
file scans and accesses to application-level cache files.

Upon the initial launch, the application first touches
metadata-related files, scanning block IDs beginning at 0 as
shown in Figure 2(b). Subsequent phases repeatedly issue long
sequential scans of the main model-weight file, typically up to
around block 250,000. When new prompts are issued under the
same configuration, some of these accesses generate no page
faults and consequently appear only faintly in the trace,
reflecting memory hits rather than storage activity.

In the final phase, an entirely new region of the weight file
is activated. This results in a new sequential scan between block
IDs 400,000 and 600,000. The emergence of this previously
untouched region indicates that additional model functionality
or larger parameter segments are engaged for certain question

types.

These patterns confirm that Ask Image repeatedly loads
large, contiguous sections of its weight file during inference and
occasionally activates new regions depending on query type.

C. Al Edge Gallery — Audio Scribe

The Audio Scribe workload involves three valid
configuration-and-inference cycles. Although the trace visually
suggests additional phases, those segments reflect failed
inference attempts and can be disregarded.

During the first phase, the application performs a long
sequential scan that extends up to approximately block ID

750,000 as shown in Figure 2(c). This primarily reflects
sequential loading of a very large model-weight file, potentially
in conjunction with additional segments stored in the
application’s cache directory. In the second phase, accesses
appear in the same general region but generate few major page
faults, leaving only partial traces. This indicates that many pages
remained in memory and were serviced without faulting.

The third phase exhibits two distinct sequential regions. The
first spans block IDs around 0-300,000, similar to the earlier
phases. The second, however, begins near block 800,000 and
continues beyond this point. This new high-offset region
corresponds to the activation of an additional weight-file
component when the application performs translation, which is
a separate feature within Audio Scribe. Thus, the third phase
loads both the earlier model regions and a new segment required
for translation functionality.

In total, Audio Scribe demonstrates the largest working set
among the evaluated workloads, activating more than 800,000
blocks throughout its execution.

D. MediaPipe — Image Generator

The Image Generator application also shows clear sequential
scans of its model-weight files. During the first two phases, the
application accesses contiguous block regions in a manner
similar to the previous workloads. However, in later phases, the
trace contains no new page-fault entries for weight-file offsets.
This behavior suggests that the application did not alter its model
configuration for the new prompts, and therefore the relevant
pages were already resident in memory. As a result, subsequent
accesses were served entirely from DRAM without generating
additional faults.

E. Summary of Findings

Across all four applications, mmap-based LLM inference
exhibits large sequential scans of model-weight files at phase
boundaries. These scans may differ in size depending on the
model component activated by each phase, but the dominant
pattern remains consistent: initialization- or feature-driven
sequential traversal of substantial portions of the model file.
Variation between phases reflects either the use of additional
model modules or changes in functionality (e.g., translation vs.
transcription). Despite the implicit nature of mmap-induced I/O,
the underlying access behavior closely mirrors that of traditional
read-based systems: long sequential reads followed by localized
reuse.

V. SYSTEM-LEVEL IMPLICATIONS

Our analysis shows that mmap-based on-device LLM
inference continues to rely on large sequential scans of model-
weight files. Although mmap eliminates explicit read() system
calls and permits efficient reuse of cached pages, the underlying
requirement—that the device must maintain a sufficiently large
fraction of the weight-file footprint in memory—remains
unchanged. The maximum block IDs observed across the four
workloads provide a direct indication of the effective working-
set size, because each block corresponds to a 4 KB page in the
page cache. Using this mapping, Al Chat accesses
approximately 140,000 blocks (about 570 MB), Ask Image
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Fig. 2. Page-fault-level file-access patterns of on-device LLM inference under mmap.

reaches 620,000 blocks (about 2.5 GB), Audio Scribe touches
roughly 950,000 blocks (about 3.9 GB), and the Image
Generator workload uses around 450,000 blocks (about 1.8 GB).
These values demonstrate that even with mmap, models of
modest scale still require hundreds of megabytes to several
gigabytes of DRAM residency in order to avoid major page
faults during inference.

Prior study on system-call-based LLM I/O examined how
much data must reside in the buffer cache to maintain acceptable
inference latency [22]. A similar principle emerges in the mmap
setting: the amount of memory required to prevent repeated page
faults is essentially the working-set size, now observable as the
maximum contiguous span of model offsets referenced during
execution. In effect, the mmap working set is the maximum
block ID multiplied by the 4 KB page size. This value directly
reflects the memory footprint required for stable inference,
regardless of how the data is accessed.

Whether a device can retain such a working set depends on
the actual DRAM available to the page cache. Although a device
such as the Galaxy S22 nominally provides 8 GB of memory, a
substantial portion is consumed by the operating system kernel,
system services, GPU and neural-accelerator reservations, and
background Android processes. What remains available to the
page cache is typically far smaller than the physical memory
capacity. As a result, workloads with 2—3 GB working sets, or
especially those exceeding 3 GB such as Audio Scribe,
inevitably suffer page evictions under pressure. This explains
why repeated major faults appear even during later inference

phases, despite the model having previously accessed those
regions.

These observations lead to broader implications for the
design of on-device LLM systems. First, mmap improves
performance not by reducing the model’s memory footprint but
by lowering the overhead of re-accessing cached data. Once the
initial faults have populated the page cache, subsequent accesses
bypass the kernel entirely and are resolved at memory speed.
However, this benefit materializes only if the relevant pages
remain resident. Thus, the feasibility of on-device LLM
deployment is fundamentally tied to whether the device can
allocate enough DRAM to preserve the working set. For
transformers such as the Gemma family, the working set often
manifests as a large, nearly contiguous region of several hundred
thousand blocks, whereas diffusion models such as Stable
Diffusion tend to access several distinct contiguous regions
during different submodules, resulting in multiple medium-
sized working sets rather than a single monolithic one.

A second implication is that the interaction between the OS
page-cache replacement policy and LLM access patterns
becomes a major determinant of performance. When memory
pressure forces eviction of parameter pages, inference latency
degrades sharply due to renewed page faults. Devices with
aggressive background memory reclamation or limited free
memory are likely to experience such interruptions regardless of
mmap’s theoretical efficiency.

Finally, these findings suggest that future on-device LLM
optimization efforts should focus more on memory-aware



strategies. Reducing the working-set size through model
partitioning or quantization, improving OS-level heuristics to
protect high-reuse parameter pages from eviction, and designing
smarter prefetch strategies that anticipate module transitions
may substantially improve inference stability. Similarly,
understanding how different model architectures distribute their
parameter access across the file can help guide fine-grained
layout optimizations or runtime planning.

In summary, while mmap-based execution changes the
mechanics of how model weights are loaded, it does not relieve
the fundamental memory constraints associated with on-device
LLM inference. The effective working-set sizes observed—
ranging from roughly half a gigabyte to more than three
gigabytes—demonstrate that memory capacity, rather than the
choice of I/O interface, remains the primary bottleneck for
sustaining predictable latency on resource-constrained mobile
hardware.

VI. CONCLUSION

This paper analyzed the file-access characteristics of modern
on-device LLM applications that rely on memory-mapped I/O
rather than traditional read-based loading. By tracing page-fault-
driven filesystem activity through ftrace, we showed that mmap
changes the visibility of I/O but not the underlying structure of
model-weight access. All evaluated workloads still perform
large sequential scans of their weight files during model
initialization and inference phases, with effective working-set
sizes ranging from several hundred megabytes to multiple
gigabytes. These results demonstrate that the primary
performance determinant for on-device LLM inference is the
amount of DRAM available to retain model pages in the page
cache. While mmap provides a low-overhead reuse path once
data is resident, any eviction caused by memory pressure
induces renewed page faults and degrades responsiveness. Thus,
sustaining stable inference on mobile hardware ultimately
depends on memory capacity rather than the choice of I/O
interface. Future work should explore techniques for reducing or
restructuring the working set—such as model partitioning, better
quantization layouts, and LLM-aware OS memory
management—to improve the feasibility of running increasingly
large models on resource-constrained devices.
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