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Abstract — The growing deployment of on-device large 

language models (LLMs) on smartphones has accelerated the 

adoption of memory-mapped I/O (mmap) as the default 

mechanism for loading model weights. Unlike traditional system 

call based access, mmap defers data loading to page faults, making 

storage activity invisible at the system-call level and requiring 

kernel-level tracing to understand real execution behavior. This 

paper uses ftrace to collect page-fault-driven page-cache loading 

events for mmap-based model access and uses this approach to 

analyze four representative on-device LLM workloads: text 

interaction, vision-language reasoning, audio transcription, and 

text-to-image generation. Our measurements show that mmap-

based execution continues to perform large, predominantly 

sequential scans of model-weight files at each configuration or 

inference phase, with effective working-set sizes ranging from 

approximately 500 MB to over 3 GB. These findings indicate that 

the primary bottleneck for on-device LLM performance is the 

amount of DRAM available to maintain model pages in the page 

cache, rather than the choice of I/O interface. Ensuring sustained 

inference performance thus requires keeping a substantial portion 

of model weights resident in memory. Otherwise, page eviction 

leads to repeated major faults and degraded latency. The results 

highlight the need for memory-aware model deployment 

strategies, OS-level LLM-informed caching policies, and 

footprint-reduction techniques to support increasingly large 

models on resource-constrained mobile devices. 

Keywords — on-device LLM, memory-mapped I/O, page-fault, 

model weight, access pattern, mobile AI systems  

I.  INTRODUCTION  

Recent advances in mobile hardware and model 
compression technologies have accelerated the deployment of 
on-device large language models (LLMs) [1–3]. Modern 
smartphones are now capable of running multi-billion parameter 
models locally, enabling interactive AI features such as 
conversational assistants [4], vision-language reasoning [5], and 
audio transcription [6] without relying on remote servers [7, 8]. 
As these models typically consist of hundreds of megabytes to 
several gigabytes of weight files stored on local flash storage, 
the manner in which LLM applications access model files has 
become a primary determinant of end-to-end inference latency. 
Prior work has shown that storage bottlenecks can significantly 
degrade on-device AI responsiveness, especially during initial 
model loading and repeated inference cycles [9, 10].  

Research on AI inference performance has traditionally 
centered on cloud-based execution, where mobile devices 
function as thin clients and the primary challenge lies in 
scheduling multi-tenant workloads [11, 12]. In contrast, on-
device inference presents a fundamentally different set of 
constraints. Because execution occurs on resource-limited 
personal devices and serves a single user at a time, efficient 
memory utilization and the mitigation of storage bottlenecks 
become essential for stable inference latency [13, 14]. 

A growing body of system-level studies has analyzed storage 
behaviors of AI workloads using traditional file I/O system calls 
such as read() and write() [15]. These analyses model I/O 
volume, sequentiality, and cache hit ratios in terms of explicit 
read/write requests observable at the system-call layer. 
However, modern commercial LLM applications rarely rely on 
system call operations. Instead, they increasingly adopt 
memory-mapped I/O (mmap) to load model weights [16]. With 
mmap, the model file is mapped into the application’s virtual 
address space, and physical data loading is deferred until the 
corresponding virtual pages are actually accessed. This demand-
paging mechanism eliminates explicit read calls and performs 
data transfers implicitly through major page faults, thereby 
reducing redundant copying between kernel and user space and 
improving temporal locality for large, read-intensive model 
parameters. 

While mmap offers substantial benefits for inference 
workloads, it fundamentally changes the observability and 
structure of storage accesses. Unlike explicit file I/O, mmap-
based accesses do not emit system calls that reflect data-transfer 
events. The actual I/O occurs inside the kernel’s page-fault 
handler path, where page faults trigger filesystem operations 
such as readpage. As a result, existing read/write-based analyses 
fail to capture when and how LLM applications truly access 
their model files. In particular, the latency-critical major page 
faults during initial model loading are invisible at the user level 
and cannot be accurately measured through tools such as strace 
[17]. Thus, understanding the performance characteristics of 
modern on-device LLMs requires page-fault-level tracing and 
analysis of memory-mapped execution. 

Accordingly, this work examines the file access behavior of 
on-device LLM applications through page-fault-level tracing. 
Because the demand-paging behavior of mmap-based loading is 
not visible from file-I/O system calls, we use ftrace [18] to 



capture kernel executions of fault-handling routines and relevant 
address_space_operations, and post-process these events to 
observe how model file is actually retrieved during execution. 
Our event-level analysis shows that mmap-based LLM 
applications still exhibit large, long-range sequential scans of 
their model-weight files—mirroring the sequential patterns 
previously reported under read/write-based analyses and 
standing in sharp contrast to the largely non-sequential behavior 
of non-AI workloads. By revealing these distinct access 
behaviors, this study provides a clearer view of how on-device 
LLM inference interacts with the underlying storage system. 
The contributions of this work are as follows: 

• mmap-aware trace extraction tool. 
In contrast to prior studies that rely on system-call-level file-
I/O logs, we trace page-fault events to observe demand-
paging behavior that system-call traces cannot reveal. 

• Characterization of page-fault-level LLM access patterns. 
Using real-world LLM applications, we analyze how model 
weights are accessed under demand paging and show that 
mmap-driven loading produces highly selective and non-
sequential access flows, fundamentally different from the 
repetitive and largely sequential scans reported in prior file-
I/O-based AI workload studies. 

• Comparison with traditional file I/O behaviors. 
Based on the measured working-set sizes and reuse 
characteristics of mmap-based LLM execution, we show that 
memory capacity—not the choice of I/O interface—
dominates inference stability on mobile hardware. These 
findings highlight practical optimization directions, including 
working-set reduction, eviction-aware page management, and 
transition-aware prefetching. 

The remainder of this paper is organized as follows. Section 
II provides preliminaries on traditional file I/O and memory-
mapped I/O, focusing on the aspects relevant to interpreting 
mmap-induced storage behavior. Section III describes our 
mmap-aware tracing methodology and experimental 
environment. Section IV presents detailed analyses of page-
fault-level model access patterns. Section V discusses system-
level implications. Finally, Section VI concludes the paper.  

II. PRELIMINARIES 

Modern on-device LLM applications increasingly adopt 
memory-mapped I/O as the default mechanism for loading large 
model files. Unlike traditional read-based file access, mmap 
exposes file contents directly through the virtual address space 
and shifts actual data loading to the moment a page is touched. 
Because the primary objective of this work is to analyze such 
demand-paging behavior through page-fault traces, this section 
provides a brief overview of the mechanisms underpinning 
traditional file I/O and mmap. The goal is not to give a full OS-
level description, but to clarify the aspects that affect how 
storage activity appears in the traces analyzed in later sections. 

A. Cold Access  

In traditional file I/O, an application explicitly issues a 
system call (e.g., read) to request data at a specific file offset. 
The kernel then checks the page cache and, upon a miss, loads 

the corresponding file page from storage before copying it into 
the user’s buffer. Thus, the initiation of a cold access is tied 
directly to system-call execution. 

Under mmap, a file region is first mapped into the process’s 
address space without reading any data. The file contents are 
brought into memory only when the application first 
dereferences a mapped virtual address. This produces a page 
fault, which the kernel handles by fetching the corresponding 
file page from storage and inserting it into the page cache. After 
the page table is updated, the original instruction completes 
normally. 

Although the initial trigger differs—explicit system call 
versus implicit page fault—the internal path for obtaining a cold 
page (page-cache lookup, offset translation, block I/O, and page-
cache population) is essentially identical for both mechanisms. 
The difference lies in what is observable externally: storage 
activity initiated by mmap does not appear in system-call traces, 
because the cause is a CPU page fault rather than a user-visible 
read request.  

B. Warm Access 

Once file pages are resident in the page cache, the reuse 
paths of the two mechanisms diverge significantly. In read-
based I/O, each re-access still requires invoking a system call, 
entering the kernel, checking the page cache again, and copying 
data into a user buffer as shown in Figure 1(a). Even though no 
disk I/O occurs, the application repeatedly incurs syscall and 
copying overheads. 

In contrast, mmap enables warm accesses to bypass the 
kernel entirely. If the page is cached and its page-table entry 
remains valid, the CPU resolves the virtual address in user space, 
and the access completes as a normal memory operation. No 

(a) read/write system call 

 

(b) Memory-mapped I/O 

Fig. 1. Comparison of read/write and mmap paths during warm access. 

 



page fault, system call, or copying is involved. This behavior 
makes mmap particularly well suited for LLM inference, where 
certain parts of the model may be repeatedly referenced across 
multiple tokens or prompts. Figure 1(b) illustrates the warm-
access path of mmap, in contrast to the read/write system-call 
path shown in Figure 1(a). 

C. Relevance to On-Device LLMs 

For on-device LLM workloads, model-weight files are large, 
read-mostly, and frequently revisited. mmap therefore provides 
substantial benefits by eliminating the overhead of repeated 
system calls and user–kernel buffer copies during inference. 
However, because mmap defers data loading to page faults, 
system-call-based methods cannot reveal when or where actual 
file I/O occurs. Key performance characteristics—such as which 
weight-file regions are accessed, how much of the model must 
remain resident to avoid major faults, and when eviction forces 
reloading—are observable only through kernel-level tracing. 

This study adopts a page-fault-centric approach for this 
reason. Using ftrace, we capture demand-paging and filesystem 
events generated during inference, reconstruct the storage access 
stream at page granularity, and analyze real LLM access patterns 
in Sections III and IV.    

III. TRACE COLLECTION 

In mmap-based file access, disk I/O does not manifest 
through explicit system calls. Instead, it is performed internally 
by the kernel only when a mapped page is not present in the page 
cache and a page fault occurs. As a result, storage activity leaves 
no trace in user-level system-call logs, and tools such as strace 
cannot observe when or how much I/O is issued during 
execution. 

To analyze the actual I/O behavior of mmap-based 
workloads, we use ftrace, which enables tracing of internal 
kernel events. In particular, we collect filesystem-level 
address_space_operations (e.g., readpage and related functions) 
that are invoked when the filesystem reads a page from disk. By 
capturing these events, we identify storage accesses triggered by 
memory-mapped I/O during application execution and obtain 
visibility into the file pages loaded as a result of page faults. This 
allows us to reconstruct the true I/O behavior of mmap-based 
LLM workloads. 

The raw trace consists of kernel events containing 
timestamps, filenames, file offsets, page-cache operations, and 
other relevant metadata. To enable consistent analysis of access 
locality and reuse patterns, we normalize all events into 4 KB, 
file-offset-aligned block IDs. Each block represents a fixed 
region of a file. When a page fault loads data for a particular 
offset, we map it to the corresponding block ID. Repeated faults 
on the same offset map to the same block. Newly observed 
offsets result in new block IDs. This yields a time-ordered block-
level trace that clearly exposes sequential runs, discontinuities, 
and selective access patterns in the model’s weight files. 

All experiments were conducted on a Samsung Galaxy S22 
smartphone running a vendor-custom Android kernel [19]. The 
device specification is summarized in Table I. The S22 

represents a typical mid-to-high-end mobile environment for 
today’s on-device LLM applications. 

To analyze mmap-based access patterns across diverse 
modalities and model architectures, we evaluate four LLM 
applications. These workloads originate from Google AI Edge 
Gallery [20] and MediaPipe Image Generator [21]. Google AI 
edge gallery includes three user-facing applications—AI Chat, 
Ask Image, and Audio Scribe—which provide text interaction, 
image-based queries, and audio transcription, respectively. 
Although they are bundled within a single host application, these 
components represent distinct usage scenarios. For clarity and to 
avoid mixing semantically different operations, we extract 
traces for each component separately, treating them as 
independent workloads in our analysis. The workloads used in 
this study are summarized as follows.  

• AI Chat [20] (Gemma-1B-IT-q4) 
Multi-turn conversational LLM. The workload includes two 
configuration updates followed by several text queries. It 
generates 570 MB of page-fault-driven reads. 

• Ask Image [20] (Gemma-3n-E3-2B-it) 
A vision-language model supporting image-based queries. 
During the experiment, the user provides gallery or camera 
images and asks related questions. This workload induces 
2458.35 MB of file accesses. 

• Audio Scribe [20] (Gemma-3n-E3-2B-it) 
Speech-to-text transcription and translation. The user records 
or uploads audio clips and poses follow-up questions. It 
generates 3883.25 MB of model-file loads. 

• Image Generator [21] (Stable Diffusion v1.5) 
Text-to-image generation. Two prompts with varying seed 
values are used to produce multiple images, resulting in 
1818.95 MB of storage access.  

 IV. MMAP ACCESS CHARACTERISTICS OF ON-DEVICE LLM  

Using the ftrace-based tracing method described in Section 
III, we analyze the page-fault-driven memory-mapped I/O 
behavior of four on-device LLM applications. For each 
application, we reconstruct the time-ordered sequence of block 
offsets accessed during model loading and inference. This 
section presents our findings, focusing on whether modern LLM 
applications still exhibit sequential model-weight scans—an 
access pattern frequently observed in earlier read/write-based 
studies—or whether mmap changes the underlying structure of 
file access. Across all workloads, we find that sequential weight-
file traversal remains a dominant characteristic, even though the 
access stream includes minor non-sequential segments 
corresponding to metadata reads and application-level caches. 

TABLE 1. EXPERIMENTAL DEVICE SPECIFICATIONS 

Component Specification 

CPU 
1× Cortex-X2 @ 3.0 GHz + 3× Cortex-A710 @ 2.5 GHz + 

4× Cortex-A510 @ 1.8 GHz 

GPU Adreno 730 

RAM 8 GB 

Storage 256 GB UFS 3.x 

OS Android (Linux kernel) 

 



A. AI Edge Gallery – AI Chat 

As shown in Figure 2(a), three distinct model-configuration 
and inference phases were observed. During the first phase, the 
application issues a long sequential scan of what appears to be 
its primary model-weight file, starting from block ID 0 and 
extending to approximately block 90,000. This initial scan is 
followed by intermittent activity concentrated around the 90,000 
block region, which corresponds to small, irregular accesses 
likely associated with internal application cache files. 

The second phase also begins with a sequential traversal 
starting from block 0, but it extends much further—reaching 
block IDs near 140,000. This indicates that the second 
configuration loads a larger or differently structured model file 
compared to the first phase. 

During the third phase, the same weight-file range used in 
the second phase is accessed again. However, block regions 
between 100,000 and 140,000 do not trigger page faults and thus 
do not appear in the trace. This absence suggests either that these 
segments were not required by the inference path or, more likely, 
that the corresponding pages remained in memory and were 
accessed without causing faults. 

Overall, AI Chat consistently performs large sequential 
scans at the beginning of each phase, demonstrating that mmap-
based inference preserves traditional sequential weight loading 
behavior, even though the triggering mechanism is page-fault 
based rather than read-based. 

B. AI Edge Gallery – Ask Image 

The Ask Image workload consists of four image-query 
phases. Each phase shows a combination of sequential weight-
file scans and accesses to application-level cache files. 

Upon the initial launch, the application first touches 
metadata-related files, scanning block IDs beginning at 0 as 
shown in Figure 2(b). Subsequent phases repeatedly issue long 
sequential scans of the main model-weight file, typically up to 
around block 250,000. When new prompts are issued under the 
same configuration, some of these accesses generate no page 
faults and consequently appear only faintly in the trace, 
reflecting memory hits rather than storage activity. 

In the final phase, an entirely new region of the weight file 
is activated. This results in a new sequential scan between block 
IDs 400,000 and 600,000. The emergence of this previously 
untouched region indicates that additional model functionality 
or larger parameter segments are engaged for certain question 
types. 

These patterns confirm that Ask Image repeatedly loads 
large, contiguous sections of its weight file during inference and 
occasionally activates new regions depending on query type. 

C. AI Edge Gallery – Audio Scribe 

The Audio Scribe workload involves three valid 
configuration-and-inference cycles. Although the trace visually 
suggests additional phases, those segments reflect failed 
inference attempts and can be disregarded. 

During the first phase, the application performs a long 
sequential scan that extends up to approximately block ID 

750,000 as shown in Figure 2(c). This primarily reflects 
sequential loading of a very large model-weight file, potentially 
in conjunction with additional segments stored in the 
application’s cache directory. In the second phase, accesses 
appear in the same general region but generate few major page 
faults, leaving only partial traces. This indicates that many pages 
remained in memory and were serviced without faulting. 

The third phase exhibits two distinct sequential regions. The 
first spans block IDs around 0–300,000, similar to the earlier 
phases. The second, however, begins near block 800,000 and 
continues beyond this point. This new high-offset region 
corresponds to the activation of an additional weight-file 
component when the application performs translation, which is 
a separate feature within Audio Scribe. Thus, the third phase 
loads both the earlier model regions and a new segment required 
for translation functionality. 

In total, Audio Scribe demonstrates the largest working set 
among the evaluated workloads, activating more than 800,000 
blocks throughout its execution. 

D. MediaPipe – Image Generator 

The Image Generator application also shows clear sequential 
scans of its model-weight files. During the first two phases, the 
application accesses contiguous block regions in a manner 
similar to the previous workloads. However, in later phases, the 
trace contains no new page-fault entries for weight-file offsets. 
This behavior suggests that the application did not alter its model 
configuration for the new prompts, and therefore the relevant 
pages were already resident in memory. As a result, subsequent 
accesses were served entirely from DRAM without generating 
additional faults. 

E. Summary of Findings 

Across all four applications, mmap-based LLM inference 
exhibits large sequential scans of model-weight files at phase 
boundaries. These scans may differ in size depending on the 
model component activated by each phase, but the dominant 
pattern remains consistent: initialization- or feature-driven 
sequential traversal of substantial portions of the model file. 
Variation between phases reflects either the use of additional 
model modules or changes in functionality (e.g., translation vs. 
transcription). Despite the implicit nature of mmap-induced I/O, 
the underlying access behavior closely mirrors that of traditional 
read-based systems: long sequential reads followed by localized 
reuse. 

V. SYSTEM-LEVEL IMPLICATIONS  

Our analysis shows that mmap-based on-device LLM 
inference continues to rely on large sequential scans of model-
weight files. Although mmap eliminates explicit read() system 
calls and permits efficient reuse of cached pages, the underlying 
requirement—that the device must maintain a sufficiently large 
fraction of the weight-file footprint in memory—remains 
unchanged. The maximum block IDs observed across the four 
workloads provide a direct indication of the effective working-
set size, because each block corresponds to a 4 KB page in the 
page cache. Using this mapping, AI Chat accesses 
approximately 140,000 blocks (about 570 MB), Ask Image 



reaches 620,000 blocks (about 2.5 GB), Audio Scribe touches 
roughly 950,000 blocks (about 3.9 GB), and the Image 
Generator workload uses around 450,000 blocks (about 1.8 GB). 
These values demonstrate that even with mmap, models of 
modest scale still require hundreds of megabytes to several 
gigabytes of DRAM residency in order to avoid major page 
faults during inference.  

Prior study on system-call-based LLM I/O examined how 
much data must reside in the buffer cache to maintain acceptable 
inference latency [22]. A similar principle emerges in the mmap 
setting: the amount of memory required to prevent repeated page 
faults is essentially the working-set size, now observable as the 
maximum contiguous span of model offsets referenced during 
execution. In effect, the mmap working set is the maximum 
block ID multiplied by the 4 KB page size. This value directly 
reflects the memory footprint required for stable inference, 
regardless of how the data is accessed. 

Whether a device can retain such a working set depends on 
the actual DRAM available to the page cache. Although a device 
such as the Galaxy S22 nominally provides 8 GB of memory, a 
substantial portion is consumed by the operating system kernel, 
system services, GPU and neural-accelerator reservations, and 
background Android processes. What remains available to the 
page cache is typically far smaller than the physical memory 
capacity. As a result, workloads with 2–3 GB working sets, or 
especially those exceeding 3 GB such as Audio Scribe, 
inevitably suffer page evictions under pressure. This explains 
why repeated major faults appear even during later inference 

phases, despite the model having previously accessed those 
regions. 

These observations lead to broader implications for the 
design of on-device LLM systems. First, mmap improves 
performance not by reducing the model’s memory footprint but 
by lowering the overhead of re-accessing cached data. Once the 
initial faults have populated the page cache, subsequent accesses 
bypass the kernel entirely and are resolved at memory speed. 
However, this benefit materializes only if the relevant pages 
remain resident. Thus, the feasibility of on-device LLM 
deployment is fundamentally tied to whether the device can 
allocate enough DRAM to preserve the working set. For 
transformers such as the Gemma family, the working set often 
manifests as a large, nearly contiguous region of several hundred 
thousand blocks, whereas diffusion models such as Stable 
Diffusion tend to access several distinct contiguous regions 
during different submodules, resulting in multiple medium-
sized working sets rather than a single monolithic one. 

A second implication is that the interaction between the OS 
page-cache replacement policy and LLM access patterns 
becomes a major determinant of performance. When memory 
pressure forces eviction of parameter pages, inference latency 
degrades sharply due to renewed page faults. Devices with 
aggressive background memory reclamation or limited free 
memory are likely to experience such interruptions regardless of 
mmap’s theoretical efficiency. 

Finally, these findings suggest that future on-device LLM 
optimization efforts should focus more on memory-aware 

            
(a) AI Chat                                                                                                   (b) Ask Image 

       
(c) Audio Scribe                                                                                          (d) Image Generator 

Fig. 2. Page-fault-level file-access patterns of on-device LLM inference under mmap. 

 



strategies. Reducing the working-set size through model 
partitioning or quantization, improving OS-level heuristics to 
protect high-reuse parameter pages from eviction, and designing 
smarter prefetch strategies that anticipate module transitions 
may substantially improve inference stability. Similarly, 
understanding how different model architectures distribute their 
parameter access across the file can help guide fine-grained 
layout optimizations or runtime planning.  

In summary, while mmap-based execution changes the 
mechanics of how model weights are loaded, it does not relieve 
the fundamental memory constraints associated with on-device 
LLM inference. The effective working-set sizes observed—
ranging from roughly half a gigabyte to more than three 
gigabytes—demonstrate that memory capacity, rather than the 
choice of I/O interface, remains the primary bottleneck for 
sustaining predictable latency on resource-constrained mobile 
hardware.  

VI. CONCLUSION  

This paper analyzed the file-access characteristics of modern 
on-device LLM applications that rely on memory-mapped I/O 
rather than traditional read-based loading. By tracing page-fault-
driven filesystem activity through ftrace, we showed that mmap 
changes the visibility of I/O but not the underlying structure of 
model-weight access. All evaluated workloads still perform 
large sequential scans of their weight files during model 
initialization and inference phases, with effective working-set 
sizes ranging from several hundred megabytes to multiple 
gigabytes. These results demonstrate that the primary 
performance determinant for on-device LLM inference is the 
amount of DRAM available to retain model pages in the page 
cache. While mmap provides a low-overhead reuse path once 
data is resident, any eviction caused by memory pressure 
induces renewed page faults and degrades responsiveness. Thus, 
sustaining stable inference on mobile hardware ultimately 
depends on memory capacity rather than the choice of I/O 
interface. Future work should explore techniques for reducing or 
restructuring the working set—such as model partitioning, better 
quantization layouts, and LLM-aware OS memory 
management—to improve the feasibility of running increasingly 
large models on resource-constrained devices. 
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