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Abstract—Unified Virtual Memory (UVM) automates data 

migration between host and device memory through demand 

paging, but its tree-based prefetching heuristic frequently 

mischaracterizes spatial locality. As a result, both irregular and 

strongly sequential workloads suffer from excessive or 

insufficient page migrations, causing substantial performance 

loss. To address this limitation, we propose a dynamic prefetch-

granularity adaptation framework that adjusts migration size at 

runtime based on the access patterns manifested in each page 

fault batch. The framework consists of two sequential stages: a 

coarse locality-guided controller that selects an initial 

granularity, followed by a fine outlier-based refinement step 

that suppresses sensitivity to transient irregularities. 

Experimental results across diverse sequential and random-

access workloads show performance gains of 1.2×–1.9× in 

memory-sufficient settings and 1.1×–2.5× under 

oversubscription. The proposed method further achieves 

approximately 98% of the performance delivered by empirically 

optimal static granularity. These findings demonstrate that 

adaptive granularity control can substantially enhance UVM 

efficiency and stability for memory-intensive GPU workloads.  

Keywords—Unified Virtual Memory (UVM), GPU Memory 

Management, Prefetch Granularity, Adaptive Prefetching. 

I. INTRODUCTION 

GPUs provide massive parallelism and high on-device 
memory bandwidth, making them indispensable for data-
intensive high-performance workloads such as deep learning, 
large scale graph analytics [1, 2], and scientific simulations 
[3]. However, the physical memory capacity of GPUs remains 
limited relative to modern dataset sizes, forcing developers to 
rely on explicit memory management—that is, manually 
orchestrating data movement using operations such as 

cudaMemcpy() and programmer-directed host–device 
transfers. This conventional model places substantial 
cognitive and engineering burdens on developers and often 
results in suboptimal data placement strategies that fail to 
adapt to dynamic access patterns. To address these limitations, 
NVIDIA introduced Unified Virtual Memory (UVM) [4], 
which provides a unified virtual address space and 
automatically manages data migration between CPU and GPU 
memories. By treating host memory as a backing store and 
enabling demand-based migration, UVM inherently supports 
memory-oversubscription and significantly improves 
programmability, allowing applications to operate on datasets 
that exceed the physical GPU memory capacity [5–7]. 

Although UVM abstracts memory movement away from 
the programmer, the underlying migration mechanisms create 

nontrivial performance challenges. UVM is designed around 
on-demand page migration, where a GPU access to a non-
resident page triggers a page fault and initiates data transfer 
from host to device. This fault-handling latency stalls 
execution and can suspend all active warps dependent on the 
missing data. To alleviate these stalls, UVM incorporates 
proactive prefetching mechanisms as a fundamental 
component of its heterogeneous memory design. These 
mechanisms attempt to predict future access patterns and 
migrate pages ahead of time, typically using heuristic spatial 
locality assumptions that prefetch groups of adjacent pages. 
However, access patterns of modern AI workloads differ 
substantially from those of traditional workloads [8], causing 
actual access locality diverges from heuristics assumptions. 
Such mismatches can lead to unnecessary prefetch traffic, 
increased oversubscription pressure, and aggravated page 
thrashing, ultimately degrading overall performance. 

While UVM incorporates proactive prefetching to 
mitigate the high latency of demand-driven migrations, its 
current implementation relies on a region-based, tree-
structured heuristic that selects prefetch-granularity using a 
static residency threshold. When the fraction of resident pages 
within a subregion surpasses this threshold, UVM 
speculatively migrates the remaining pages of that region 
under the assumption that spatial locality will continue. 
However, because this decision is derived solely from local 
residency statistics within a narrowly defined address range, it 
lacks visibility into the broader and often phase-varying 
memory-access characteristics of real applications. 

This restricted, region-local perspective introduces two 
systematic inefficiencies. First, in workloads with irregular or 
weak spatial locality, random-accesses may incidentally 
satisfy the residency threshold even though no meaningful 
locality exists. This causes UVM to prefetch pages that are 
never accessed, wasting PCIe or NVIDIA NVLink bandwidth 
and polluting GPU memory with irrelevant data. Such 
mispredicted migrations displace useful pages and exacerbate 
thrashing in oversubscribed environments. Second, in 
workloads exhibiting strong sequential or streaming locality, 
the localized threshold often underestimates the optimal 
migration size. Because the heuristic remains confined to the 
immediate subtree, it delays selecting a sufficiently large 
granularity capable of hiding transfer latency, thereby 
reducing achievable throughput. As a result, UVM’s static, 
region-bound heuristic fails to distinguish between irregular 
and sequential phases and frequently produces suboptimal 
prefetch behavior.  



Prior studies have explored alternative directions, but each 
carries its own limitations. Choi et al. [6] use NVLink-
connected multi-GPU memory as a fast extension of device 
memory and prefetch large 32MB regions, relying on high 
inter-GPU bandwidth rather than adapting to the workload’s 
memory-access characteristics. Go et al. [5] adjust prefetch 
thresholds based on long-term fault statistics or memory 
pressure, but threshold tuning controls only when and how 
aggressively prefetching is triggered—not the migration 
granularity itself. 

To overcome these limitations, we propose a dynamic 
prefetch-granularity adaptation framework that adjusts 
migration size at runtime based on the observed access 
pattern. Unlike prior approaches, our method exploits the 
spatial distribution of page faults within each fault-handling 
batch and operates in two stages to estimate locality more 
accurately: 

1) Coarse-grained locality estimator: captures the global 

access trend across the batch; and  

2) Fine-grained outlier suppression mechanism: filters 

transient fluctuations and prevents misclassification. 
 

By combining global trend detection with robust noise 
filtering, the proposed framework selects aggressive 
prefetching only when locality is sustained, while constraining 
migration size in irregular phases. This enables high 
throughput in sequential regions and avoids unnecessary data 
movement in random-access workloads. 

The primary contributions of this paper are summarized as 
follows: 

• Analysis of Existing UVM Prefetching: We identify 
fundamental limitations of UVM’s tree-based prefetching 
mechanism, demonstrating that its region-local locality 
estimation frequently mispredicts migration granularity 
under both regular and irregular memory-access patterns. 

• Dynamic Runtime Prefetch Control: We introduce a 
lightweight, runtime mechanism that dynamically adjusts 
prefetch-granularity using locality signals extracted from 

each fault-handling batch, enabling adaptive, workload-
aware migration decisions. 

• Empirical Performance Improvements: Experimental 
results show that our method improves execution 
performance by 1.5× in memory-sufficient environments 
and 1.8× under memory-oversubscription, compared to 
the default UVM prefetching policy. 

The remainder of this paper is organized as follows. 
Section II provides background on UVM’s fault-handling and 
prefetching mechanisms, along with an analysis of their 
interaction with workload locality. Section III presents the 
proposed dynamic prefetch-granularity adaptation method. 
Section IV evaluates its effectiveness through extensive 
experiments under both memory-sufficient and 
oversubscribed conditions. Finally, Section V concludes the 
paper. 

II. UNIFIED VIRTUAL MEMORY: FAULT-HANDLING 

BEHAVIOR AND LIMITATIONS OF TREE-BASED PREFETCHING 

A. Batch-Based Fault-Handling Mechanism 

UVM does not handle GPU page faults one by one; instead, 
it aggregates them and processes multiple faults together as a 
batch. A single batch can include up to 256 faults, and a fault-
handling routine may process as many as 20 such batches 
sequentially [9]. This batch-based processing reduces CPU–
GPU interrupts and amortizes the cost of fault-handling. 

To understand how faults are grouped and migrated, it is 
important to consider UVM’s internal memory management 
unit, the Virtual Address Block (VABlock). The UVM driver 
partitions the GPU-accessible virtual address space into fixed-
size regions called VABlocks, each covering a 2MB virtual 
address range. All migration metadata and residency 
information are maintained at the granularity of these 
VABlocks. Thus, even though a batch aggregates multiple 
faults, the UVM driver decomposes the batch internally along 
VABlock boundaries: if a batch contains faults that belong to 
several different VABlocks, the driver processes each 
VABlock independently, typically issuing separate migration 
operations per VABlock. 

Because batches are formed based on fault arrival order 
while VABlocks reflect the spatial layout of the virtual 
address space, the interaction between these two units 
provides direct insight into the spatial distribution of memory-
accesses. During a single fault-handling routine, the handler 
may process multiple internal batches, and each batch may 
touch one or more VABlocks depending on how contiguous 
or dispersed the faulting addresses are. Such differences 
motivate the need for a simple metric that captures how 
broadly faults are distributed across VABlocks. 

Let �������� denote the number of batches processed in 
a single fault-handling routine, and ���	� denote the number 
of distinct VABlocks involved across those batches. The ratio 
between these two quantities reflects the degree of spatial 
locality during batch processing. Workloads with strong 
locality tend to accumulate faults within a small number of 
VABlocks, while irregular or random-access workloads 
spread faults across many VABlocks. To quantify this 
behavior, we define the locality metric 
 in (1): 


 � ���	���������           
1� 

 

Fig. 1. Locality ratio 
 across representative workloads. 

 



A lower value of 
 indicates that multiple faults within a 
batch map to the same VABlock, suggesting stronger spatial 
locality. Conversely, a higher value of 
 signifies that faults 
are distributed across many VABlocks, implying weak 
locality. Using this metric, we statistically analyzed 
differences in UVM batch composition under regular and 
random memory-access patterns. 

Fig. 1 summarizes the distribution of 
  values across 
representative workloads. Regular-access workloads such as 
Convolution-2D and FDTD-2D tend to generate page faults 
within relatively narrow address ranges. Consequently, the 
value of 
 remains consistently low, with median values near 
0.2 for both applications. These results indicate that faults 
within a batch typically map to only a small number of 
VABlocks, reflecting strong spatial locality and tightly 
clustered access ranges. 

In contrast, irregular or random-access workloads exhibit 
markedly different behavior. As shown in the figure, both 
BiCG and NW produce substantially larger 
  values, 
demonstrating that faults are dispersed across a far broader set 
of VABlocks during batch-handling. The median 
  values 
rise to roughly 24 in BiCG and 11.1 in NW—two orders of 
magnitude larger than those of regular-access workloads. This 
sharp increase highlights the inherently weak locality of 
irregular workloads, where page faults are widely scattered 
throughout the virtual address space. 

Overall, these findings confirm that 
  is an effective 
indicator of spatial locality during UVM fault-handling: low 
values correspond to compact fault-distribution patterns, 
whereas high values reflect widely dispersed and irregular-
access behavior that spans many VABlocks within each batch-
handling routine. 

B. Tree-Structured Prefetching Mechanism of UVM 

UVM determines prefetching decisions using a tree-
structured organization of each VABlock. Internally, a 
VABlock is divided into 64KB leaf nodes, which are 
recursively grouped into larger subregions up to the VABlock 
root. When a page fault occurs, the driver begins at the leaf 
node corresponding to the faulting page and traverses upward 
toward the root, evaluating the GPU residency ratio at each 

level of the tree [5,9,10]. If the residency ratio of a subregion 
exceeds a preset threshold (50% by default), the driver 
speculatively migrates all remaining non-resident pages 
within that region into GPU memory. 

Fig. 2 illustrates how the tree-based prefetch decision is 
applied in practice. In this example, 8 out of the 16 leaf nodes 
within the VABlock are already GPU-resident, and a page 
fault occurs at leaf node ��. The driver begins its traversal from 
the leaf and evaluates the residency ratio at each ancestor node. 

At the immediate parent ��,�, the pages in the subregion 

corresponding to �� are already resident, so no prefetching is 

triggered at this level. Proceeding upward to ��,�, the driver 

finds that 4 out of the 7 pages in this subregion are resident, 
exceeding the 50% threshold. Consequently, the remaining 
non-resident page ��  becomes a prefetch candidate. At the 

next level, node ��,�, 5 out of 8 pages are resident, again 

surpassing the threshold, which causes pages �� and �� to be 

flagged for prefetching. Finally, at node ��,�, 9 out of 16 pages 

are resident, prompting the driver to add �� and �� to the 
prefetch list. As a result, multiple pages—��, ��, ��, ��, ���, ���, 
and ���—are ultimately migrated, making the entire subregion 
corresponding to ��,� resident in GPU memory. 

If a subsequent page fault occurs in a leaf belonging to the 
sibling region ��,�, the driver repeats the same hierarchical 

evaluation. Because the parent VABlock root ��,� now 

exhibits a residency ratio of 17 out of 32 pages—still above 
the 50% threshold—the entire subregion of ��,� is marked for 

prefetching, even if only one of its pages has faulted. This 
behavior is a key characteristic of the tree-based heuristic: 
residency in one portion of the VABlock can trigger 
aggressive migration of large, independent regions, solely 
because their higher-level ancestor nodes have aggregated 
residency ratios that exceed the threshold. 

Although the tree-based prefetching heuristic in UVM is 
generally considered effective for workloads with strong 
spatial locality [10], our analysis reveals several inherent 
limitations. Even in regular-access workloads, the heuristic’s 
reliance on subregion-level residency can delay the selection 
of an appropriately large migration granularity. Because the 
decision is made hierarchically from smaller to larger 

 

Fig. 2. Illustration of UVM’s hierarchical prefetching process. 



subregions, prefetching may be triggered only after multiple 
fault events have already occurred, reducing the mechanism’s 
ability to fully hide migration latency. 

The limitations become more pronounced for irregular or 
sparse-access workloads. When accessed leaf nodes are 
widely dispersed across the VABlock, the aggregated 
residency ratios at higher-level nodes can exceed the threshold 
despite the absence of true spatial contiguity. This causes the 
prefetch mechanism to infer locality where none exists, 
leading to speculative migration of pages whose address 
ranges do not correspond to the actual access pattern. Such 
mispredictions introduce unnecessary data transfers across the 
interconnect and, under memory-oversubscription, exacerbate 
GPU memory pressure, often resulting in additional evictions 
and reduced overall performance. 

Fig. 3 compares the execution time of representative 
workloads under different prefetch granularities. The baseline 
corresponds to UVM’s default tree-based heuristic with a 50% 
residency threshold. For comparison, we evaluate two fixed 
migration granularities: traditional 4KB page-level migration 
and 2MB VABlock-level migration. 

Fig. 3(a) shows the results in a memory-sufficient 
environment where GPU memory can fully accommodate the 
working set. In this setting, aggressive prefetching generally 
improves performance for both sequential and irregular-
access patterns. Using only 4KB page migration—effectively 
disabling prefetching—causes an average slowdown of 0.2× 
relative to the baseline, consistent with the expectation that the 
tree-based mechanism reduces fault-handling overhead. 
However, all workloads benefit even more from the 2 MB 
fixed granularity, achieving an average speedup of 
approximately 1.5×. This indicates that the default heuristic 
does not escalate migration granularity quickly enough, even 
for regular-access workloads where larger prefetch regions 
would be advantageous. 

In contrast, memory-oversubscription introduces 
substantially different behavior, as illustrated in Fig. 3(b). For 
regular-access workloads, aggressive 2MB migration remains 
beneficial and yields an average improvement of 1.3×, 
mirroring the trend observed in the memory-sufficient case. 
Random-access workloads, however, exhibit the opposite 
trend: here, 4KB page-level migration outperforms the 
baseline by an average of 2.2×. Under memory pressure, the 
tree-based heuristic frequently prefetches pages that are never 
used, inflating migration traffic and causing rapid turnover of 

GPU memory. These unnecessary transfers exacerbate 
contention and lead to thrashing-like behavior, ultimately 
degrading performance. 

III. ADAPTIVE PREFETCHING UVM 

Motivated by the limitations of existing UVM 
prefetching—particularly its reliance on localized residency 
thresholds that fail to distinguish sequential from random-
access patterns—we propose a runtime mechanism that 
dynamically adapts prefetch-granularity based on the evolving 
fault behavior of the workload. The proposed mechanism 
operates in two stages. The first stage, pattern-based coarse 
adjustment (Section III-A), establishes an initial granularity 
based on the observed access regularity. The second stage, 
outlier-aware fine adjustment (Section III-B), refines this 
choice by reacting to short-term deviations in the distribution 
of page faults. Together, these two stages enable responsive 
and stable control of the migration granularity, improving 
prefetch efficiency across diverse workload patterns. 

A. Pattern-Based Coarse Adjustment 

As discussed in Section II, the degree of locality can be 
quantified by the ratio 
, defined in (2). 


 � ���	��������� � 1          
2� 

A smaller value of 
 indicates that faulting addresses remain 
concentrated within a narrow virtual address region. In our 
empirical analysis, regular-access workloads such as 
Convolution-2D and FDTD-2D showed median 
  values 
around 0.2, which is consistent with highly sequential 
behavior, in which each batch accesses only a small number 
of distinct VABlocks. 

However, 
  may fluctuate across batches even for 
sequential workloads. To accommodate this variation while 
still distinguishing strong locality, we adopt a relaxed criterion 
and treat 
 � 0.3 as the threshold for sequential patterns. We 
maintain an internal state variable ! , which represents an 
accumulated estimate of the access regularity, and update it 
according to (3): 

"! ← !$�%       
if  
 � 0.3�                                  ! ← ! ( 1     
else if  
 � 1 and ! / !$�%�! ← ! 0 1     
else if  
 1 1 and ! 1 !$23�           
3� 

Here, !$�% and !$23 denote the upper and lower bounds 
corresponding to strongly sequential and strongly random 
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          (b) Memory-Oversubscription 

Fig. 3. Relative performance under different prefetch granularities. Baseline corresponds to UVM’s default tree-based heuristic. 

 



behavior, respectively. Prefetch-granularity is adjusted only 
when !  reaches either boundary and remains unchanged 
while ! stays within the intermediate range. In this way, the 
coarse adjustment stage provides a stable directional signal—
toward larger granularity under sequential access, and smaller 
granularity under irregular-access—without overreacting to 
short-term fluctuations in 
. 

B. Outlier-Based Fine Adjustment 

If the coarse stage does not trigger a granularity update, we 
apply a finer adjustment based on the distribution of page 
faults within each batch. Let 4� denote the number of page 
faults generated by VABlock 5 . Let 6 denote the set of 
VABlocks within a batch, and 5 ∈ 6 denote an individual 
VABlock. The mean 8 and standard deviation 9 of the fault 
counts within the batch are given by (4) and (5), respectively: 

8 � 1|6| ; 4��∈<
          
4� 

9 � > 1|6| ;
4� 0 8��
�∈<

          
5� 

The z-score of each VABlock @� is then computed using 
(6): 

@� � 4� 0 89           
6� 

We classify a VABlock as an outlier when the absolute 
value of its z-score exceeds 2 (i.e., |@�| 1 2). The fraction of 
outliers in the batch is defined in (7): 

4BCDEF�G2HI � |J5 ∈ 6||@�| 1 2K||6|           
7� 

If 4BCDEF�G2HI 1 0.1 , we interpret this as a sign of 
increased variability in memory-access behavior and 
increment the density score M . Once M  reaches 1, the 

granularity is increased. Conversely, if 4BCDEF�G2HI � 0.1, we 
decrement M ; and when M � 0, the granularity is reduced. 
This fine-adjustment mechanism filters out short-term 
fluctuations while allowing persistent changes in the fault 
distribution to influence granularity decisions. As a result, the 
system avoids oscillatory behavior yet remains sensitive to 
meaningful shifts in access variability. 

IV. EVALUATION 

To evaluate the effectiveness of the proposed adaptive 
prefetching method, we conduct a series of experiments using 
representative benchmarks that exhibit diverse memory-
access characteristics. In this evaluation, we first describe the 
workloads and trace-collection methodology, followed by the 
experimental setup and performance results. 

A. Workloads and Trace Collection 

We employ a set of open-source micro-benchmarks [11–
13] that collectively cover both sequential and random 
memory-access patterns. To ensure realistic memory 
footprints, each benchmark is configured to allocate 
approximately 8GB of managed memory. Furthermore, to 
emulate GPU memory-oversubscription conditions, we pre-
allocate a portion of the GPU memory at application startup 

using cudaMalloc(), thereby reducing the effective GPU 
memory available during execution. Table 1 summarizes the 
characteristics of the benchmarks used in this study, including 
their access patterns, primary operations, and application 
domains.  

B. Experimental Setup 

The evaluation compares the proposed method against the 
conventional UVM tree-based heuristic as well as fixed 
migration configurations with different granularities. 
Specifically, we consider 4KB page-level migration, and 
NVIDIA UVM’s 2MB VABlock migration. All experiments 
described in this section are executed on the hardware and 
software platform summarized in Table 2. 

C. Performance Comparison 

Fig. 4 presents the normalized execution time of each 
benchmark relative to the baseline UVM prefetching policy. 
Overall, the proposed method consistently improves 
performance across all workloads and memory conditions. 
Under memory-sufficient configurations, it achieves a 
speedup ranging from 1.24× to 1.90× compared with the 
baseline. In memory-oversubscription scenarios, it maintains 
robust benefits, improving performance by 1.07× to 2.45×. 

A notable observation is that the proposed method closely 
tracks the performance of the best manually selectable 
prefetch-granularity—that is, the optimal granularity that 
would be chosen if the workload’s access pattern and memory 
availability were known beforehand. For instance, random-
access workloads such as NW and BiCG perform best with 
4KB granularity under oversubscription, while regular-access 
workloads such as Convolution-2D and FDTD-2D benefit 
from 2MB granularity. The proposed approach automatically 
converges toward these choices without prior profiling or 
offline tuning, achieving on average approximately 98% of 
the performance attainable by such oracle-like optimal 
configurations. 

In summary, the proposed technique performs aggressive 
prefetching when memory is abundant and dynamically 
adjusts its migration granularity when GPU memory becomes 

TABLE I.  SUMMARY OF BENCHMARK WORKLOADS USED FOR 

TRACE COLLECTION AND EVALUATION 

Workload 
Memory-

Access Type 
Application Domain 

Convolution-2D Sequential Computer Vision 

FDTD (Finite Difference 
Time Domain)-2D 

Sequential Scientific Computing 

BiCG 
(Biconjugate Gradient) 

Random 
Linear Algebra, 
Scientific Computing 

NW 
(Needleman-Wunsch) 

Random Bio-informatics 

 

TABLE II.  EXPERIMENTAL HARDWARE AND SOFTWARE 

CONFIGURATION 

Component Specification 

CPU Intel Xeon E5-2630 v4 @ 2.20GHz 

System Memory 28GB 

GPU NVIDIA TITAN V (12GB Memory) 

Operating System Linux Kernel 5.4.0-100-generic 

NVIDIA Driver / CUDA Driver 545.23.06 / CUDA 12.3 

 



constrained. This behavior enables the method to deliver 
consistent and substantial performance gains over the baseline, 
while also maintaining performance comparable to that of an 
ideally tuned configuration that has full knowledge of 
workload behavior. 

V. CONCLUSIONS 

This paper examined the limitations of UVM’s tree-based 
prefetching mechanism, showing that its locality inference is 
often misaligned with actual workload behavior, resulting in 
both under- and over-migration across diverse access patterns. 
To address this gap, we introduced a lightweight runtime 
technique that adaptively adjusts prefetch-granularity 
according to the access characteristics manifested in each 
fault-handling batch. By integrating a coarse locality estimator 
with a fine-grained outlier-filtering step, the proposed method 
continuously aligns migration size with evolving access 
behavior, without requiring offline profiling or prior workload 
knowledge. Our evaluation demonstrates that this adaptive 
strategy consistently improves performance, achieving up to 
1.9× speedup in memory-sufficient conditions and up to 2.5× 
under oversubscription, while reaching approximately 98% of 
the performance attainable by an oracle-level static 
granularity. These results highlight that adaptive granularity 
control offers a practical and effective path toward more 
robust, efficient, and workload-aware UVM operation, 
particularly in memory-constrained GPU environments. 
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    (a)  Memory-Sufficient              (b)  Memory-Oversubscription 

Fig. 4. Normalized execution time of benchmark workloads under memory-sufficient and memory-oversubscription conditions,  

comparing 4KB, 2MB, and the proposed adaptive prefetching method. 

 


