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Abstract—Unified Virtual Memory (UVM) automates data
migration between host and device memory through demand
paging, but its tree-based prefetching heuristic frequently
mischaracterizes spatial locality. As a result, both irregular and
strongly sequential workloads suffer from excessive or
insufficient page migrations, causing substantial performance
loss. To address this limitation, we propose a dynamic prefetch-
granularity adaptation framework that adjusts migration size at
runtime based on the access patterns manifested in each page
fault batch. The framework consists of two sequential stages: a
coarse locality-guided controller that selects an initial
granularity, followed by a fine outlier-based refinement step
that suppresses sensitivity to transient irregularities.
Experimental results across diverse sequential and random-
access workloads show performance gains of 1.2x-1.9x in
memory-sufficient settings and 1.1x-2.5% under
oversubscription. The proposed method further achieves
approximately 98% of the performance delivered by empirically
optimal static granularity. These findings demonstrate that
adaptive granularity control can substantially enhance UVM
efficiency and stability for memory-intensive GPU workloads.

Keywords—Unified Virtual Memory (UVM), GPU Memory
Management, Prefetch Granularity, Adaptive Prefetching.

I. INTRODUCTION

GPUs provide massive parallelism and high on-device
memory bandwidth, making them indispensable for data-
intensive high-performance workloads such as deep learning,
large scale graph analytics [1, 2], and scientific simulations
[3]. However, the physical memory capacity of GPUs remains
limited relative to modern dataset sizes, forcing developers to
rely on explicit memory management—that is, manually
orchestrating data movement using operations such as
cudaMemcpy () and programmer-directed host—device
transfers. This conventional model places substantial
cognitive and engineering burdens on developers and often
results in suboptimal data placement strategies that fail to
adapt to dynamic access patterns. To address these limitations,
NVIDIA introduced Unified Virtual Memory (UVM) [4],
which provides a unified virtual address space and
automatically manages data migration between CPU and GPU
memories. By treating host memory as a backing store and
enabling demand-based migration, UVM inherently supports
memory-oversubscription and  significantly  improves
programmability, allowing applications to operate on datasets
that exceed the physical GPU memory capacity [5-7].

Although UVM abstracts memory movement away from
the programmer, the underlying migration mechanisms create

Kyungwoon Cho
Embedded Software Research Center
Ewha University
Seoul, Republic of Korea
cezanne@oslab.ewha.ac.kr

Hyokyung Bahn*
Dept.of Computer Engineering
Ewha University
Seoul, Republic of Korea
bahn@ewha.ac kr

nontrivial performance challenges. UVM is designed around
on-demand page migration, where a GPU access to a non-
resident page triggers a page fault and initiates data transfer
from host to device. This fault-handling latency stalls
execution and can suspend all active warps dependent on the
missing data. To alleviate these stalls, UVM incorporates
proactive prefetching mechanisms as a fundamental
component of its heterogeneous memory design. These
mechanisms attempt to predict future access patterns and
migrate pages ahead of time, typically using heuristic spatial
locality assumptions that prefetch groups of adjacent pages.
However, access patterns of modern Al workloads differ
substantially from those of traditional workloads [8], causing
actual access locality diverges from heuristics assumptions.
Such mismatches can lead to unnecessary prefetch traffic,
increased oversubscription pressure, and aggravated page
thrashing, ultimately degrading overall performance.

While UVM incorporates proactive prefetching to
mitigate the high latency of demand-driven migrations, its
current implementation relies on a region-based, tree-
structured heuristic that selects prefetch-granularity using a
static residency threshold. When the fraction of resident pages
within a subregion surpasses this threshold, UVM
speculatively migrates the remaining pages of that region
under the assumption that spatial locality will continue.
However, because this decision is derived solely from local
residency statistics within a narrowly defined address range, it
lacks visibility into the broader and often phase-varying
memory-access characteristics of real applications.

This restricted, region-local perspective introduces two
systematic inefficiencies. First, in workloads with irregular or
weak spatial locality, random-accesses may incidentally
satisfy the residency threshold even though no meaningful
locality exists. This causes UVM to prefetch pages that are
never accessed, wasting PCle or NVIDIA NVLink bandwidth
and polluting GPU memory with irrelevant data. Such
mispredicted migrations displace useful pages and exacerbate
thrashing in oversubscribed environments. Second, in
workloads exhibiting strong sequential or streaming locality,
the localized threshold often underestimates the optimal
migration size. Because the heuristic remains confined to the
immediate subtree, it delays selecting a sufficiently large
granularity capable of hiding transfer latency, thereby
reducing achievable throughput. As a result, UVM’s static,
region-bound heuristic fails to distinguish between irregular
and sequential phases and frequently produces suboptimal
prefetch behavior.
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Fig. 1. Locality ratio R across representative workloads.

Prior studies have explored alternative directions, but each
carries its own limitations. Choi et al. [6] use NVLink-
connected multi-GPU memory as a fast extension of device
memory and prefetch large 32MB regions, relying on high
inter-GPU bandwidth rather than adapting to the workload’s
memory-access characteristics. Go et al. [5] adjust prefetch
thresholds based on long-term fault statistics or memory
pressure, but threshold tuning controls only when and how
aggressively prefetching is triggered—not the migration
granularity itself.

To overcome these limitations, we propose a dynamic
prefetch-granularity adaptation framework that adjusts
migration size at runtime based on the observed access
pattern. Unlike prior approaches, our method exploits the
spatial distribution of page faults within each fault-handling
batch and operates in two stages to estimate locality more
accurately:

1) Coarse-grained locality estimator: captures the global
access trend across the batch; and

2) Fine-grained outlier suppression mechanism: filters
transient fluctuations and prevents misclassification.

By combining global trend detection with robust noise
filtering, the proposed framework selects aggressive
prefetching only when locality is sustained, while constraining
migration size in irregular phases. This enables high
throughput in sequential regions and avoids unnecessary data
movement in random-access workloads.

The primary contributions of this paper are summarized as
follows:

¢ Analysis of Existing UVM Prefetching: We identify
fundamental limitations of UVM’s tree-based prefetching
mechanism, demonstrating that its region-local locality
estimation frequently mispredicts migration granularity
under both regular and irregular memory-access patterns.

¢ Dynamic Runtime Prefetch Control: We introduce a
lightweight, runtime mechanism that dynamically adjusts
prefetch-granularity using locality signals extracted from

each fault-handling batch, enabling adaptive, workload-
aware migration decisions.

¢ Empirical Performance Improvements: Experimental
results show that our method improves execution
performance by 1.5% in memory-sufficient environments
and 1.8x under memory-oversubscription, compared to
the default UVM prefetching policy.

The remainder of this paper is organized as follows.
Section II provides background on UVM’s fault-handling and
prefetching mechanisms, along with an analysis of their
interaction with workload locality. Section III presents the
proposed dynamic prefetch-granularity adaptation method.
Section IV evaluates its effectiveness through extensive
experiments  under  both  memory-sufficient  and
oversubscribed conditions. Finally, Section V concludes the

paper.

II. UNIFIED VIRTUAL MEMORY: FAULT-HANDLING
BEHAVIOR AND LIMITATIONS OF TREE-BASED PREFETCHING

A. Batch-Based Fault-Handling Mechanism

UVM does not handle GPU page faults one by one; instead,
it aggregates them and processes multiple faults together as a
batch. A single batch can include up to 256 faults, and a fault-
handling routine may process as many as 20 such batches
sequentially [9]. This batch-based processing reduces CPU—
GPU interrupts and amortizes the cost of fault-handling.

To understand how faults are grouped and migrated, it is
important to consider UVM’s internal memory management
unit, the Virtual Address Block (VABlock). The UVM driver
partitions the GPU-accessible virtual address space into fixed-
size regions called VABlocks, each covering a 2MB virtual
address range. All migration metadata and residency
information are maintained at the granularity of these
VABIlocks. Thus, even though a batch aggregates multiple
faults, the UVM driver decomposes the batch internally along
VABIlock boundaries: if a batch contains faults that belong to
several different VABlocks, the driver processes each
VABIock independently, typically issuing separate migration
operations per VABlock.

Because batches are formed based on fault arrival order
while VABlocks reflect the spatial layout of the virtual
address space, the interaction between these two units
provides direct insight into the spatial distribution of memory-
accesses. During a single fault-handling routine, the handler
may process multiple internal batches, and each batch may
touch one or more VABIlocks depending on how contiguous
or dispersed the faulting addresses are. Such differences
motivate the need for a simple metric that captures how
broadly faults are distributed across VABIlocks.

Let numy ;. denote the number of batches processed in
a single fault-handling routine, and num,,, denote the number
of distinct VABIlocks involved across those batches. The ratio
between these two quantities reflects the degree of spatial
locality during batch processing. Workloads with strong
locality tend to accumulate faults within a small number of
VABIlocks, while irregular or random-access workloads
spread faults across many VABlocks. To quantify this
behavior, we define the locality metric R in (1):

numy,,

R=—r— (1)
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A lower value of R indicates that multiple faults within a
batch map to the same VABIlock, suggesting stronger spatial
locality. Conversely, a higher value of R signifies that faults
are distributed across many VABlocks, implying weak
locality. Using this metric, we statistically analyzed
differences in UVM batch composition under regular and
random memory-access patterns.

Fig. 1 summarizes the distribution of R values across
representative workloads. Regular-access workloads such as
Convolution-2D and FDTD-2D tend to generate page faults
within relatively narrow address ranges. Consequently, the
value of R remains consistently low, with median values near
0.2 for both applications. These results indicate that faults
within a batch typically map to only a small number of
VABIlocks, reflecting strong spatial locality and tightly
clustered access ranges.

In contrast, irregular or random-access workloads exhibit
markedly different behavior. As shown in the figure, both
BiCG and NW produce substantially larger R wvalues,
demonstrating that faults are dispersed across a far broader set
of VABIlocks during batch-handling. The median R values
rise to roughly 24 in BiCG and 11.1 in NW—two orders of
magnitude larger than those of regular-access workloads. This
sharp increase highlights the inherently weak locality of
irregular workloads, where page faults are widely scattered
throughout the virtual address space.

Overall, these findings confirm that R is an effective
indicator of spatial locality during UVM fault-handling: low
values correspond to compact fault-distribution patterns,
whereas high values reflect widely dispersed and irregular-
access behavior that spans many VABIlocks within each batch-
handling routine.

B. Tree-Structured Prefetching Mechanism of UVM

UVM determines prefetching decisions using a tree-
structured organization of each VABlock. Internally, a
VABIlock is divided into 64KB leaf nodes, which are
recursively grouped into larger subregions up to the VABlock
root. When a page fault occurs, the driver begins at the leaf
node corresponding to the faulting page and traverses upward
toward the root, evaluating the GPU residency ratio at each
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Illustration of UVM’s hierarchical prefetching process.

level of the tree [5,9,10]. If the residency ratio of a subregion
exceeds a preset threshold (50% by default), the driver
speculatively migrates all remaining non-resident pages
within that region into GPU memory.

Fig. 2 illustrates how the tree-based prefetch decision is
applied in practice. In this example, 8 out of the 16 leaf nodes
within the VABIlock are already GPU-resident, and a page
fault occurs at leaf node I5. The driver begins its traversal from
the leaf and evaluates the residency ratio at each ancestor node.

At the immediate parent N, ,, the pages in the subregion
corresponding to [ are already resident, so no prefetching is
triggered at this level. Proceeding upward to N3 ;, the driver
finds that 4 out of the 7 pages in this subregion are resident,
exceeding the 50% threshold. Consequently, the remaining
non-resident page [, becomes a prefetch candidate. At the
next level, node N, 5 out of 8 pages are resident, again
surpassing the threshold, which causes pages [; and [, to be
flagged for prefetching. Finally, at node N o, 9 out of 16 pages
are resident, prompting the driver to add [, and [, to the
prefetch list. As a result, multiple pages—Is, Uy, 17, lg, L1, 113,
and l, ,—are ultimately migrated, making the entire subregion
corresponding to N; 4 resident in GPU memory.

If a subsequent page fault occurs in a leaf belonging to the
sibling region Ny ;, the driver repeats the same hierarchical
evaluation. Because the parent VABlock root Ny, now
exhibits a residency ratio of 17 out of 32 pages—still above
the 50% threshold—the entire subregion of Ny ; is marked for
prefetching, even if only one of its pages has faulted. This
behavior is a key characteristic of the tree-based heuristic:
residency in one portion of the VABlock can trigger
aggressive migration of large, independent regions, solely
because their higher-level ancestor nodes have aggregated
residency ratios that exceed the threshold.

Although the tree-based prefetching heuristic in UVM is
generally considered effective for workloads with strong
spatial locality [10], our analysis reveals several inherent
limitations. Even in regular-access workloads, the heuristic’s
reliance on subregion-level residency can delay the selection
of an appropriately large migration granularity. Because the
decision is made hierarchically from smaller to larger
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Fig. 3. Relative performance under different prefetch granularities. Baseline corresponds to UVM’s default tree-based heuristic.

subregions, prefetching may be triggered only after multiple
fault events have already occurred, reducing the mechanism’s
ability to fully hide migration latency.

The limitations become more pronounced for irregular or
sparse-access workloads. When accessed leaf nodes are
widely dispersed across the VABlock, the aggregated
residency ratios at higher-level nodes can exceed the threshold
despite the absence of true spatial contiguity. This causes the
prefetch mechanism to infer locality where none exists,
leading to speculative migration of pages whose address
ranges do not correspond to the actual access pattern. Such
mispredictions introduce unnecessary data transfers across the
interconnect and, under memory-oversubscription, exacerbate
GPU memory pressure, often resulting in additional evictions
and reduced overall performance.

Fig. 3 compares the execution time of representative
workloads under different prefetch granularities. The baseline
corresponds to UVM’s default tree-based heuristic with a 50%
residency threshold. For comparison, we evaluate two fixed
migration granularities: traditional 4KB page-level migration
and 2MB V ABIlock-level migration.

Fig. 3(a) shows the results in a memory-sufficient
environment where GPU memory can fully accommodate the
working set. In this setting, aggressive prefetching generally
improves performance for both sequential and irregular-
access patterns. Using only 4KB page migration—effectively
disabling prefetching—causes an average slowdown of 0.2x
relative to the baseline, consistent with the expectation that the
tree-based mechanism reduces fault-handling overhead.
However, all workloads benefit even more from the 2 MB
fixed granularity, achieving an average speedup of
approximately 1.5x. This indicates that the default heuristic
does not escalate migration granularity quickly enough, even
for regular-access workloads where larger prefetch regions
would be advantageous.

In contrast, memory-oversubscription  introduces
substantially different behavior, as illustrated in Fig. 3(b). For
regular-access workloads, aggressive 2MB migration remains
beneficial and yields an average improvement of 1.3%,
mirroring the trend observed in the memory-sufficient case.
Random-access workloads, however, exhibit the opposite
trend: here, 4KB page-level migration outperforms the
baseline by an average of 2.2x. Under memory pressure, the
tree-based heuristic frequently prefetches pages that are never
used, inflating migration traffic and causing rapid turnover of

GPU memory. These unnecessary transfers exacerbate
contention and lead to thrashing-like behavior, ultimately
degrading performance.

III. ADAPTIVE PREFETCHING UVM

Motivated by the limitations of existing UVM
prefetching—particularly its reliance on localized residency
thresholds that fail to distinguish sequential from random-
access patterns—we propose a runtime mechanism that
dynamically adapts prefetch-granularity based on the evolving
fault behavior of the workload. The proposed mechanism
operates in two stages. The first stage, pattern-based coarse
adjustment (Section III-A), establishes an initial granularity
based on the observed access regularity. The second stage,
outlier-aware fine adjustment (Section III-B), refines this
choice by reacting to short-term deviations in the distribution
of page faults. Together, these two stages enable responsive
and stable control of the migration granularity, improving
prefetch efficiency across diverse workload patterns.

A. Pattern-Based Coarse Adjustment

As discussed in Section II, the degree of locality can be

quantified by the ratio R, defined in (2).
R = _iMva <1 (2)
NUMpatch

A smaller value of R indicates that faulting addresses remain
concentrated within a narrow virtual address region. In our
empirical analysis, regular-access workloads such as
Convolution-2D and FDTD-2D showed median R values
around 0.2, which is consistent with highly sequential
behavior, in which each batch accesses only a small number
of distinct VABlocks.

However, R may fluctuate across batches even for
sequential workloads. To accommodate this variation while
still distinguishing strong locality, we adopt a relaxed criterion
and treat R < 0.3 as the threshold for sequential patterns. We
maintain an internal state variable A, which represents an
accumulated estimate of the access regularity, and update it
according to (3):

A< Ay, (GfR<03)
A—A+1 (elseif R<landA < A,ay) 3
A<A—-1 (elseif R>1and A > An)

Here, A4 and A, denote the upper and lower bounds
corresponding to strongly sequential and strongly random



TABLE L SUMMARY OF BENCHMARK WORKLOADS USED FOR
TRACE COLLECTION AND EVALUATION
Memory- o .
Workload Application Domain

Access Type

Convolution-2D Sequential Computer Vision
FDTD (Finite Difference . —_ .
Time Domain)-2D Sequential Scientific Computing
BiCG Random Linear Algebra,
(Biconjugate Gradient) Scientific Computing
NW Random Bio-informatics

(Needleman-Wunsch)

TABLE II. EXPERIMENTAL HARDWARE AND SOFTWARE
CONFIGURATION
Component Specification
CPU Intel Xeon E5-2630 v4 @ 2.20GHz
System Memory 28GB
GPU NVIDIA TITAN V (12GB Memory)

Operating System
NVIDIA Driver / CUDA

Linux Kernel 5.4.0-100-generic
Driver 545.23.06 / CUDA 12.3

behavior, respectively. Prefetch-granularity is adjusted only
when A reaches either boundary and remains unchanged
while A stays within the intermediate range. In this way, the
coarse adjustment stage provides a stable directional signal—
toward larger granularity under sequential access, and smaller
granularity under irregular-access—without overreacting to
short-term fluctuations in R.

B. Outlier-Based Fine Adjustment

If the coarse stage does not trigger a granularity update, we
apply a finer adjustment based on the distribution of page
faults within each batch. Let f}, denote the number of page
faults generated by VABlock b. Let B denote the set of
VABIlocks within a batch, and b € Bdenote an individual
VABIlock. The mean u and standard deviation o of the fault
counts within the batch are given by (4) and (5), respectively:

1
p=g S @

bEB

The z-score of each VABIlock zj, is then computed using

(6):

Zb:fba—li 6)

We classify a VABlock as an outlier when the absolute
value of its z-score exceeds 2 (i.e., |z,| > 2). The fraction of
outliers in the batch is defined in (7):

|{b € Bl|zy| > 2}
|B|
If fracyytiier > 0.1, we interpret this as a sign of

increased variability in memory-access behavior and
increment the density score D . Once D reaches 1, the

()

fracoutiier =

granularity is increased. Conversely, if frac,,tjier < 0.1, we
decrement D; and when D = 0, the granularity is reduced.
This fine-adjustment mechanism filters out short-term
fluctuations while allowing persistent changes in the fault
distribution to influence granularity decisions. As a result, the
system avoids oscillatory behavior yet remains sensitive to
meaningful shifts in access variability.

IV. EVALUATION

To evaluate the effectiveness of the proposed adaptive
prefetching method, we conduct a series of experiments using
representative benchmarks that exhibit diverse memory-
access characteristics. In this evaluation, we first describe the
workloads and trace-collection methodology, followed by the
experimental setup and performance results.

A. Workloads and Trace Collection

We employ a set of open-source micro-benchmarks [11—
13] that collectively cover both sequential and random
memory-access patterns. To ensure realistic memory
footprints, each benchmark is configured to allocate
approximately 8GB of managed memory. Furthermore, to
emulate GPU memory-oversubscription conditions, we pre-
allocate a portion of the GPU memory at application startup
using cudaMalloc (), thereby reducing the effective GPU
memory available during execution. Table 1 summarizes the
characteristics of the benchmarks used in this study, including
their access patterns, primary operations, and application
domains.

B. Experimental Setup

The evaluation compares the proposed method against the
conventional UVM tree-based heuristic as well as fixed
migration configurations with different granularities.
Specifically, we consider 4KB page-level migration, and
NVIDIA UVM’s 2MB VABIlock migration. All experiments
described in this section are executed on the hardware and
software platform summarized in Table 2.

C. Performance Comparison

Fig. 4 presents the normalized execution time of each
benchmark relative to the baseline UVM prefetching policy.
Overall, the proposed method consistently improves
performance across all workloads and memory conditions.
Under memory-sufficient configurations, it achieves a
speedup ranging from 1.24x to 1.90x compared with the
baseline. In memory-oversubscription scenarios, it maintains
robust benefits, improving performance by 1.07x to 2.45x%.

A notable observation is that the proposed method closely
tracks the performance of the best manually selectable
prefetch-granularity—that is, the optimal granularity that
would be chosen if the workload’s access pattern and memory
availability were known beforehand. For instance, random-
access workloads such as NW and BiCG perform best with
4KB granularity under oversubscription, while regular-access
workloads such as Convolution-2D and FDTD-2D benefit
from 2MB granularity. The proposed approach automatically
converges toward these choices without prior profiling or
offline tuning, achieving on average approximately 98% of
the performance attainable by such oracle-like optimal
configurations.

In summary, the proposed technique performs aggressive
prefetching when memory is abundant and dynamically
adjusts its migration granularity when GPU memory becomes
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Fig. 4. Normalized execution time of benchmark workloads under memory-sufficient and memory-oversubscription conditions,
comparing 4KB, 2MB, and the proposed adaptive prefetching method.

constrained. This behavior enables the method to deliver
consistent and substantial performance gains over the baseline,
while also maintaining performance comparable to that of an
ideally tuned configuration that has full knowledge of
workload behavior.

V. CONCLUSIONS

This paper examined the limitations of UVM’s tree-based
prefetching mechanism, showing that its locality inference is
often misaligned with actual workload behavior, resulting in
both under- and over-migration across diverse access patterns.
To address this gap, we introduced a lightweight runtime
technique that adaptively adjusts prefetch-granularity
according to the access characteristics manifested in each
fault-handling batch. By integrating a coarse locality estimator
with a fine-grained outlier-filtering step, the proposed method
continuously aligns migration size with evolving access
behavior, without requiring oftline profiling or prior workload
knowledge. Our evaluation demonstrates that this adaptive
strategy consistently improves performance, achieving up to
1.9x speedup in memory-sufficient conditions and up to 2.5x
under oversubscription, while reaching approximately 98% of
the performance attainable by an oracle-level static
granularity. These results highlight that adaptive granularity
control offers a practical and effective path toward more
robust, efficient, and workload-aware UVM operation,
particularly in memory-constrained GPU environments.
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