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Abstract—The rapid evolution of smart warehouse logistics
has accelerated the demand for intelligent, adaptive systems
capable of optimizing operations in real time. Traditional static
product placement strategies are becoming increasingly inad-
equate for handling dynamic order patterns, fluctuating de-
mand, and complex material handling interactions. This study
presents an adaptive slotting framework driven by a Deep Q-
Network (DQN) integrated within a digital twin environment.
This DQN continuously learns from operational feedback to gen-
erate optimal product placement decisions, aiming to minimize
picking time and enhance overall warehouse performance. A
warehouse logistics configuration within a Digital Twin virtual
environment for product handling processes is modeled using
the Asset Administration Shell (AAS), enabling standardized
data representation and seamless interaction between the model
and the virtual warehouse environment. Experimental results
demonstrate significant operational improvements in key areas.
The proposed approach reduces average picking time by 30.83%,
increases throughput by 32.35%, and decreases average travel
distance by 13.15%.

Index Terms—Adapting slotting, asset administration shell
(AAS), digital twin, reinforcement learning, smart warehouse
logistics.

I. INTRODUCTION

Modern warehouse operations is undergoing a profound
transformation as contemporary logistics systems increasingly
rely on automation technologies, IoT sensing devices, and
data-driven decision mechanisms to sustain high levels of
efficiency. The rapid growth of e-commerce, coupled with
fluctuating customer demand and the diversification of product
assortments, has imposed unprecedented pressure on ware-
houses to fulfill orders at greater speed, precision, and scal-
ability [1]. Despite these advancements, many facilities still
struggle with issues such as uneven stock-keeping unit (SKU)
demand patterns, congestion in high-traffic zones, inefficient
item placement, and the limitations of static slotting methods
that cannot adapt to real-time operational changes.

Digital twin (DT) technology has emerged as a cen-
tral enabler in addressing these challenges. This DT pro-
vides a synchronized virtual replica of warehouse assets,
processes, and interactions, allowing organizations to ana-
lyze performance, simulate alternative configurations, and test
optimization strategies without interrupting live operations
[2]. Several DT simulation platforms, such as AnyLogic,
FlexSim, and NVIDIA Omniverse, are increasingly used to
build high-fidelity models of intralogistics systems; these tools

support discrete-event, agent-based, and 3D physics-based
simulations, thereby enabling the detailed representation of
material flows, resource behaviors, and human–robot interac-
tions under varying demand profiles and control policies [3].
Complementing DTs, the AAS serves as a core concept of
Industry 4.0, standardizes the digital representation of each
physical asset, enabling interoperable data exchange, struc-
tured lifecycle information, and seamless integration across
heterogeneous warehouse systems [4]. Despite these capa-
bilities, many DT and AAS implementations rely on fixed
models or deterministic rules, limiting their ability to respond
autonomously to dynamic changes, stochastic events, or real-
time variations in operational load [5].

Alongside DT development, machine learning (ML), deep
learning (DL), federated learning (FL), and reinforcement
learning (RL) techniques have been increasingly explored for
warehouse optimization tasks such as demand forecasting,
routing, and resource scheduling [6]. While these methods
provide strong predictive capabilities, their reliance on pre-
collected datasets and absence of direct interaction with the
operational environment restricts their adaptability when con-
fronted with rapidly changing conditions. DL models require
large labeled datasets, FL introduces communication and syn-
chronization challenges, and RL struggles with large action
spaces and unstable convergence and high variability in re-
ward structures, especially within the complex and continuous
slotting decisions [7], [8].

To overcome these multifaceted constraints, the present
study introduces a Deep Reinforcement Learning (DRL) ap-
proach embedded within a DT environment to achieve adaptive
product slotting in smart warehouse logistics [9]. By inte-
grating a high-fidelity DT with a DRL model, the proposed
framework enables dynamic, data-driven slotting decisions
that continuously adapt to real-time demand fluctuations and
operational constraints [10]. This unified approach enhances
efficiency, reduces travel distance, and provides a scalable
mechanism for autonomous warehouse optimization. The con-
tributions of this paper are as follows:

• We have developed a DQN that learns zone-assignment
policies from streaming warehouse states, the model
uses action masking, experience replay, and a greedy
schedule to reduce pick latency, shorten travel distance
and improve throughput.

• We proposed a DT simulation with training framework
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Fig. 1. Proposed adaptive slotting workflow combining physical warehouse data, AAS, DT simulation, and DQN Model.

and evaluation environment tightly integrated with an
AAS to standardize asset metadata, enable closed-loop
simulation, and support safe policy synchronization with
live systems.

• Empirical validation on an open-source warehouse dataset
with an extended evaluation protocol, demonstrating con-
sistent operational gains.

The remainder of this paper is organized as follows. Section
II reviews the related work on adaptive slotting, RL, and
DT technologies. Section III introduces the proposed overall
framework. Section IV describes the experimental perfor-
mance analysis and discussion. Finally, Section V concludes
the paper and outlines potential future directions.

II. RELATED WORK

For the rapid expansion occurring in warehouse operations
and multi-channel logistics has increasingly highlighted the
inherent limitations of traditional warehouse slotting practices,
because static product placement strategies and infrequent re-
configuration routines consistently struggle to keep pace with
dynamic order patterns, fluctuating demand behaviors, and
the constantly changing nature of operational workflows, ul-
timately leading to congestion, increased picking inefficiency,
and declining performance in real-world environments. While
classic approaches rely heavily on predetermined heuristics or
offline optimization models, these techniques often become
ineffective as operational complexity grows, resulting in bot-
tlenecks and progressively diminishing efficiency over time
when they fail to capture the real-time variability of warehouse
activities [11].

Recent advances have therefore focused on leveraging arti-
ficial intelligence (AI) and ML to transform slotting optimiza-
tion, as these learning-driven systems are capable of analyzing
high-velocity SKUs movement, identifying item affinity rela-
tionships, discovering path utilization patterns, and incorporat-
ing historical picking data in order to recommend inventory
placements that increase throughput, reduce the distance trav-
eled by workers, and significantly enhance overall accuracy in

daily operations. These data-intensive systems offer warehouse
managers the ability to make more frequent, informed, and
adaptive slotting adjustments based on evidence gathered from
ongoing warehouse behaviors, rather than depending on ex-
pensive and infrequent large-scale layout revisions that do not
reflect real-time operational changes [12], [13]. DT technology
has emerged as a crucial enabler, providing real-time, dynamic
simulations of warehouse layouts, material flows, and oper-
ational processes [14]. It allows for virtual experimentation
and scenario analysis, making it possible to test slotting
strategies rapidly and visualize the impact of layout, labor, and
process changes before deployment. Such frameworks are now
widely used for predictive analytics, bottleneck identification,
and rapid operational optimization. Now RL and DRL have
gained favor in this space for their ability to learn optimal
slotting, picking, and routing policies in high-dimensional,
dynamic environments. These RL model often trained within
DT environments systematically test possible configurations,
evaluate key performance indicators (KPIs) like picking speed
and error rate, and adjust strategies in response to simulated
feedback [15].

Empirical case studies reveal RL-driven slotting and robot
movement can decrease travel time by as much as 20%, and
order accuracy mistakes by 25%. Hybrid models combining
deep learning with RL further advance complex scenario
reasoning and multi-objective optimization. Beyond improv-
ing slotting and picking, RL integrated with DT facilitates
automated adaptation to real-world events such as seasonality,
labor shortages, or structural changes, and offers scalable, rule-
free, continuous improvement. Industry reviews anticipate that
warehouses not investing in DT and RL-based AI solutions
risk losing their competitive edge as customer expectations
for order speed, accuracy, and transparency [16].

III. PROPOSED SYSTEM

We proposed a framework that establishes an adaptive
slotting architecture that couples an RL model with a DT-
based representation of warehouse operations, thereby allow-



Fig. 2. Digital Twin simulation of warehouse logistics operations using Omniverse Isaac Sim.

ing learning-based decision making to be tightly bound to
a continuously synchronized virtual mirror of the physical
warehouse and its ongoing processes. In this design, real-
time asset information, structured digital descriptions, and
learning-based decision mechanisms are unified into a single
cohesive pipeline in order to facilitate continuous optimization
of storage allocation, ensuring that item placement decisions
remain aligned with current demand profiles and operational
constraints rather than static historical configurations. As we
illustrated in Fig. 1, the physical warehouse continuously
streams operational data st to the AAS, which standardizes
each asset’s identification, capabilities, and current state. This
enriched and structured information is then propagated to the
DT environment, where warehouse behaviors such as storage-
zone states, worker and forklift movements, and item-handling
flows are simulated to generate predictive and context-aware
system responses. Here DQN receives both real-time and
simulated feedback, enabling it to evaluate actions at, compute
rewards rt, and update its slotting policy πθ. This closed in-
teraction loop between the physical warehouse, AAS, DT, and
DQN ensures that every warehouse component maintains an
up-to-date virtual counterpart, allowing the model to generate
accurate, data-driven slotting decisions that continuously adapt
to the evolving operational environment rather than remaining
fixed to an initial configuration.

A. Reinforcement Learning-Based Slotting Optimization

Here we designed DQN to optimize dynamic prod-
uct placement across four warehouse zones by minimiz-
ing operational metrics such as picking time and travel
distance, while implicitly accounting for variations in de-
mand intensity and spatial accessibility that shape the
efficiency of retrieval operations. At each decision step
t, the warehouse state is encoded as a feature vector

st = [zone, item demand, picking time, stock level, . . .].
Based on this state, the model selects an action at ∈
{A,B,C,D}, where each action corresponds to assigning
an item to one of the four available storage zones. The
expected value of selecting action at in state st is esti-
mated by the action-value function Q(s, a), which provides
the predicted return for placing an item in a given zone.
The immediate reward is computed using the inline func-
tion rt = ∆Tsaved − λCmove + µ∆KPI, where ∆Tsaved rep-
resents the improvement in picking time achieved by the
action, Cmove denotes the movement cost, and ∆KPI captures
variations in key operational indicators such as throughput
and zone efficiency. A composite key performance indicator
(KPI) score is produced from normalized metrics combined
through a weighted summation. The action-value function is
approximated through a neural network Q(s, a; θ), which is
trained using experience replay and a periodically updated
target network. Each transition (st, at, rt, st+1) is stored in a
replay buffer and sampled uniformly for mini-batch updates.
The training objective minimizes the temporal-difference loss
L(θ) = 1

N

∑N
j=1 (yj −Q(sj , aj ; θ))

2, where the target value
is defined as yj = rj + γQ′(sj+1, a

′; θ−), and Q′ denotes the
target network with parameters θ−.An ϵ-greedy exploration
scheme is used, where ϵ gradually decreases during training
to balance exploration and exploitation. This model is trained
across thousands of episodes until convergence is observed
in reward stabilization and consistent improvements in KPI
performance, indicating that the learned policy has internal-
ized robust slotting strategies that generalize across diverse
warehouse conditions.

B. AAS–Digital Twin Interaction Cycle

For communication between the DQN and the warehouse
environment is facilitated through the DT and the AAS, which



TABLE I
IMPROVEMENT GAIN USING THE PROPOSED DQN MODEL ON THROUGHPUT, PICKING TIME, AND TRAVEL DISTANCE.

Metrics Baseline DQN Model Changes (%)
Average Picking Time (s) 172.22 119.12 ↓30.83%
Throughput (orders/hour) 25.66 33.96 ↑32.35%
Average Traveling Distance (units) 0.9201 0.7991 ↓13.15%

Fig. 3. Picking time optimization over different testing scenarios baseline
against Proposed DQN model.

Fig. 4. Picking time distribution before and after adaptive re-slotting using
DQN model.

together provide the standardized interface and virtual testbed
needed to translate learning decisions into operational conse-
quences and back into training signals. When the agent outputs
an action at, an execution module updates the digital twin’s
internal state to reflect the newly selected slotting decision.
The digital twin then evaluates the operational consequences
of this action, producing updated metrics such as travel dis-
tance, picking time, and variations in KPIs. These outputs
are converted into the next state st+1 and the corresponding
scalar reward rt, which are subsequently stored in the replay
buffer. This creates a closed interaction cycle agent decision →
digital-twin update → KPI extraction → reward computation

→ replay storage → network update allowing the model
to iteratively refine and improve the learned slotting policy
through repeated interaction with a safe yet realistic virtual
environment.

C. Dataset Description & Simulation

To evaluate our proposed framework, we utilized an open-
source real-world warehouse logistics dataset, comprising de-
tailed operational records for inventory levels, stock move-
ments, product categories, location assignments, demand fore-
casts, and KPI across diverse warehouse zones, which to-
gether provide a rich empirical basis for modeling realistic
slotting scenarios. We have utilized a key extension of DT
technology, Omniverse Isaac Sim, which is NVIDIA’s high-
fidelity simulation platform designed for creating sophisticated
digital representations of industrial environments, to instantiate
a virtual warehouse that directly reflects the structure and
dynamics encoded in the dataset. It enables the creation of
DT for complex environments of warehouse logistics, offering
realistic physics, agent-based behavior, and real-time interac-
tion. We simulated the warehouse operations present in the
dataset in a 3D environment, enhancing predictive analytics
and enabling detailed scenario testing as demonstrated in
Fig. 2. The simulation includes features for item identification,
category segmentation, stock levels, storage location, picking
times, demand rates, cost factors, and fulfillment performance.
A selected subset of these features including item id, category,
stock level, storage location id, zone, picking time seconds,
daily demand, KPI score, order fulfillment rate, and relevant
cost and efficiency metrics, was used for training and evalua-
tion of our slotting optimization reinforcement learning model.
We used it for supporting state representation, reward for-
mulation, and performance benchmarking, providing a robust
foundation for modeling adaptive slotting strategies in modern
warehouse environments. This structured representation en-
abled the DQN model to process well-defined state vectors
st and learn reliable action-value mappings Q(st, at) based
on accurate and consistent feedback from the environment.

IV. PERFORMANCE ANALYSIS

A. Evaluation Results

For consolidated performance improvements achieved by
the proposed DQN model are summarized in Table I, which
shows substantial gains across all evaluation metrics. Relative
to the baseline configuration, average picking time is reduced
from 172.22 s to 119.12 s, representing a 30.83% decrease,
while throughput increases from 25.66 to 33.96 orders/hour,
equivalent to a 32.35% improvement. In addition, the learned



TABLE II
TOP 10 SLOTTING RELOCATIONS RANKED BY TIME SAVED.

ID Item Category Previous
Zone

Relocated
Zone

Daily
Demand

Orders
(hr)

Baseline
Pick Time

(s)

Improved
Pick Time

(s)

Time
Saved

(s)
384 ITM11478 Pharma C A 47 1.67 228.0 232.5 363.7
359 ITM12063 Electronics C D 43 1.81 155.7 149.8 321.1
227 ITM10683 Apparel C A 41 1.93 110.0 104.2 332.8
362 ITM10687 Automotive C D 42 1.56 39.3 33.7 264.9
579 ITM11572 Apparel A C 48 1.96 53.7 51.0 112.4
456 ITM12063 Pharma A C 47 1.99 52.7 49.3 101.5
228 ITM11268 Apparel C A 43 1.81 263.0 262.8 110.4
154 ITM12728 Automotive A C 49 2.04 112.5 110.3 125.9
56 ITM11478 Electronics A D 50 2.17 64.8 62.8 82.9

policy also shortens average travel distance from 0.9201 to
0.7991 units (a 13.15% reduction). These combined results
indicate that the model successfully accelerates individual pick
operations and enhances overall processing capacity, reflecting
more efficient placement of high-turnover SKUs in low-travel-
cost locations.

We evaluate the consistency of these improvements across
different operating conditions, which is further demonstrated
in Fig. 3, where the total picking hours for three representative
test scenarios are compared before and after applying the
DQN-based slotting policy. In each scenario, total picking
hours are reduced by approximately half: from 23.69 to 11.87
hours in Test 1, from 15.50 to 7.80 hours in Test 2, and
from 30.20 to 14.90 hours in Test 3. These results show
that the learned policy generalizes effectively across a variety
of demand profiles and spatial configurations, reinforcing the
aggregate performance gains highlighted earlier in Table I.

We conduct a distributional analysis of picking times, pre-
sented in Fig. 4, provides additional insight into the operational
impact of the slotting decisions. After re-slotting, the median
picking time shifts noticeably downward, the interquartile
range contracts, and the number of extreme high-duration
picks is markedly reduced. This tighter and more compact
distribution is operationally significant because it produces
more predictable throughput, reduces the likelihood of sudden
congestion, and simplifies labor and resource planning.

To further understand which specific relocations contribute
most to the efficiency improvements, Table II lists the top-
ranked item movements ordered by time saved. Items with
high daily demand and significant reductions in per-pick time
dominate the upper portion of the list, indicating that these
relocations account for a substantial portion of the overall
performance gain and may serve as valuable candidates for
targeted pilot testing in real deployments.

B. Discussion

The observed improvements in mean picking time, through-
put, and travel distance collectively suggest that the proposed
DQN model learns slotting configurations that reduce both
movement inefficiencies and queuing delays. These benefits,
however, must be considered alongside practical implementa-
tion factors. Frequent re-slotting can impose operational costs,

such as labor effort, AGV utilization, and temporary disrup-
tions to replenishment processes. Additionally, while the cur-
rent evaluation demonstrates consistent gains across scenarios,
further analysis is needed to quantify statistical significance at
a per-pick level and to assess sensitivity to movement-cost
parameters and seasonal demand fluctuations.We provided the
evidence presented in Table I, Fig. 3, and Fig. 4 indicates that
the DQN-based adaptive slotting approach delivers meaningful
and reliable performance improvements while stabilizing pick-
time variability.

V. CONCLUSION

This paper presented a novel approach for adaptive ware-
house slotting using a DQN integrated within a DT framework,
supported by the AAS. By combining real-time warehouse
data, a high-fidelity DT and RL, this proposed system dynam-
ically optimizes product placement to minimize picking time,
reduce travel distance, and enhance throughput. We assess
experimental results that the DQN model achieved a 30.83%
reduction in average picking time, a 32.35% increase in
throughput, and a 13.15% decrease in travel distance, showcas-
ing the effectiveness of the approach in real-world logistics en-
vironments. This proposed system also proved to be adaptable
across various warehouse configurations and demand profiles,
making it a scalable solution for smart logistics systems. The
integration of the DT environment with AAS provides a strong
foundation for real-time monitoring, performance analysis,
and continuous optimization. These findings underline the
potential of combining RL with DT technology for next-
generation warehouse management. Future work will focus
on extending the framework to multi-agent systems, testing
its performance under dynamic constraints, and exploring real-
world deployment in live warehouse environments.
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