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Abstract—The surge in multimedia demand from autonomous
driving and infotainment stresses RSUs; mobility and limited
wireless capacity cause delays and QoS degradation. While
CCVN precaching has been studied, delay-tolerant services
remain underexplored. We present a PPO-based delay-tolerant
precaching scheme featuring path-aware RSU discovery, pro-
portional precaching decisions, and opportunistic transmission
within deadlines. A tailored reward balances delivery success,
backhaul reduction, and traffic efficiency. Simulation results in
Large-scale SUMO experiments show that our scheme outper-
forms a heuristic scheme in content delivery success ratio and
traffic overhead, demonstrating scalable and adaptive learning
for delay-tolerant vehicular content delivery.

Index Terms—content-centric vehicular networks, delay-
tolerant precaching, reinforcement learning, PPO.

I. INTRODUCTION

The rapid advancement of autonomous driving and the
increasing sophistication of in-vehicle displays and entertain-
ment systems have led to an explosive growth in passenger de-
mand for rich multimedia content [1]. The size and diversity of
such content continue to expand, imposing substantial require-
ments on vehicular communication infrastructures. However,
due to vehicle mobility and the inherent limitations of wireless
communications between vehicles and roadside units (RSUs),
passengers frequently experience content download delays and
degraded quality of service (QoS) [2]. Ensuring seamless
content delivery under these dynamic conditions remains a
critical challenge in vehicular networks.

To mitigate these issues, research has focused on content
precaching in content-centric vehicular networks (CCVNs)
[3]. Precaching allows RSUs to proactively store content in
advance based on predicted vehicle mobility patterns and
user requests, thereby reducing backhaul traffic and improving
delivery latency [4]. By leveraging mobility-aware predictions,
CCVNs can enhance the reliability of content delivery, par-
ticularly for high-demand multimedia services, and support a
better quality of experience for passengers.

Despite these efforts, most existing studies have concen-
trated primarily on delay-sensitive content, where immediate

delivery is critical [5], [6]. In contrast, research on delay-
tolerant content remains limited. Recently, heuristic-based
schemes have been proposed to address delay-tolerant pre-
caching [7]. While such methods can provide partial im-
provements, their reliance on static heuristics restricts their
adaptability to the highly dynamic and stochastic nature of
vehicular networks. Consequently, these heuristic approaches
often fail to achieve consistently superior performance in
realistic deployment scenarios.

To overcome these limitations, we propose a novel delay-
tolerant precaching scheme based on the Proximal Policy
Optimization (PPO) algorithm [8], a state-of-the-art reinforce-
ment learning method. Our approach dynamically determines
both the participating RSUs and the proportion of content
to be precached, enabling adaptive and efficient utilization
of RSU resources. Through extensive large-scale simula-
tions conducted in a SUMO-based vehicular environment, we
demonstrate that the proposed PPO-based scheme outperforms
a heuristic approach in terms of content delivery ratio and
traffic overhead, thereby validating its effectiveness in real-
world vehicular networking scenarios.

II. NETWORK MODEL

We consider a CCVN with content servers, RSUs R =
{R1, . . . , RJ} deployed at signalized intersections (with
caching storage and CPT), and vehicles V = {V1, . . . , VI}.
RSUs connect to servers via fiber backhaul and disseminate
content over WAVE; vehicles move along routes with speeds
updated every 0.1 s by a skewed-Gaussian acceleration model.
The content set C = {C1, . . . , CK} comprises delay-tolerant
items, each with a tolerant delay Tolk and fixed-size chunks.

We integrate PPO for delay-tolerant precaching: at decision
epoch t, the state st aggregates vehicle context (speed, loca-
tion, sojourn), content traits (size, category, Tolk), and RSU
info (cache status, distance). The action at = [p1, . . . , pN ]
allocates precaching proportions across candidate RSUs on
the path, and the reward rt promotes success within Tolk
while penalizing backhaul use, waste, and deadline violations.
This model couples the physical network with learning-based



control so that RSUs act as cache nodes and PPO-guided
decision points, enabling adaptive, delay-aware, and resource-
efficient delivery.

III. PPO-BASED DELAY TOLERANT PRECACHING SCHEME

A. Path-aware RSU Discovery
A vehicle requesting content with tolerant delay Tolk shares

its path P = {x1, . . . , xK} via a lightweight Path Announce.
The RSU builds the candidate set Ct = {Ri ∈ R | Ri ∈
P ∧ reachability(Ri, T olk) = 1}. For each Ri ∈ Ct,
arrival/departure (t̂arr

i , t̂dep
i ) and sojourn τ̂i are inferred from the

speed/acceleration model with a confidence interval CIα(τ̂i).
Each RSU advertises a compact Cache Report: cache

sketch ci, free space C free
i , link stats r̄i, backhaul load bi, and

timestamp τ ts
i . The deliverable budget is L̂i = r̄i·E[τ̂i]·(1−ρi),

where ρi = f(bi) ∈ [0, 1). We prune RSUs failing feasibility
(L̂i ≤ ϵ), freshness (stale > δ), or reachability (Pr(visitRi) <
κ). Remaining RSUs are sorted by distance di, and the top-
Nmax are passed to the agent.

B. PPO Formulation for Delay-Tolerant Precaching
1) State and Action: The state st (56-D) includes: 1)

Vehicle & Content (6-D): normalized (x, y), avg. network
speed, content size, agent-selected tolerant delay, and max
speed. 2) Path-Aware RSUs (50-D): for the first 25 on-path
RSUs, normalized cumulative distance and a binary selection
flag.

The action at (50-D) consists of: 1) RSU Scores (25-D):
raw scores for top-k selection. 2) Chunk Proportions (25-D):
normalized content shares for selected RSUs.

2) Reward Function: The total reward balances delivery
success and resource efficiency:

rtotal = RsuccWsucc −
Ccons

Ctotal
Wcons −

Cwaste

Ctotal
Wwaste

−
Pwrong

NRSU
Wwrong +

Ttol − Tactual

Ttol
Wtime

+
Ccached

Ctotal
Wsaved, (1)

where each component encourages a specific behavior:
• Rsucc: large bonus for completing the full download

within Ttol (primary objective), weighted by Wsucc.
• Ccons

Ctotal
: penalty for consumed data volume (transmission

cost), weighted by Wcons.
• Cwaste

Ctotal
: heavier penalty for precached but unused data,

weighted by Wwaste.
•

Pwrong

NRSU
: penalty for selecting RSUs not encountered on the

route, weighted by Wwrong.
• Ttol−Tactual

Ttol
: reward/penalty based on slack or overrun

relative to the deadline, weighted by Wtime.
• Ccached

Ctotal
: bonus for leveraging cached delivery (backhaul

savings), weighted by Wsaved.
where Rsucc rewards timely completion; Ccons and Cwaste
penalize transmission cost and unused data; Pwrong penalizes
invalid RSU selection; the time term rewards slack relative to
the deadline; and Ccached incentivizes backhaul savings. The
weights (W ) are optimized via Optuna.

3) PPO Objective: The clipped surrogate objective is
LPPO(θ) = Et[min(ρt(θ)Ât, clip(ρt(θ), 1−ϵ, 1+ϵ)Ât)], where
ρt(θ) is the probability ratio and Ât is the advantage function.

C. Content Transmission Process

Once the PPO policy determines at, content portions are
precached. As the vehicle traverses the path, RSUs transmit
assigned portions upon contact, minimizing backhaul depen-
dency while meeting Tolreq. The overall procedure of our
proposed scheme, from state observation to content download,
is summarized in Algorithm 1.

Algorithm 1: PPO-based Delay Tolerant Precaching
Input: Trained PPO Policy π, Vehicle V with path P ,

Content Request (ID, Size), Tolerable Delay Tolreq;
Output: Final Download Status;

Phase 1: Decision and Precaching;
Assemble state st from (V, P, ID, Size, T olreq);
at ← π(st) Determine allocation vector;
foreach RSU Ri ∈ P do

Cchunk ← getAllocatedChunk(at, Ri);
if Cchunk > 0 then

Ri caches Cchunk of ID from backhaul;
end

end

Phase 2: Vehicle Traversal and Download;
Sizedown ← 0, Tstart ← CurrentTime;
while Sizedown < Size and V is on path P do

Update V position; Rcontact ← getRSU(V );
if Rcontact ̸= null then

Cassign ← getAllocatedChunk(at, Rcontact);
if Cassign > 0 and is cached then

data← Rcontact.transmit(ID,Cassign);
end
else

data← Backhaul.transmit(ID);
end
Sizedown ← Sizedown + data;

end
end
Tactual ← CurrentTime− Tstart;
if Sizedown ≥ Size and Tactual ≤ Tolreq then

return Success;
else

return Failure;
end

IV. PERFORMANCE EVALUATION

A. Environment and Training Setup

We use SUMO via TraCI API for simulations. Table I shows
the environmental parameters in our simulations.

Optimal reward weights were determined using Op-
tuna (TPE sampler, 100 trials) to maximize the objective:



TABLE I
SIMULATION ENVIRONMENT AND TRAINING PARAMETERS

Parameter Value

Simulation Map Size 15× 15 km (Manhattan Grid)
Vehicle Speed Range 10 ∼ 100 km/h
Number of Vehicles 1000 per episode
RSU Coverage Radius 700 m
Content Size 100 ∼ 700 MB
Tolerable Delay (Ttol) 2000 ∼ 4800 s
Transmission Rate 6 Mbps

PPO Learning Rate 3× 10−4

Discount Factor (γ) 0.99
Clip Range (ϵ) 0.2

Fig. 1. Content delivery success rate vs. tolerable delay time.

(Hit Ratio×100)−(Delay×0.01). The optimized weights are:
Wsucc≈148.6, Wcached≈30.3, Wcons≈83.2, Wwaste≈22.4,
Wwrong≈15.4, and Wtime≈53.2.

B. Performance Metrics

We focus on two metrics: 1) Content Delivery Success
Rate: The percentage of completed requests within the dead-
line. 2) Overhead Ratio: The ratio of total transmission cost
(including unused cache) to the effective content size.

C. Simulation Results and Analysis

We compare our PPO-based DTP scheme against the Av-
erage Speed-based Allocation (Comparative Scheme), which
estimates dwell time based on collective traffic flow.

Fig. 1 and Fig. 2 illustrate the performance comparison. As
shown in Fig. 1, our Proposed Scheme (DTP) demonstrates
significantly superior performance in scenarios with tight
deadlines (400s ∼ 1500s). While the Comparative Scheme
fails to deliver content effectively when the time budget is
limited, the PPO agent intelligently identifies the most critical
RSUs for immediate caching.

Although the Comparative Scheme shows a slightly higher
success rate in loose delay conditions (> 2500s), Fig. 2 reveals
the cost. The Comparative Scheme maintains a consistently
high overhead ratio (≈ 62%), indicating excessive redundant
caching. In contrast, the Proposed Scheme maintains a signif-
icantly lower overhead ratio (≈ 35%). This confirms that PPO

Fig. 2. Overhead ratio vs. tolerable delay time.

balances delivery success and resource efficiency, whereas the
heuristic relies on inefficient over-provisioning.

V. CONCLUSION

This paper presents a PPO-based delay-tolerant precaching
(DTP) framework for CCVNs that respects delivery deadlines.
The scheme combines path-aware RSU discovery, a compact
state, continuous precaching allocation, and a deadline-aware
reward. Large-scale SUMO experiments show consistent gains
over a heuristic baseline in delivery success and traffic over-
head, while forward-pass inference enables millisecond-level
decisions for real-time deployment. The reward balances suc-
cess, backhaul savings, waste reduction, wrong-RSU penalties,
and time slack, aligning learning with operational key perfor-
mance indicators.
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