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Abstract—Accurate emission prediction is essential for main-
taining regulatory compliance and optimizing industrial gas tur-
bine performance. Conventional Predictive Emissions Monitoring
System (PEMS) often exhibit reduced accuracy under dynamic
and nonlinear operating conditions. This study introduces a
hybrid stacked ensemble framework that integrates XGBoost,
Decision Tree, and Support Vector Machine base learners with
an ElasticNet meta-learner to enhance robustness, accuracy, and
computational efficiency. Using cleaned operational datasets, the
model predicts four key pollutants: CO, CO2, SO2, and NO.
Experimental results show that the stacked ensemble consistently
outperforms individual learners, achieving an average coefficient
of determination (R2) of approximately 0.95 and MAPE values
below 5%, meeting industrial acceptance criteria. The ElasticNet
meta-learner further improves generalization and reduces error
variability, particularly under transient and fluctuating load con-
ditions. The findings highlight the XGBoost-DT-SVM ensemble as
a cost-effective and regulation-aligned alternative to Continuous
Emissions Monitoring System (CEMS), advancing intelligent and
adaptive data-driven PEMS architectures.

Index Terms—CEMS, DT, ensemble learning, gas turbine,
hybrid machine learning, PEMS, SVM, XGBoost

I. INTRODUCTION

A. Background

Global efforts to address climate change have intensified the
need to reduce emissions from industrial sectors, including
oil and gas, where gas turbines remain major sources of
CO2, NOx, and SO2. While essential for power generation
and processing, turbine combustion produces highly variable
emissions across steady and transient operating regimes. Accu-
rate monitoring is therefore critical for optimizing combustion
efficiency and ensuring regulatory compliance.

Conventional CEMS provide direct measurements but are
costly, inflexible, and maintenance-intensive, driving inter-
est in data-driven Predictive Emission Monitoring Systems
(PEMS) as a more economical alternative. Advances in ma-
chine learning have enabled models capable of capturing
nonlinear relationships between operating parameters and
emissions; however, balancing accuracy, interpretability, and

computational efficiency remains challenging. This study de-
velops a hybrid stacked ensemble designed to maintain robust
performance under non-stationary industrial turbine condi-
tions, supporting more intelligent and sustainable emission-
prediction frameworks.

B. Problem Statement

Gas turbine emissions such as CO and NOx require strict
compliance with environmental standards [1]. Traditional
CEMS, though accurate, are costly and lack flexibility for
dynamic industrial environments [2]. Many machine learning-
based PEMS models do not segment data by operational
regime [3], reducing reliability during transient conditions and
limiting interpretability of regime-specific performance [6].
Few studies incorporate adaptive or regime-aware modeling
approaches [7]. Integrating operational state awareness, steady
and transient has shown substantial benefits for capturing non-
linear, regime-dependent emission behavior [8], underscoring
the need for more robust and practical PEMS solutions.

II. LITERATURE REVIEW

A. Related Works

Prior research has introduced hybrid machine learning mod-
els such as ANN-SVM, GRNN-GA [9], and LSTM-HGB
for emissions prediction, but few have considered operational
regime segmentation. Studies [10] [11] highlight that model
accuracy changed significantly during load changes or startup
transitions. Recent ensemble methods (XGBoost, LightGBM)
improve prediction accuracy but rarely address computational
cost or adaptability. The proposed work bridges this gap
through performance-balanced, regime-aware modeling.

B. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting, also known as XGBoost is
a popular machine learning algorithm due to its efficiency,
accuracy, and scalability in predictive modeling [12]. The term
“gradient” refers to the process of sequentially decreasing error
from the previous model to the next. On the other hand, the



term “boosting” refers to combining several weak learners,
each improving on the errors of the previous one [13].

C. Decision Tree (DT)

Decision Tree machine learning [14], is a popular method
used in both classification and regression tasks. The primary
principle of a DT is to divide the dataset into subgroups
and use the most significant features to produce the greatest
difference in the tree. This method has been widely adopted
due to its interpretability, robustness, and ability to handle
complex datasets. Each node in the tree represents a feature,
and each branch represents a decision rule based on that
feature.

D. Support Vector Machine (SVM)

The Support Vector Machine is a powerful supervised
machine learning technique that is usually used for classifi-
cation and regression by leveraging its strengths in handling
non-linear data [15]. Support Vector Machine (SVM) works
with the five key steps e.g. selection of features and target
variables, plotting the data (2D) to visualize the data points
and separating the classes, linear or non-linear kernel selection
based on data complexity, training the model to optimize the
hyperplane by maximizing the margin between classes, and
making a prediction to classify new data based on the learned
hyperplane.

E. Ensemble Machine Learning

Ensemble learning refers to algorithms that combine the
predictions from two or more base models to improve over-
all performance and generalization. It is a widely adopted
machine learning approach that enhances predictive accuracy
by aggregating diverse model outputs. According to [16],
ensemble methods are typically categorized into three main
types: bagging, stacking, and boosting. Each method has
distinct mechanisms and use cases, and understanding their
principles is essential for developing robust predictive models.

Stacking Ensemble or stacked generalization, combines
multiple heterogeneous base learners and uses a meta-learner
to synthesize their outputs, unlike bagging or boosting, which
often rely on homogeneous models. Stacking leverages the
strengths of diverse algorithms, for instance, combining XG-
Boost, DT, and SVM. The meta-learner learns to weight or
integrate predictions from base models to achieve superior
performance. Stacking is particularly effective when base
learners capture complementary data patterns, thereby improv-
ing predictive robustness and generalization.

F. Gas Turbine Operational Regimes

Gas turbine operational data are clustered into three pri-
mary regimes, startup, steady-state, and transient using load
percentage or turbine speed thresholds. During this phase,
the system operates under unstable thermodynamic conditions,
characterized by frequent fluctuations in flow rate, tempera-
ture, and pressure. The turbine typically operates at low load or
near-idle (approximately 20-30% of its rated output), resulting

in incomplete combustion and sub-optimal air-fuel mixing.
Consequently, this phase is associated with elevated levels
of carbon monoxide emissions due to insufficient oxidation.
Although the startup phase is relatively short, it produces
significant emission spikes that critically influence overall
environmental performance and model calibration accuracy.

The steady-state phase corresponds to the turbine’s optimal
operational regime, where process parameters remain stable
and efficiency reaches its peak. In this phase, the turbine
typically operates at 70-100% of its rated load, achieving
thermodynamic equilibrium and consistent combustion perfor-
mance. Emissions exhibit predictable behavior, with relatively
stable concentrations of carbon monoxide, nitrogen oxides,
and sulfur dioxide. These steady conditions enable near-
maximum combustion efficiency and minimal fluctuation in
exhaust parameters. Because of its operational stability and
data consistency, the steady-state phase provides an ideal basis
for training and validating baseline PEMS models, ensuring
accurate and reproducible performance across industrial ap-
plications.

The transient phase is characterized by rapid load ramp-
ups, shutdown sequences, or quick cycling between operating
states. This regime represents the most complex and challeng-
ing condition to model due to its highly dynamic and non-
linear behavior. Sudden variations in temperature and pressure
often lead to spikes in nitrogen oxide emissions, reflecting
delayed combustion responses and transient mixing inefficien-
cies. Emission patterns during this phase often exhibit time
lags relative to operational adjustments, leading to predictive
instability and increased modeling uncertainty. Although the
transient data are typically noisier than steady-state operation,
they are critical for capturing the actual dynamics of industrial
gas turbine behavior and ensuring that predictive models
remain robust under realistic operating conditions.

G. Research Originality and Contribution

It addresses unexamined gaps in emissions monitoring, such
as the need to incorporate environmental factors into gas
turbine emissions models and to classify data into startup,
steady-state, and transient phases. The originality is further
supported by the focus on creating a balanced model that
combines multiple performance metrics, a feature uncommon
in traditional emissions monitoring studies.

For academics, it advances the field of emissions prediction
by proposing a new framework that balances multiple factors
(accuracy and computational efficiency) and leverages the
strengths of different machine learning models in an ensemble.
For the industry, the outcomes of this research could provide
more reliable, cost-effective emissions-monitoring solutions
better suited for real-time applications.

III. METHODOLOGY

A. Data Acquisition and Preprocessing

For the study, a compressor unit powered by a gas turbine
and operating at a low pressure is chosen. The suction pressure
is 30 psig, the discharge pressure is 210 psig, and the gas flow



rate is designed at a maximum of 100 MMscfd. A gas turbine
drives the low-pressure compression system with a capacity
of 39,520 horsepower (hp). Historical and real-time data were
collected from multi-year gas turbine operations. Preprocess-
ing steps include outlier removal, normalization, and feature
selection based on correlation and mutual information scores
[17].

Parameters such as load expressed in head of energy or as a
percentage of capacity, fuel flowrate, turbine inlet temperature,
compressor discharge pressure, exhaust gas temperature, air-
fuel ratio, and ambient conditions provide a comprehensive
view of the turbine’s performance under various scenarios.
By analyzing these variables collectively, clustering techniques
can effectively differentiate between regimes or conditions
such as startup, steady-state, and transient operations, each of
which visualizes unique emission characteristics and system
dynamics.

B. Collection of the Data

The used dataset is Process Historian Data with the duration
of January 1, 2021 to December 31, 2024 with 5 minutes
sampling rate. A total dataset of 101,120 for each 15 input
and 4 output variables. In this research the threshold used for
startup if LOAD =<30%, steady state if LOAD >30%, and
transient of changes of the LOAD >10% in 5 minutes.

C. Optimum Data Split

The ratio of training to test data should be determined by
the model’s complexity and the number of parameters in the
dataset. In case there are three sets, the optimal dataset split
sizes should be as per [18].

Split ratio = p :
√
p : (

√
p+ 1) (1)

where p is the number of parameters. In this research, the
parameters are 19, and the split ratio is 68.3%:15.7%:16.1%.

D. Hybrid Stacked Ensemble

The proposed model integrates XGBoost, DT, and SVM
as heterogeneous base learners, each contributing unique al-
gorithmic strengths. The DT offers high interpretability and
captures rule-based hierarchical relationships between pro-
cess parameters and emission outputs. The SVM introduces
strong generalization capability through non-linear kernel
mapping, effectively handling complex boundaries and multi-
dimensional feature interactions. Meanwhile, XGBoost, a
gradient-boosting ensemble algorithm, provides computational
efficiency and robustness by combining multiple weak learners
and applying regularization to prevent overfitting.

This combination is referred to as a hybrid ensemble be-
cause it integrates base models derived from different learning
paradigms, tree-based (DT, XGBoost) and support vector-
based (SVM), to leverage their complementary characteris-
tics. Tree-based models excel at handling feature interactions,
categorical variables, and interpretability, while SVMs offer
greater precision in high-dimensional, non-linear regions of
the feature space. By merging these algorithmic approaches,

the hybrid structure achieves a balance between accuracy,
generalization, and explainability.

The outputs of the three base learners are combined by a
meta-learner using a weighted averaging strategy. This stack-
ing mechanism ensures that the meta-learner learns the optimal
weights for each base learner’s predictions, thereby improving
overall performance and stability across different operational
regimes. As a result, the hybrid ensemble not only enhances
predictive accuracy but also maintains interpretability and
computational efficiency suitable for industrial deployment.

E. Selected Model Algorithms Performance Assurance

To ensure the long-term effectiveness of the selected ma-
chine learning algorithm under continuously changing opera-
tional conditions, it is essential to develop a resilient, adaptive
model that can respond to variations in process behavior or
data distribution. One approach to achieving this is through
mechanisms for continuously validating model performance,
enabling the system to detect changes in input characteristics
or predictive accuracy.

In deployment, this requires real-time error monitoring
using metrics such as MAPE and RMSE, which are compared
against actual measured outcomes. Additionally, it is critical
to evaluate model performance across varying operational
regimes, such as transient, steady-state, and startup conditions,
and, where applicable, to incorporate measures of predictive
confidence (e.g., prediction intervals).

When error metrics exceed predefined thresholds, the sys-
tem should automatically initiate model retraining to maintain
predictive reliability and support robust performance in dy-
namic industrial environments. In accordance with industrial
application, the MAPE of all predictive models was con-
strained to a maximum threshold of 5%, ensuring compliance
and operational reliability.

IV. RESULT

A. Segmentation of Gas Turbine Dynamic Operations Phase

Startup phase: this phase involves ignition and early ramp-
up. The turbine is unstable, with frequent changes in flow rate,
temperature, and pressure. Low load or near-idle conditions are
typical (e.g., < 20-30% capacity).

Full-load or steady-state phase: the turbine runs at optimal
efficiency with stable operating parameters. Emissions are
more predictable, and the system reaches thermal equilibrium.
Operation occurs at stable load and emission levels.

Transient phase: characterized by rapid load ramps or drops.
This regime is the most complex and typically the hardest
to model. It includes load ramp-ups, shutdown sequences, or
quick cycling between states.

B. SEM Model Performance

The results in Table I summarize the performance of the hy-
brid SEM model compared with its base learners. Among the
models, the Meta Learner achieves the lowest RMSE (1.576)
and MSE (2.484), indicating superior predictive precision and
generalization capability. The DT and XGBoost models also



Fig. 1. SEM model CO actual-predicted plot

perform competitively with similar error levels, whereas the
SVM shows the highest errors and lowest R2 value (0.813),
reflecting weaker predictive reliability. Overall, the stacked
ensemble effectively integrates the strengths of individual
learners, providing the best balance between accuracy and
robustness for NO emission prediction.

TABLE I
SEM MODEL PERFORMANCE METRICS

Target Model RMSE MAPE R2

CO XGBoost 1.623771 1.418681 0.973689
CO DT 3.706039 1.139995 0.975010
CO SVM 11.061794 5.392608 0.777366
CO Meta-learner 3.607409 1.307361 0.976323

CO2 XGBoost 0.250904 0.606337 0.993696
CO2 DT 0.241270 0.468250 0.994171
CO2 SVM 0.849401 3.001372 0.927756
CO2 Meta-learner 0.235239 0.546052 0.994459

NO XGBoost 1,623715 3.070087 0.945388
NO DT 1.628333 2.591217 0.945076
NO SVM 3.003000 8.655562 0.813198
NO Meta-learner 1.576150 2.860436 0.948540

SO2 XGBoost 1.602449 9.127876 0.964480
SO2 DT 1.259190 3.802677 0.978069
SO2 SVM 4.367073 125.314233 0.736211
SO2 Meta-learner 1.320990 7.077160 0.975863

The R2 comparison plots collectively demonstrate that the
proposed XGBoost-DT-SVM model achieves strong predictive
performance across all emission parameters (CO, CO2, SO2,
and NO). For CO and CO2, both the DT and meta-learner
attain near-perfect coefficients of determination (R2 > 0.97),
indicating that the ensemble effectively captures both linear

Fig. 2. SEM model CO2 actual-predicted plot

and nonlinear relationships with minimal residual error. The
meta-learner slightly outperforms the base models, confirming
the benefit of combining diverse learners to improve gener-
alization. For SO2 and NO, the DT and meta-learner again
deliver superior accuracy (R2 > 0.94), while SVM performs
comparatively weaker due to its sensitivity to high variance
and complex operational dynamics. Overall, the ensemble con-
sistently enhances robustness and stability, minimizing overfit-
ting while maintaining high interpretability and computational
efficiency, making it well-suited for real-time industrial PEMS
deployment.

The Figure 1 present scatter plot of actual versus predicted
CO values, demonstrating a strong positive linear correlation,
with data points closely aligned along the 45◦ reference line.
This alignment indicates that the stacked ensemble effectively
captures the underlying emission behavior of CO with minimal
systematic bias. The dense clustering of points near the diago-
nal suggests high predictive accuracy and stable generalization
across different operating conditions. Only a small dispersion
is observed at higher CO values, likely reflecting transient load
variations or sensor noise. Overall, the model demonstrates
reliable estimation and confirms the robustness of the hybrid
ensemble framework for accurately predicting CO emissions.

The Figure 2 exhibits a strong linear correlation, with most
data points tightly clustered along the 45◦ reference line.
This close alignment demonstrates that the stacked ensemble
accurately captures the underlying CO2 emission behavior
across varying operational conditions. The minimal deviation
at lower concentrations indicates a slight underestimation
during transient states, likely due to short-term fluctuations in
combustion dynamics. Overall, the model delivers excellent



Fig. 3. SEM model SO2 actual-predicted plot

predictive accuracy, confirming the ensemble’s robustness and
reliability in estimating CO2 emissions.

The Figure 3 reveals a strong positive correlation, with most
data points distributed closely along the 45◦ reference line.
This indicates that the stacked ensemble effectively captures
the nonlinear relationships governing SO2 emission behavior.
While a few isolated points appear at higher concentrations,
likely due to transient operating conditions or measurement
uncertainty, the overall trend remains consistent and accurate.
The close alignment between predicted and actual values
confirms the ensemble model’s ability to generalize well across
diverse turbine conditions, resulting in reliable SO2 emission
estimates.

The Figure 4 illustrates the correlation between the actual
and predicted NOx emission values produced by the SEM
model. A strong linear alignment of data points along the 45°
reference line indicates that the ensemble model effectively
learns the nonlinear relationships between input parameters
and emissions across varying turbine operating conditions. The
tight clustering of points around the diagonal demonstrates
excellent agreement between observed and predicted values,
confirming the model’s high accuracy and minimal systematic
bias. Only a limited number of data points deviate significantly
from the reference line, mainly in higher regions, suggesting
occasional underestimation or overestimation under transient
or high-load combustion scenarios, conditions that typically
exhibit rapid variations in temperature and fuel–air mixing.
The relatively uniform spread along the regression line also
suggests that the model maintains stable predictive perfor-
mance across the entire emission range, without significant
skewness.

Fig. 4. SEM model NO actual-predicted plot

The use of XGBoost, Decision Tree, and SVM as base
learners enables the stacked ensemble to capture both localized
nonlinear behavior and global emission trends efficiently. This
synergistic combination improves generalization and reduces
variance compared to individual models. Overall, the figure
demonstrates that the hybrid approach achieves robust pre-
dictive accuracy and strong generalization for NOx emission
monitoring, making it suitable for real-time PEMS deployment
in industrial gas turbine environments where accuracy, com-
putational efficiency, and regulatory compliance are critical
operational requirements.

V. DISCUSSION

A. Model Performance and Comparative Insights

Tree-based learners, especially XGBoost and Decision Tree,
delivered the highest accuracy and stability, consistent with
prior findings on their strength in handling structured industrial
data. Incorporating SVM in the ensemble improved the capture
of fine nonlinear patterns, particularly during transient load
shifts, while the ElasticNet meta-learner effectively balanced
these complementary behaviors to reduce variance. Overall,
the heterogeneous stacking strategy provided stronger gener-
alization than any single or homogeneous model.

B. Regime-Dependent Emissions Characteristics

Segmenting the dataset into startup, steady-state, and tran-
sient regimes enabled clearer interpretation of emission be-
havior. Startup conditions showed elevated CO and SO2 due
to incomplete combustion, while transient phases introduced
noise and lag effects, challenging all base models. Despite this,



the stacked ensemble remained accurate across regimes, out-
performing traditional PEMS approaches that assume uniform
operating conditions. Steady-state periods produced the lowest
residuals, confirming their value for calibration.

C. Comparison with Previous Studies

Earlier hybrid models (e.g., ANN-SVM, GRNN-GA) of-
fer high accuracy but suffer from limited interpretability
and heavy computational demand. The proposed ensemble
preserves transparency while achieving comparable or better
accuracy at lower runtime cost. Compared with deep archi-
tectures such as LSTM, the stacked model achieves similar
R2 scores with significantly reduced training requirements.
These results extend findings by [19] and [20], showing that
optimized stacking can surpass both standalone and sequential
hybrid learners for multi-emission prediction.

VI. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

The XGBoost-DT-SVM stacked ensemble, combined with
an ElasticNet meta-learner, offers a robust and efficient PEMS
solution for industrial gas turbines. The model achieved MAPE
< 5% and R2 ≈ 0.95, outperforming all base learners in accu-
racy and stability. Its regime-aware design effectively captures
nonlinear and transient emission dynamics, positioning it as
a viable, cost-effective alternative to conventional CEMS for
real-time monitoring and compliance assurance.

B. Recommendations and Future Works

Industrial deployment should integrate the stacked ensemble
into a full PEMS workflow with sensor validation, real-
time preprocessing, and periodic recalibration. Coordination
between data scientists and field engineers is essential to
align retraining schedules with maintenance cycles. Regula-
tory bodies should consider certifying validated data-driven
PEMS frameworks when they consistently meet compliance
thresholds.

Future research should incorporate incremental or online
learning to address operational drift, sensor degradation, and
fuel variability. Integrating explainability together with un-
certainty quantification would also improve traceability and
auditability of model outputs, strengthen operator confidence,
and support regulatory acceptance by providing defensible
evidence of key emission drivers and quantified prediction
reliability across operating regimes.
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