

Broad-Range Null-Steering Reception in Multi-RSU Cooperative V2I-MIMO Transmission

Keishi Hijikata*, Sojin Ozawa*, Yuta Tsunoda*, Kotaro Fukue*, Yuki Sasaki*, Jin Nakazato*,
Haruki Osaki†, Tetsuya Iye† and Kazuki Maruta*

*Department of Electrical Engineering, Faculty/Graduate School of Engineering, Tokyo University of Science, Tokyo, Japan

†Kozo Keikaku Engineering Inc., Tokyo, Japan

Abstract—This paper proposes a post-coding weight for vehicles under high mobility in vehicle-to-infrastructure (V2I) cooperative multiple roadside units (RSUs) transmission system. In connected autonomous vehicles (CAVs), sharing high-resolution sensor data between RSUs and vehicles is vital for safety, requiring high transmission capacity to handle large amount of data volumes. This study focuses on cooperative multi-stream transmission from multiple RSUs with low spatial correlation to further enhance the per-vehicle transmission capacity. In V2I communication, the received signal interference from multiple RSUs is challenging owing to the vehicle mobility. This paper proposes broad-range null-steering (BRNS) postcoding scheme that ensures stable multi-stream spatial multiplexing reception for vehicles under high mobility. Computer simulation demonstrates that stable communication can be achieved by employing BRNS at the receiver side.

I. INTRODUCTION

In connected autonomous vehicles (CAVs), high-resolution sensor data must be shared in real time between vehicles and roadside units (RSUs), which enables highly accurate self-localization and contributes to safe driving [1]. To realize this goal, the use of millimeter wave (mmWave) bands that support large-capacity transmission is essential [2,3]. However, in mmWave environments, line-of-sight (LoS) propagation usually dominates, making multiple-input multiple-output (MIMO) spatial multiplexing difficult [4]. To address this limitation, coordinated beamforming and multi-stream transmission utilizing multiple RSUs with low spatial correlation are expected to be effective [5,6]. Nevertheless, in high-mobility environments, the nulls directed to different streams at the receiver side becomes outdated, leading to a degradation of spatial multiplexing performance.

To suppress the interference of received signals in the vehicle's mobility environment, broad-range null-steering (BRNS) steers additional nulls based on the angles of undesired vehicles and improves the suppression performance in downlink multi-user MIMO (MU-MIMO) system [7]. In [8], BRNS is combined with beam tracking based on QR decomposition (QRD)-based precoding weight [9], and its interference suppression performance is improved. This paper extends BRNS concept to the receiver side to further enhance transmission capacity per vehicle via cooperative transmission from multiple RSUs.

The rest of this paper is organized as follows. Section II briefly describes the system model. Sections III and IV present

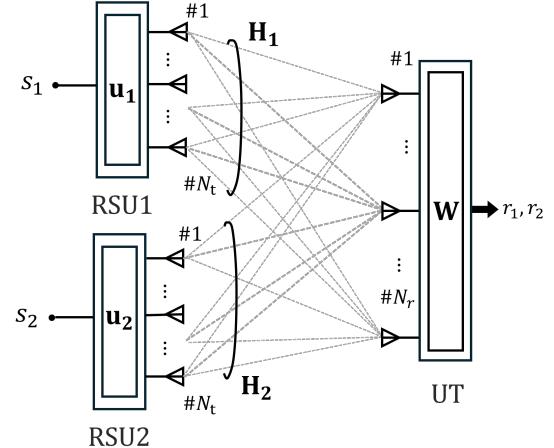


Fig. 1: System model.

the theory of the proposed scheme and computer simulation results. Finally, this paper is concluded in Sect. V.

Notations: Throughout the paper, matrices and vectors are written by boldfaced capital letters and lowercase letters. $(\cdot)^T$ and $(\cdot)^H$ indicate transpose and conjugate transpose, respectively.

II. SYSTEM MODEL

Consider a scenario where two RSUs, each equipped with N_t antennas, transmit different two data streams s_k ($k = 1, 2$) to a single vehicle as user terminal (UT) equipped with N_r antennas in the downlink, as shown in Fig. 1. Let $\mathbf{H}_k \in \mathbb{C}^{N_r \times N_t}$ represent the channel matrix between the k -th RSU and the vehicle, and $\mathbf{u}_k \in \mathbb{C}^{N_t \times 1}$ denote the transmit precoding weight at the k -th RSU. The vehicle generates the post-coding weight $\mathbf{w}_k \in \mathbb{C}^{1 \times N_r}$ that perform null-steering to suppress interference from the other RSU while enhancing the desired signal in the intended direction as

$$\mathbf{w}_k \mathbf{H}_i \mathbf{u}_i \neq 0, \text{ for } i = k, \quad (1)$$

$$\mathbf{w}_k \mathbf{H}_i \mathbf{u}_i = 0, \text{ for } i \neq k, \quad (2)$$

This enables the spatial multiplexing reception of two simultaneous streams. Let the received signal r_k at the vehicle is expressed as

$$r_k = \mathbf{w}_k (\mathbf{H}_k \mathbf{u}_k s_k + \mathbf{H}_i \mathbf{u}_i s_i + \mathbf{z}_k), \text{ for } i \neq k, \quad (3)$$

where $\mathbf{z}_k \in \mathbb{C}^{N_r \times 1}$ is the additive white Gaussian noise (AWGN) vector with variance σ^2 . The signal-to-interference-plus-noise power ratio (SINR) for the k -th stream at UT is then calculated as

$$\text{SINR}_k = \frac{|\mathbf{w}_k \mathbf{H}_k \mathbf{u}_k|^2}{|\mathbf{w}_k \mathbf{H}_i \mathbf{u}_i|^2 + \sigma^2}. \quad (4)$$

However, in the vehicle's high mobility environments, the nulling directions to RSUs may deviate from the original direction, resulting in interference leakage and degradation of spatial multiplexing capability.

III. PROPOSAL: BRNS-BASED MULTI-STREAM RECEPTION

Concept of BRNS is to perform additional null-steering based on the angles of undesired UTs to improve the interference suppression performance. Section III-A shows the comprehensive description of BRNS and the post-coding weight design of QRD-based BRNS is presented in section III-B.

A. Broad-Range Null-Steering (BRNS)

Broad-range null-steering (BRNS) creates additional nulls based on the knowledge of angles of departure (AoD) or angles of arrival (AoA) to undesired targets. Assuming a uniform planar array (UPA) with size of $M \times N$ ($= N_r$), the array response coefficient of the (m, n) -th antenna element to the target, $h_{m,n}$ is expressed as

$$h_{m,n} = \exp \left(j \frac{2\pi l}{\lambda} [(m-1) \cos \theta \sin \phi + (n-1) \cos \phi] \right), \quad \forall m \in \{1, \dots, M\}, \quad \forall n \in \{1, \dots, N\}, \quad (5)$$

where l and λ denote the inter-element spacing of the antenna and the wavelength. ϕ and θ indicate the azimuth and elevation directions of the target. Array response vector can then be represented as

$$\mathbf{h}(\phi, \theta) = [h_{1,1} \dots h_{M,1} \quad h_{1,2} \dots h_{m,n} \dots h_{M,N}]. \quad (6)$$

The post-coding weight is designed to simultaneously nullify both the latest interference direction $\mathbf{h}(\phi, \theta)$ and the directionally offset channel $\mathbf{h}(\phi + \alpha_q, \theta + \beta_q)$ [8].

B. Receiver-Side BRNS Postcoding Design

The originally proposed BRNS assumed downlink transmission, while in this paper the weights are designed at the UT side as postcoding. Precisely, null-steering should be performed to the effective channel space that is the combination of channel and RSU beamforming weights $\mathbf{H}_k \mathbf{u}_k \in \mathbb{C}^{N_r \times 1}$. In a LoS-dominant environment, this can be achieved based solely on the null-steering to the direction of interfering source.

First, the matrix aggregating the Q interference vectors for the postcoding weight vector design to receive the k -th signal stream, $\mathbf{H}_k^{\text{int}} \in \mathbb{C}^{N_r \times Q}$, can be defined as

$$\mathbf{H}_k^{\text{int}} \triangleq [\mathbf{h}(\phi_i, \theta_i), \mathbf{h}(\phi_i + \alpha_1, \theta_i + \beta_1), \dots, \mathbf{h}(\phi_i + \alpha_{Q-1}, \theta_i + \beta_{Q-1})]. \quad (7)$$

Here, $\mathbf{h}(\phi_i, \theta_i) \in \mathbb{C}^{N_r \times 1}$ ($i \neq k$) is the array response vector observed from the receiver side to the i -th interference source, i.e. the i -th RSU. Based on [9], the projection matrix $\mathbf{V}_k \in \mathbb{C}^{N_r \times N_t}$

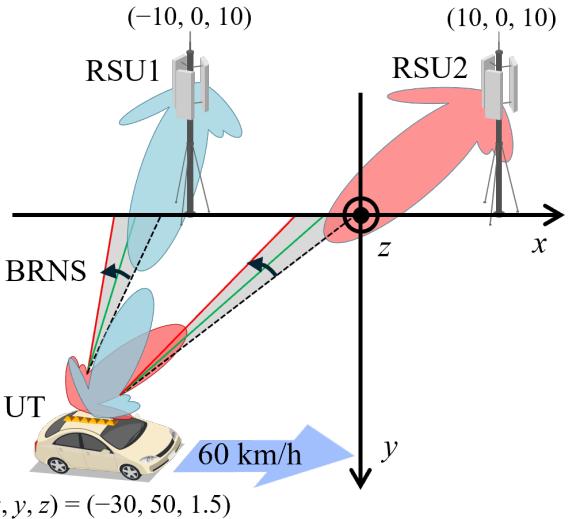


Fig. 2: Simulation environment.

TABLE I: Simulation Parameters.

Parameters	Values
Carrier Frequency	28 GHz
Channel Model	LoS, Free-space propagation
Tx/Rx Beamforming Update Interval	0.01 s
Rx Null-steering update interval	0.1 s
Number of RSUs	2
Number of UTs	1
UT Speed	60 km/h
Number of Antennas (RSU / UT)	100 (10x10) / 10 (10x1)
Antenna Height (RSU / UT)	10 / 1.5 m
Antenna Gain (RSU / UT)	8 / 1 dB
Transmission Power / Feeder Loss	30 dBm / 3 dB
Receiver Noise Power	-88 dBm

orthogonal to the interference subspace is obtained through the following procedure.

$$\mathbf{H}_k^{\text{int}} = \mathbf{Q}_k \mathbf{R}_k, \quad (8)$$

$$\mathbf{V}_k = \mathbf{I}_{N_r} - \mathbf{Q}_k \mathbf{Q}_k^H, \quad (9)$$

where $\mathbf{Q}_k \in \mathbb{C}^{N_r \times Q}$ and $\mathbf{R}_k \in \mathbb{C}^{Q \times Q}$ is the unitary matrix and the upper triangular matrix, respectively.

Finally, the post-coding weight vector for k -th UT \mathbf{w}_k is derived by combining the matrix \mathbf{V}_k with the beamforming (maximal ratio combining) weight corresponding to the AoA of the k -th signal stream, that is the complex conjugate vector of $\mathbf{h}(\phi_k, \theta_k) \in \mathbb{C}^{N_r \times 1}$,

$$\mathbf{w}_k = \{\mathbf{V}_k \mathbf{h}_k(\phi_k, \theta_k)\}^H. \quad (10)$$

IV. COMPUTER SIMULATION

The simulation was conducted in a straight road environment, as shown in Fig. 2. There are two RSUs and one UT having linear array antenna. We assume that AoAs for the array response vector design in (6) are ideally estimated without noise-induced estimation errors. The following two schemes are compared in the system level simulation:

- 1) QRD : QRD-based orthogonalization without BRNS [9]
- 2) BRNS: QRD-based orthogonalization with BRNS (Proposal)

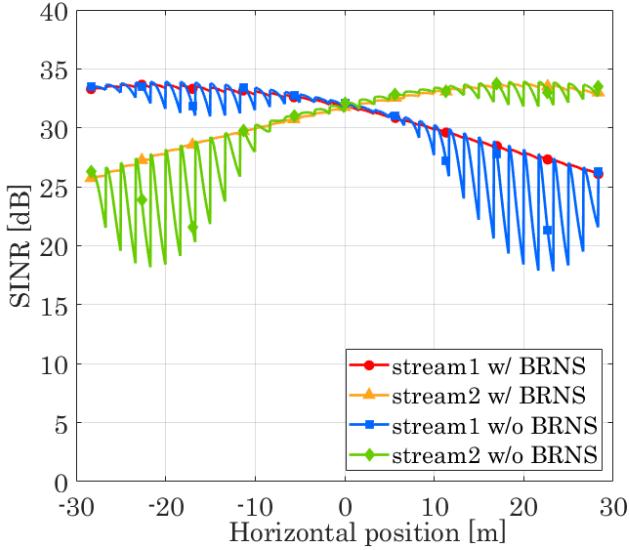


Fig. 3: SINR transition.

In the proposed BRNS, additional null-steering was implemented at horizontal direction as $(\alpha_1, \alpha_2) = (1^\circ, 2^\circ)$ degrees relative to the direction of the UT. Both the RSU and the UT are assumed to update their beam directions every 10 ms [3], while the null-steering at the UT is updated every 100 ms. Detailed simulation parameters are described in Table I.

Fig. 3 shows the SINR transition of each stream for the proposed scheme and the conventional QRD based post-coding. SINR of the conventional scheme without BRNS rapidly decreases due to the leakage of inter-stream interference whereas the proposed scheme exhibits more stable SINR transition. Fig. 4 shows the cumulative distribution functions (CDF) of SINR, confirming that the overall behavior of the proposed scheme remains stable better than the conventional one.

V. CONCLUSION

This paper proposed a receiver-side BRNS to stably receive multiple data stream provided by cooperated multiple RSUs. Computer simulation demonstrated its effectiveness in high mobility environment. Our future work is to extend the results to a more advanced setting where each RSU supports multi-user MIMO for multiple UTs, aiming to establish cooperative joint multi-point transmission and reception that ensures stable system capacity enhancement.

ACKNOWLEDGMENTS

This research was supported by Fundamental Technologies for Sustainable Efficient Radio Wave Use R&D Project (FORWARD) from Ministry of Internal Affairs and Communication (receipt number JPMI240310001), in part by JST SPRING Grant Number JPMJSP2151, Japan.

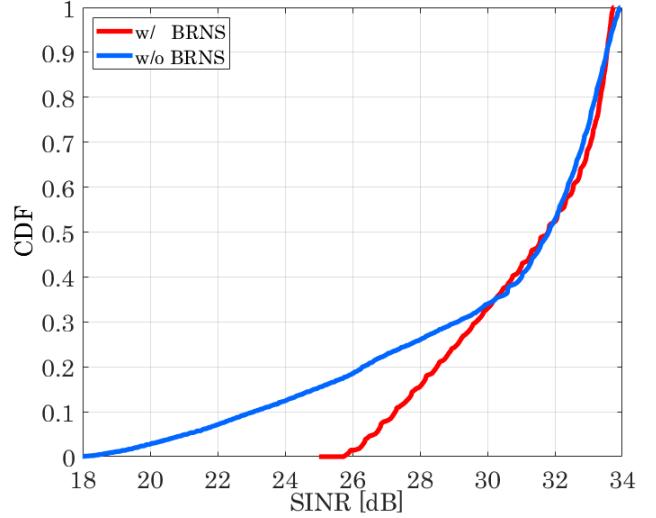


Fig. 4: Cumulative distribution function of SINR.

REFERENCES

- [1] J. Rios-Torres and A. A. Malikopoulos, "A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps," *IEEE Transactions on Intelligent Transportation Systems*, vol. 18, no. 5, pp. 1066–1077, May 2017.
- [2] M. B. Mollah, H. Wang, M. A. Karim, and H. Fang, "mmwave enabled connected autonomous vehicles: A use case with v2v cooperative perception," *IEEE Network*, vol. 38, no. 6, pp. 485–492, 2024.
- [3] K. Maruta, J. Nakazato, K. Suzuki, H. Dou, R. Iwaki, S. Ozawa, Y. Sasaki, H. So, and M. Tsukada, "Millimeter-wave fast beam tracking enabled by RAN/V2X cooperation," in *2024 International Conference on Artificial Intelligence in Information and Communication (ICAIC)*, Feb 2024, pp. 388–392.
- [4] V. Raghavan, A. Partyka, A. Sampath, S. Subramanian, O. H. Koymen, K. Ravid, J. Cezanne, K. Mukkavilli, and J. Li, "Millimeter-wave mimo prototype: Measurements and experimental results," *IEEE Communications Magazine*, vol. 56, no. 1, pp. 202–209, 2018.
- [5] K. Suzuki, J. Nakazato, Y. Sasaki, K. Maruta, M. Tsukada, and H. Esaki, "Toward b5g/6g connected autonomous vehicles: O-ran-driven millimeter-wave beam management and handover management," in *IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)*, 2024, pp. 1–6.
- [6] J. Nakazato, S. Ozawa, Y. Sasaki, M. Hasegawa, S. Takaya, H. Osaki, Y. Susukida, T. Iye, and K. Maruta, "Toward 6G mobility networks: Cell-free cooperative distributed beamforming for interference management," in *2025 Sixteenth International Conference on Ubiquitous and Future Networks (ICUFN)*, July 2025, pp. 114–118.
- [7] Y. Sasaki, S. Ozawa, K. Arai, J. Nakazato, M. Tsukada, and K. Maruta, "Location-based broad-range null-steering in V2X multiuser MIMO transmission," in *2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)*, 2024, pp. 1070–1071.
- [8] S. Ozawa, Y. Sasaki, J. Nakazato, and K. Maruta, "Optimized broad-range null-steering incorporated with O-RAN-based beam tracking for millimeter-wave V2X," in *2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring)*, June 2025.
- [9] Y. Sasaki, K. Arai, and K. Maruta, "QRD-based precoding design for multiuser massive MIMO null-space expansion," *IEICE Communications Express*, vol. 13, no. 12, pp. 509–512, 2024.