
Examining Software Engineering Practices in the
Pre-AI and Post-AI Era

Oluwatito Ebiwonjumi 1, Love Allen Chijioke Ahakonye 2, Dong-Seong Kim 3, 4

1 Independent Researcher, Nashville, Tennessee, USA
2 ICT-Convergence Research Center, Kumoh National Institute of Technology, Gumi, South Korea

3 IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
4 NSLab Co. Ltd., Gumi, South Korea, Kumoh National Institute of Technology, Gumi, South Korea

titoebiwonjumi@gmail.com, (loveahakonye, dskim)@kumoh.ac.kr

Abstract—The rise of generative artificial intelligence (AI)
coding tools such as GitHub Copilot and ChatGPT has reshaped
software development, yet their impact on open-source software
quality remains unclear. This study conducts a longitudinal anal-
ysis of code review and bug-fix patterns across six major Python
and JavaScript repositories, pandas, scikit-learn, TensorFlow,
Django, React, and Node.js, comparing the pre-AI (2018–2021)
and post-AI (2022–2025) periods. Using GitHub pull request data,
we examine changes in reviewer participation, review duration,
and comment density, alongside post-merge bug-fix frequencies.
Results show a mild decline in review intensity after widespread
AI adoption, alongside stagnant or increased bug-fix activity,
suggesting no corresponding improvement in software quality.
These findings suggest potential overreliance on AI-generated
code and highlight critical trade-offs between development speed
and code robustness, offering empirical evidence for a more
cautious, evidence-based integration of generative AI tools in
software engineering practice.

Index Terms—AI, Bug Fixes, Code, LLM, Review, Software
Engineering

I. INTRODUCTION

The rapid evolution of software engineering practices is
continually driven by technological advancements that aim to
enhance productivity and product quality [1]. Key stages in
the software development lifecycle that significantly impact
final software quality are code review and documentation [2].
Code review serves as a critical mechanism for defect detec-
tion, knowledge sharing, and adherence to coding standards,
while comprehensive documentation ensures maintainability,
usability, and long-term project viability [3]. The emergence of
large language models (LLMs) represents a significant shift in
software development [4]. Trained on extensive code and text
data, these models demonstrate strong capabilities in under-
standing context, generating human-like text, and automating
complex tasks [5]. Their use is increasing across essential
engineering functions, including automated code generation,
bug-fix suggestions, and documentation writing.

Generative artificial intelligence (AI) coding assistants like
GitHub Copilot and ChatGPT have rapidly gained adoption,
with GitHub reporting over 1.2 million Copilot users by
2023 [6]. Industry claims suggest productivity improvements
of up to 55%, yet the impact on code quality remains largely
unexplored [7]. Open-source software (OSS) provides an ideal
context to examine this question, as OSS projects maintain

transparent development histories, employ rigorous review
processes, and serve as foundations for countless downstream
applications [7].

Despite the enthusiasm surrounding generative AI coding
tools, empirical research on their impact on software quality
remains surprisingly limited [8]. Existing studies have primar-
ily focused on productivity metrics, such as completion speed,
acceptance rates of AI suggestions, and developer satisfac-
tion [9]. While these measures are essential, they provide an
incomplete picture. A developer may write code faster with AI
assistance, but if that code contains more subtle bugs, requires
more extensive post-merge fixes, or receives less thorough
review due to false confidence in AI-generated suggestions,
the net impact on software quality may be neutral or even
negative. This study addresses this gap by investigating code
review and bug-fix patterns in major open-source repositories
before and after the rise of generative AI tools.

Specifically, we pose the following research questions.

• RQ1: How has code review intensity changed in the
post-AI era compared to the pre-AI era, as measured by
the number of reviewers, review duration, and comment
density per pull request?

• RQ2: Has the frequency and timing of post-merge bug-fix
commits changed between the pre-AI and post-AI eras?

• RQ3: Is there a relationship between changes in review
patterns and changes in bug-fix rates, and has this rela-
tionship shifted over time?

• RQ4: Do these patterns differ between Python and
JavaScript ecosystems, or between library-focused and
framework-focused projects?

We focus on Python and JavaScript for their high AI
adoption rates and diverse domains. Our dataset includes six
major repositories: pandas, scikit-learn, TensorFlow, Django
(Python), React, and Node.js (JavaScript).

II. RELATED WORK

Existing research provides a basis for understanding AI
capabilities and limitations in software development. However,
a comprehensive view of the impact on quality across both
code review and documentation is less common.



Fig. 1: Software Engineering Practices Analysis: Pre-AI vs Post-AI

A. AI-Assisted Code Generation:

A study examining AI code generation capabilities and
adoption [10] demonstrates that Codex solves 28.8% of pro-
gramming tasks correctly, while Ziegler et al. [11] found
that developers accept 26% of Copilot suggestions. Security
studies by Nguyen et al. [12] and Pearce et al. [13] revealed
vulnerabilities in 40% of AI-generated security-relevant code.
However, most studies use controlled experiments or short-
term observations rather than longitudinal analyses of real-
world data.

B. Code Review Effectiveness:

Recent empirical studies have characterized modern code
review practices and their effectiveness. Research comparing
tool-assisted and over-the-shoulder review techniques found
that tool-assisted reviews generate approximately twice as
many accepted comments, with comment density correlations
ranging from -0.42 to -0.33 with review size [14]. Studies
on human error mechanisms in code review demonstrated
400% improvement in defect detection sensitivity and 200%
improvement in precision [15]. Additional work has exam-
ined practitioners’ expectations for clear code review com-
ments [16] and review practices in research software engi-
neering contexts [17]. However, this literature has not yet
systematically examined the impact of AI code-generation
tools on review thoroughness.

C. Software Quality Metrics:

Recent work on software quality prediction has advanced
beyond traditional metrics. Studies exploring alternatives to
size metrics found that network dependency metrics provide
better insights than lines of code for explainable defect predic-
tion [18]. Deep learning approaches in static metric-based bug
prediction have shown effectiveness [19], while new metrics
based on class complexity, coupling, and cohesion achieved
2% improvement in area under the curve (AUC) and precision
over existing suites [20]. Research on precise defect-number
prediction [21] and on the applications of complex network
theory [22] have further advanced the field. Performance bug-
prediction using specialized code metrics shows that Random
Forest and eXtreme Gradient Boosting achieve a median AUC

of 0.84 [23]. However, systematic application to the pre/post-
AI transition remains absent.

III. METHODOLOGY

A. Research Design

We employ a longitudinal comparative study with two time
windows: Pre-AI era (2018-01-01 to 2021-12-31) and Post-
AI era (2022-01-01 to 2025-11-11), using GitHub Copilot’s
June 2022 public release as the inflection point, presented in
Figure 1.

B. Repository Selection

We selected six repositories based on: (1) activity before and
after 2022, (2) high contribution rates, (3) diverse domains, and
(4) ecosystem representation. Selected projects include pandas
(data analysis), scikit-learn (machine learning), TensorFlow
(deep learning), Django (web framework), React (UI library),
and Node.js (runtime).

C. Data Collection

Using GitHub’s Representational State Transfer (REST)
and GraphQL application programming interfaces (APIs), we
collected two types of data for each repository.

Pull Request Data: For each merged pull request (PR),
we extracted: creation date, merge date, number of review
comments, files changed, lines added/deleted, author informa-
tion, and reviewers. We calculated derived metrics, including
merge duration (hours and days) and code churn (additions +
deletions).

Commit Data: We collected all commits and classified
them as bug-fixes or non-bug-fixes using keyword matching
on commit messages. Commits containing terms “fix”, “bug”,
“issue”, or “regression” were classified as bug-fixes, consistent
with prior work on automated commit classification. We
excluded documentation-only PRs, dependency updates, and
unmerged PRs from the PR analysis.

D. Metrics

The study employed the review and bug-fix evaluation
metrics.



1) Review Metrics: The review metrics include the number
of unique reviewers (reviewers_count), the duration from
creation to merge (review_duration), the total number
of review comments (comments_per_pr), and the initial
response time (time_to_first_review).

2) Bug-Fix Metrics: Bug-fix metrics include the propor-
tion of pull requests (PRs) requiring subsequent fixes within
30/60/90-day windows (bug fix rate), the time from merge to
the first fix (time to bug fix), and the number of fixes per
original PR (bug fix count).

E. Analysis Methods

We employ Welch’s t-test to compare the means of normally
distributed metrics between the pre-AI and post-AI eras, as in
Equation 1.

t =
X̄1 − X̄2√

s21
n1

+
s22
n2

. (1)

For categorical proportions (bug-fix rates), we use the chi-
square test in Equation 2.

χ2 =
∑ (Oi − Ei)

2

Ei
. (2)

We also apply the Mann-Whitney U test for nonparametric
validation with a significance threshold of α = 0.05.

F. Threats to Validity

Internal: Changes cannot be solely attributed to AI tools,
as other factors like team changes or project maturity may also
play a role. External: Findings may not generalize beyond the
chosen projects or ecosystems. Construct: Bug identification
heuristics might overlook or misclassify issues, and review
metrics may fail to fully capture quality. These threats are mit-
igated by employing multiple metrics, conducting sensitivity
analysis, and being transparent about limitations.

IV. RESULTS

A. Dataset Overview

Our dataset comprises 30,000 PRs from the pre-AI era
(2018-2021) and 27,896 PRs from the post-AI era (2022-2025)
across six repositories, totaling 57,896 pull requests analyzed.
The commit analysis includes 30,000 pre-AI commits and
27,896 post-AI commits. Table I presents the distribution and
bug-fix rate changes.

TABLE I: Dataset Distribution and Bug-Fix Rate Changes

Repository Pre-AI Post-AI Bug-fix %
Commits Commits Change

pandas ∼5,000 ∼4,600 31.32% → 49.32%
scikit-learn ∼5,000 ∼4,600 33.34% → 24.32%
React ∼5,000 ∼4,600 33.94% → 47.36%
Node.js ∼5,000 ∼4,600 43.94% → 39.70%
TensorFlow ∼5,000 ∼4,600 17.82% → 16.44%
Django ∼5,000 ∼4,600 54.58% → 56.35%

Total 30,000 27,896 35.82% → 37.99%

B. Bug-Fix Patterns (RQ2)

We identified bug-fix commits through keyword matching
(f̈ix,̈ b̈ug,̈ ı̈ssue)̈ in commit messages. The bug-fix commit
fraction increased from 35.82% (10,747 commits) in the pre-
AI era to 37.99% (10,598 commits) in the post-AI era, rep-
resenting a 6.1% relative increase (X = 29.09, p < 0.0001).
This finding contradicts the hypothesis that AI tools would
reduce bug rates and is statistically highly significant. Figure 2
displays the bug-fix commit fraction comparison. The increase
suggests that the post-AI era is associated with higher rates
of corrective commits, indicating potential quality challenges
despite productivity gains from AI tools.

Fig. 2: Bug-fix Commit Rate: Pre-AI vs Post-AI

Per-repository analysis reveals substantial variation in this
pattern. Four of six projects showed increased bug-fix rates,
with pandas and React showing dramatic increases (31.32% →
49.32% and 33.94% → 47.36% respectively). Notably, scikit-
learn bucked the trend with a decrease (33.34% → 24.32%),
while TensorFlow and Node.js showed modest decreases.
Django, already high in bug-fix commits pre-AI (54.58%),
increased slightly to 56.35%. The heterogeneity suggests that
project-specific factors (codebase maturity, testing practices,
and contributor experience) may moderate the impacts of AI
tools.

C. Code Review Intensity (RQ1)

Review intensity, measured by average review comments
per PR, decreased from 3.12 comments in the pre-AI era to
2.47 comments in the post-AI era, a 20.8% decline. The t-
test yielded t = 4.76, p ¡ 0.0001, while the Mann-Whitney U
test gave U = 76,587,570, p ¡ 0.0001, both confirming sta-
tistical significance. Figure 3 illustrates this comparison. The
decrease is statistically significant and practically meaningful,
suggesting reviewers are conducting less thorough reviews in
the post-AI era. Notably, the median remained at 0 comments
for both periods, indicating that many PRs receive no review
comments regardless of era. Distribution analysis reveals a
concerning shift toward less engagement:



Fig. 3: Code Review Intensity: Pre-AI vs Post-AI

PRs with 0 comments: 62.9% (pre-AI) → 69.1PRs with 1-5
comments: 22.9% (pre-AI) → 19.4PRs with 6-10 comments:
6.9% (pre-AI) → 5.4PRs with > 10 comments: 7.3% (pre-
AI) → 6.1The shift toward zero-comment PRs is particularly
notable, suggesting either increased confidence in code quality
(potentially misplaced given bug-fix rate increases) or reduced
reviewer capacity/engagement.

Fig. 4: PR Review Cycle Time: Pre-AI vs Post-AI

D. Summary of Key Metrics

Table II summarizes all measured metrics with statistical
test results.

E. PR Merge Time (RQ1 continued)

Time to merge PRs (filtered to ≤ 90 days) showed minimal
change: mean decreased from 5.4 days (pre-AI) to 5.3 days
(post-AI), a 3.0% reduction. The median shifted from 1.4 to
1.2 days, a 14.7% decrease. Statistical testing revealed t =
1.08, p = 0.2820 and Mann-Whitney U with p = 0.3886.
Figure 4 shows this temporal comparison. The change is not
statistically significant at the α = 0.05 level, suggesting that,
despite AI tools’ promise to accelerate development, actual PR

review and merge cycles have not changed substantially. The
lack of significant reduction, combined with decreased review
intensity, suggests that time savings from AI assistance may
not be translating into faster merge cycles, possibly because
other bottlenecks offset reduced review thoroughness.

F. PR Complexity Metrics (RQ1 continued)
We examined whether AI tools enabled different-sized

changes: Files changed per PR: Pre-AI mean = 19.5 files,
Post-AI mean = 7.8 files (t = 6.48, p< 0.0001). The 60%
reduction in files changed per PR is statistically significant,
suggesting PRs have become more focused and narrower in
scope in the post-AI era. The median remained stable at 2.0
files for both periods. Code churn (additions + deletions, 95th
percentile cap): Pre-AI mean = 59 lines, Post-AI mean = 69
lines (t = -7.60, p< 0.0001). Despite fewer files changed, the
code churn per PR increased by 17%, a statistically significant
shift. The median increased from 20 to 24 lines. This suggests
that while PRs touch fewer files, the changes within those files
are larger, potentially indicating more substantial modifications
per file.

G. Review-Quality Relationship (RQ3)
The divergent trends reveal a troubling pattern: review inten-

sity decreased by 20.8% while bug-fix rates increased by 6.1%.
In the pre-AI period, a more thorough review (measured by
comment volume) correlated with code quality. In the post-AI
period, this protective relationship appears to have weakened
despite unchanged merge times. PRs are receiving less scrutiny
(fewer comments, more zero-comment approvals) yet requir-
ing more subsequent bug fixes. This suggests that reviewers
may be overconfident in AI-generated or AI-assisted code,
assuming it requires less verification. Alternatively, increased
development velocity may have stretched reviewer capacity,
leading to a less thorough examination. The combination
of reduced review rigor and increased bug rates indicates a
quality-velocity trade-off that warrants attention.

H. Ecosystem Comparison (RQ4)
Python vs. JavaScript patterns: Analysis of the three Python

projects (pandas, scikit-learn, TensorFlow, Django) versus
two JavaScript projects (React, Node.js) reveals ecosystem
differences: Bug-fix rates: Python projects showed mixed
patterns (pandas +57%, scikit-learn -27%, TensorFlow -8%,
Django +3% change), while JavaScript projects also varied
(React +40%, Node.js -10%). No clear ecosystem-level pattern
emerges, suggesting project-specific factors dominate. Review
intensity: Both ecosystems experienced declines in review
comments, indicating a universal trend rather than language-
specific behavior.

PR complexity: The reduction in file changes and increase
in code churn occurred across both ecosystems, suggesting
standard shifts in development patterns. The lack of strong
ecosystem differentiation suggests that AI tool impacts may
be relatively universal across Python and JavaScript, possibly
because developers use similar tools (GitHub Copilot, Chat-
GPT) regardless of language.



TABLE II: Summary of Key Metrics Across Pre-AI and Post-AI Eras

Metric Pre-AI Post-AI Change Test Stat p-value Sig?
(2018-2021) (2022-2025)

Bug-fix Commit Fraction 0.358 0.380 +6.1 x2 = 29.09 < 0.0001 Yes
Avg Review Comments/PR 3.12 2.47 -20.8% t=4.76 < 0.0001 Yes
Avg PR Merge Time (days) 5.42 5.25 -3.0% t=1.08 0.2820 No
Files Changed/PR 19.5 7.8 -60.0% t=6.48 < 0.0001 Yes
Code Churn/PR (lines) 59 69 +17.0% t=-7.60 < 0.0001 Yes

I. Discussion

1) Key Findings: Our analysis reveals a concerning trend
following AI tool adoption: bug-fix commit rates rose by
6.1% (from 35.82% to 37.99%, p< 0.0001), while review
intensity dropped by 20.8% (from 3.12 to 2.47 comments per
PR, p< 0.0001). This suggests a potential over-reliance on
AI-generated code without corresponding quality assurance
adjustments. Despite AI’s productivity claims, merge times
remained stable (5.4 to 5.3 days, p = 0.2820), indicating no
acceleration in development. The decrease in review thorough-
ness points to a ”false economy” of faster but less careful
reviews, leading to more post-merge bugs. Additionally, while
PRs now touch 60% fewer files (19.5 to 7.8, p< 0.0001),
they exhibit 17% higher code churn per PR (59 to 69 lines,
p< 0.0001), suggesting that AI tools facilitate more focused
but denser changes within files.

2) Implications: For maintainers, the 6.2% rise in zero-
comment PRs (62.9% to 69.1%) highlights the need for
minimum review standards, especially for AI-assisted PRs, to
detect subtle AI-generated errors.

For organizations, the trade-off between productivity and
quality is clear. While AI tools can boost velocity (e.g., PRs
merged), a 20.8% reduction in review effort is offset by a
6.1% increase in corrective work, potentially neutralizing gains
when accounting for debugging time.

For tool developers, AI coding assistants should prioritize
quality alongside speed. Features like confidence scoring,
integration with review processes, and prompts for testing
and documentation are essential to support both reviewers and
authors.

For researchers, the impact of AI on code quality varies
by project, as seen in differing bug-fix rates (e.g., +57%
for pandas, -27% for scikit-learn). Future research should
examine factors like test coverage, contributor experience,
review culture, and codebase complexity.

3) Limitations: AI tool usage per PR cannot be directly
measured; observed patterns may be influenced by other
factors such as team changes or project maturity. Bug detection
via keyword matching may miss some issues. Our approach
aligns with prior work but results may not generalize outside
open-source or Python/JavaScript ecosystems. We measure
bug-fix commits, not defect rates, which could reflect in-
creased bug introduction, faster detection, or more corrective
commits. Decreased review intensity suggests quality concerns
rather than improved detection.

4) Future Work: Key directions include: (1) measuring
AI usage via integrated development environment (IDE) or
surveys, (2) controlled experiments with and without AI, (3)
qualitative studies on reduced review scrutiny of AI-assisted
code, (4) analysis of bug severity and time-to-fix, (5) expand-
ing to other languages and project types, and (6) longitudinal
tracking as tools and practices evolve. Understanding why
review thoroughness declines, whether due to confidence,
capacity, or complacency, is crucial for effective interventions.

V. CONCLUSION

This study provides empirical evidence of generative AI’s
impact on open-source code quality. Our findings suggest that
while AI tools may improve development velocity, they intro-
duce risks around review rigor and code quality that warrant
careful attention. The productivity-quality trade-off remains
real, and human oversight remains critical. We call for more
nuanced evaluation of AI coding tools that consider quality
outcomes alongside productivity gains, and for responsible
adoption practices that maintain software quality in the face
of rapid technological change.
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