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Abstract—Code comments and documentation are essential
for software maintainability, facilitating code understanding,
modification, and debugging. While generative artificial intel-
ligence (AI) coding tools have reshaped development practices
since 2022, their impact on commenting and documentation
remains uncharted territory. This paper presents an empirical
study examining documentation patterns in major open-source
repositories before (2018-2021) and after (2022-2025) the rise
of Al-assisted programming. We analyze commit histories from
six repositories (pandas, scikit-learn, TensorFlow, Django, React,
Node.js) across Python and JavaScript ecosystems, measuring
documentation commit ratios, commit message quality, and
documentation scope. Our findings reveal an 8.3% decrease
in documentation-focused commits and a 53.4% increase in
commit message detail between eras. We observe that commit
messages in the post-Al era contain 56.8% more words on
average (34.8 vs 22.2 words), with statistical significance (p ;
0.0001). Documentation commits also show an 84.9% reduction
in scope (260.7 vs 1,721.1 lines changed), though this change is not
statistically significant. These patterns suggest that Al tools may
be influencing how developers approach code documentation,
with potential implications for long-term maintainability. This
work provides empirical evidence to guide best practices for
documentation in Al-assisted development and highlights the
need for tooling that encourages comprehensive commenting
across code-generation methods.

Index Terms—Generative Al, code documentation, commit
messages, empirical software engineering, software maintainabil-
ity,

I. INTRODUCTION

Code documentation serves as the bridge between imple-
mentation and understanding. Well-documented code enables
maintenance, facilitates onboarding, prevents bugs through
clarity, and supports collaborative development [1]. Despite
its importance, documentation often receives insufficient at-
tention, with developers prioritizing feature delivery over com-
prehensive commenting [2]. The advent of generative Al tools
like GitHub Copilot and ChatGPT introduces a new variable
into this equation. Understanding the relationship between Al
adoption and documentation practices has significant implica-
tions for software quality and maintainability.

From a theoretical perspective, Al-assisted development
may alter documentation patterns through several mechanisms.
Cognitive load theory suggests that when Al tools reduce
the mental effort required for code generation, developers

may reallocate cognitive resources toward other activities,
potentially including documentation [3]. Alternatively, the
perceived self-explanatory nature of Al-generated code may
reduce documentation motivation, a phenomenon related to
the illusion of explanatory depth [4]. Additionally, dual-
process theory in human cognition suggests that Al assistance
may shift development from deliberative to more automatic
processing, potentially affecting the reflective practices that
produce quality documentation [5].

Two competing hypotheses emerge from these theoretical
considerations. First, Al tools might improve documentation
by automatically generating boilerplate comments or freeing
developer time for explanatory writing. Alternatively, Al-
generated code might arrive with minimal context, and de-
velopers may assume Al-produced code is self-explanatory,
reducing documentation effort. Understanding which pattern
dominates requires empirical investigation of real-world de-
velopment practices.

This study investigates documentation and commenting pat-
terns across the pre-Al (2018-2021) and post-Al (2022-2025)
eras through four research questions:

o RQ1: Has the proportion of documentation-focused com-

mits changed between pre-Al and post-Al eras?

e RQ2: Has commit message quality (length, detail)
changed between these periods?

e RQ3: What types of documentation changes (major
documentation updates, minor docstring edits, comment
additions) show the most substantial shifts?

¢ RQ4: Has the scope of documentation commits (mea-
sured by lines changed) evolved?

We focus on the same six repositories as our companion
study on code review patterns, enabling comparison across
multiple dimensions of software quality and providing a com-
prehensive picture of Al’s impact on development practices.

II. RELATED WORK

This section highlights studies on the critical role of docu-
mentation in software quality and maintainability. We examine
theoretical foundations of documentation practices, recent em-
pirical work on Al-assisted development, and commit message
quality research. While Al-driven code generation and commit
messaging are evolving rapidly, their impact on documentation
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practices in real-world projects remains underexplored from
both theoretical and empirical perspectives.

A. Theoretical Foundations of Documentation

Software documentation research has established theoret-
ical frameworks for understanding documentation’s role in
development. The cognitive dimensions framework identifies
documentation as essential for supporting the progressive eval-
vation and viscosity dimensions of programming systems [6].
Information foraging theory explains how developers use
documentation as information scent when navigating code-
bases [7]. Recent theoretical work on technical debt identifies
inadequate documentation as a form of documentation debt
that increases maintenance costs over time [8].

Studies examining code quality perceptions found that read-
ability, structure, and documentation consistently rank among
the defining properties of high-quality code [2]. Research
on software maintainability in embedded systems identified
documentation, along with coding rules and conventions, as
essential practices [9]. Empirical investigations demonstrate
that well-documented systems reduce maintenance costs and
enable faster issue identification [1]. However, documentation
adequacy remains a persistent challenge, with studies showing
many projects have insufficient or outdated comments.

B. Al Code Generation and Documentation

Recent work has examined the characteristics of Al-
generated code and its documentation from both theoretical
and practical perspectives. Research evaluating large language
model (LLM)-based documentation generation found that pro-
fessionals and students often lack prompt engineering skills,
resulting in documentation perceived as less readable and
concise when using ad-hoc prompts compared to prepared
prompts [10]. This finding aligns with theories of tool ap-
propriation, where users must develop mental models of Al
capabilities to leverage them [11] effectively.

Studies of automated commit message generation using
LLMs demonstrate that these models can generate high-
quality messages [12], [13], though questions remain about
their impact on broader documentation practices. From a so-
ciotechnical perspective, the introduction of Al tools may shift
team norms around documentation, as developers adjust their
practices based on perceived tool capabilities [14]. Empirical
analysis of how Al adoption affects real-world documentation
practices at scale remains limited in the literature.

C. Commit Message Quality

Commit messages serve as project-level documentation.
Recent research demonstrates that commit message quality

impacts software defect proneness, though overall message
quality decreases over time despite developers believing they
write better messages [15]. Large-scale empirical studies found
that LLMs can generate commit messages that outperform
traditional automatic generation methods by orders of mag-
nitude [12], [13]. Research on in-context learning for commit
message generation shows that LLMs can produce high-quality
messages with only a few demonstrations [16]. However,
systematic examination of how generative Al adoption affects
documentation practices in real open-source software (OSS)
over time remains absent.

D. Research Gap

Despite extensive theoretical and empirical work on doc-
umentation and recent advances in Al-assisted development,
no prior work has systematically examined how generative Al
adoption affects documentation practices in real OSS projects
over time from a dual theoretical-empirical perspective. Our
longitudinal analysis addresses this gap by combining empir-
ical measurement with theoretical interpretation grounded in
cognitive load theory, dual-process theory, and sociotechnical
systems perspectives.

ITII. METHODOLOGY
A. Research Design

We employ a longitudinal comparative approach with two
time periods: Pre-Al (2018-01-01 to 2021-12-31) and Post-
Al (2022-01-01 to 2025-11-11), using GitHub Copilot’s June
2022 public release as the temporal boundary. This natural
experiment design, illustrated in Figure 1, allows us to ex-
amine changes in documentation patterns before and after
the widespread availability of Al coding assistants. While
we cannot establish definitive causation, the temporal division
provides a meaningful framework for investigating correlations
between Al tool availability and documentation practices.

B. Repository Selection

We analyze the same six repositories as our companion
study: pandas, scikit-learn, TensorFlow, Django (Python
ecosystem), React, and Node.js (JavaScript ecosystem). These
projects span diverse application domains, have active devel-
opment in both eras, and have substantial commit histories for
robust analysis.

C. Data Collection

Using GitHub’s application programming interfaces (APIs),
we collected all commits from each repository within both
time windows. For each commit, we extracted: commit mes-
sage, commit date, author, files changed, lines added/deleted,



and commit type classification. Commit Classification: We
classified commits using keyword matching:

o Documentation commits: Messages containing “docu-

mentation”, “readme”, “tutorial”, “guide”, “doc:”, “doc-
string”, “comment”

o Bug-fix commits: Messages containing “fix”, “bug”,
“issue”, “regression”

o Feature commits: Messages containing “add”, “imple-
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We further subdivided documentation-related commits into:
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o Major documentation: “documentation”,
torial”, “guide”

o Minor documentation: “docstring”, “comment”, “doc”

« Documentation typos: “typo”/“spelling”/“grammar” +

“doc”/“comment”/“readme”

readme”, “tu-

D. Metrics

The documentation commitment metrics are quantified
using the ratio Rgoc = ]\JZ doc, which represents the proportion
of commits focused on documentation in relation to the total
number of commits. Additionally, the proportions of major
and minor documentation commits are denoted by R, o and
Rpinor» respectively. The commit message quality metrics
include the character count Lj,,,s and the word count L, orqs
of each commit message, which serve as indicators of the
brevity and clarity of the documentation within the commit
messages. The documentation scope metrics are represented
by Sqoc = Ladq + Lder, which measures the average number
of lines added and deleted in documentation-related commits,
providing insight into the extent of changes made to the
documentation.

E. Analysis Methods

We use chi-square tests for categorical comparisons (docu-
mentation commit ratios), as in Equation 1.
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Equation 2 is the Welch’s t-test for continuous metrics,
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and Mann-Whitney U tests for non-parametric validation.
Significance threshold is o = 0.05.

FE. Threats to Validity

Internal Validity: Keyword-based commit classification
may misclassify some commits [15]. Commit messages are
proxies for code-level documentation changes and may not
fully capture inline comment density. We cannot definitively
attribute changes to Al tools versus other factors, like team
composition shifts.

External Validity: Results may not generalize beyond the
six studied repositories or beyond Python/JavaScript ecosys-
tems. Private repositories may show different patterns.

Construct Validity: Commit message length does not nec-
essarily indicate quality; verbose messages are not always
better. The documentation commit ratio does not measure
documentation adequacy; it only measures the frequency of
documentation commits. We mitigate through multiple com-
plementary metrics, pre-repository analysis for pattern consis-
tency, and transparent acknowledgment of limitations.

IV. RESULTS

A. Dataset Overview

Our dataset comprises 30,000 pre-Al-era commits and
27,896 post-Al-era commits across six repositories. Table I
presents changes in the distribution and documentation commit
ratio.

TABLE I
DOCUMENTATION COMMIT RATIO CHANGES BY REPOSITORY

Repository Pre-Al Post-Al
Doc Ratio  Doc Ratio
pandas 0.080 0.146
scikit-learn 0.317 0.246
React 0.016 0.015
Node.js 0.165 0.117
TensorFlow 0.021 0.015
Django 0.081 0.088
Overall 0.113 0.104

B. Documentation Commit Ratio (RQ1)

Documentation-focused commits decreased from 11.3%
(3,397 commits) to 10.4% (2,896 commits), an 8.3% relative
decline (x? = 13.14, p = 0.0003). The decrease is statistically
significant, suggesting reduced documentation commitment in
the post-Al era. 2 displays this comparison. Per-repository
analysis reveals substantial heterogeneity. Notably, pandas
increased dramatically (8.0% — 14.6%), while scikit-learn
decreased substantially (31.7% — 24.6%). The JavaScript
projects (React, Node.js) both showed decreases, with Node.js
declining from 16.5% to 11.7%. TensorFlow showed minimal
documentation commitment in both eras (2.1% — 1.5%).
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Fig. 2. Documentation Commit Ratio: Pre-Al vs Post-Al



C. Commit Message Quality (RQ2)

Commit message length increased substantially from 191.7
to 294.0 characters (53.4% increase, t = —25.39, p < 0.0001).
Word count showed similar patterns: 22.2 to 34.8 words
(56.8% increase). The median message length increased from
101 to 149 characters.

The Mann-Whitney U test confirmed significance (U =
333,931,762, p < 0.0001), indicating this is not merely a mean
shift but a distributional change toward longer, more detailed
commit messages. Figure 3 illustrates the character length
comparison, while Figure 4 shows the word count comparison.
Both metrics demonstrate the substantial increase in commit
message detail. This finding is particularly striking: while
dedicated documentation commits have declined slightly, de-
velopers are writing substantially more detailed commit mes-
sages. This suggests a shift in where documentation effort is
being invested, from in-code documentation to commit-level
explanations.
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Fig. 3. Commit Message Length: Pre-Al vs Post-Al
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D. Documentation Detail Level (RQ3)

The analysis of documentation commits by type reveals
evolving priorities before and after the introduction of Al. Pre-
Al major documentation commits accounted for 7.74% of the
total, with 2,322 commits, while minor documentation rep-
resented 9.26% with 2,778 commits. Documentation-related

typo corrections comprised 0.45% of the total, amounting to
134 commits. Post-Al, the proportion of major documentation
commits increased to 9.44%, with 2,633 commits, while
minor documentation decreased to 7.74% with 2,160 commits.
Documentation typo corrections also saw a reduction, making
up only 0.32% of the total with 88 commits. The pattern shows
a shift toward major documentation updates (7.74% — 9.44%)
and away from minor documentation work (9.26% — 7.74%).
This suggests that, in the post-Al era, developers who commit
to documentation focus on comprehensive updates rather than
incremental improvements.

E. Documentation Commit Scope (RQ4)

Documentation commits in the pre-Al era changed an
average of 1,721 lines, compared to 261 lines in the post-
Al era, an 84.9% reduction. However, this change is not
statistically significant (¢t = 0.91, p = 0.3637), likely due
to high variance in both distributions. The substantial point
estimate difference suggests documentation commits may be
becoming more focused and targeted, touching fewer lines per
commit. Combined with the shift toward major documenta-
tion commits, this may indicate a pattern of more frequent,
smaller-scope documentation updates rather than significant,
comprehensive documentation overhauls.

F. Ecosystem Comparison

Python projects showed mixed patterns (pandas +82%,
scikit-learn —22%, TensorFlow —29%, Django +9%), while
JavaScript projects consistently decreased (React —6%,
Node.js —29%). However, the small sample size (4 Python,
2 JavaScript projects) limits the strength of ecosystem-level
conclusions. Commit message length increased substantially
in both ecosystems, suggesting this is a universal trend rather
than language-specific behavior. Table II summarizes all mea-
sured metrics with statistical test results.

G. Discussion

1) Findings: Our analysis reveals a nuanced and some-
what paradoxical shift in documentation practices. While
documentation-focused commits decreased by 8.3% (p =
0.0003), commit message detail increased dramatically to
53.4% in character length and 56.8% in word count (p <
0.0001). This suggests not a decline in documentation effort,
but rather a redistribution of that effort. One interpretation
is that Al tools reduce the need for certain types of in-code
documentation. Suppose Al-generated code is clearer or more
self-documenting. In that case, developers may invest less
in inline comments while compensating with richer commit
messages that explain the why rather than the what. Alter-
natively, developers may be using Al tools to generate more
comprehensive commit messages, leveraging AI’s language-
generation capabilities for documentation [12], [16]. The shift
from minor documentation commits (9.26% — 7.74%) to
major documentation commits (7.74% — 9.44%) suggests a
strategic reallocation: when developers do document, they fo-
cus on comprehensive updates rather than incremental tweaks.



TABLE II
SUMMARY OF DOCUMENTATION METRICS ACROSS PRE-AI AND POST-AI ERAS

Metric Pre-Al Post-Al Change Test Stat p-value  Sig?
(2018-2021)  (2022-2025)

Doc Commit Ratio 0.113 0.104 -83% x?=13.14 0.0003 Yes

Avg Message Length (chars) 191.7 294.0 +53.4% t=-25.39 <0.0001 Yes

Avg Message Length (words) 22.2 34.8 +56.8% t=—25.39 <0.0001 Yes

Avg Doc Commit Size (lines) 1721.1 260.7 —84.9% t=0.91 0.3637 No

This could reflect efficiency gains from Al assistance, en-
abling more substantial documentation work in less time. The
84.9% reduction in documentation commit scope (though not
statistically significant) may indicate more granular, focused
documentation updates rather than large-scale overhauls. This
aligns with modern development practices that favor smaller,
more frequent commits.

2) Implications for Software Maintainability: The findings
have mixed implications for maintainability. On the one hand,
richer commit messages (56.8% more words) provide better
historical context, aiding future developers in understanding
the rationale for changes [1], [2]. This is valuable for long-
term maintenance and onboarding. On the other hand, the
8.3% decrease in documentation commits raises concerns. If
this reflects actual reductions in inline code documentation
(docstrings, comments), it could harm code comprehension.
Future work should analyze source code directly to determine
whether inline documentation density has indeed decreased.
The relationship between documentation patterns and bug-fix
rates (from our companion study) is noteworthy. Our first
paper showed bug-fix rates increased 6.1% in the post-Al
era. The modest decrease in documentation commits may
contribute to this pattern if reduced documentation leads to
misunderstandings and errors.

3) Implications for Stakeholders: For developers, these
findings highlight the importance of maintaining balanced
documentation practices. While the data indicates a positive
trend in commit message quality, ensuring long-term maintain-
ability requires attention to both commit-level and code-level
documentation. Developers should recognize that Al tools may
unconsciously shift documentation habits and actively monitor
their practices to ensure comprehensive documentation across
all levels. Organizations should actively monitor and enforce
standards for both commit message quality and the density
of in-code documentation. This can be accomplished through
several mechanisms: implementing guidelines and code review
checklists to ensure adequate inline documentation, especially
for complex logic; measuring documentation metrics as part
of quality assurance processes; and fostering a culture that
values documentation as integral to code quality rather than
as an afterthought. Tool developers should focus on enhancing
Al-driven solutions to not only generate code but also provide
comprehensive documentation at multiple levels. Current ad-
vancements in Al tools could facilitate the automatic gener-
ation of commit messages based on code changes [12], [13],
create docstrings for functions [10], and prompt developers

to document non-obvious logic. Integrating such capabilities
with documentation generation tools could further improve
documentation quality while preserving the cognitive benefits
of Al-assisted development. Researchers should investigate the
underlying mechanisms driving the observed trends. Several
research directions emerge from our findings: What cognitive
and social factors drive the increasing detail in commit mes-
sages? Are developers utilizing Al for message generation, and
if so, what are the qualitative differences? Does the shift away
from inline documentation represent a problematic gap or a
rational adaptation to clearer Al-generated code? What is the
relationship between documentation patterns and downstream
quality outcomes such as bug introduction, maintenance costs,
and developer onboarding time?

H. Limitations and Future Work

Our keyword-based classification may miss nuanced docu-
mentation work that uses non-standard terminology or implicit
documentation practices. Commit-level analysis does not cap-
ture inline comment density within files, a critical dimension
of code documentation that may be changing independently
of commit patterns. We cannot directly measure Al tool
usage or definitively attribute changes solely to Al adoption,
rather than confounding factors such as team composition
changes, evolving project maturity, or shifts in development
methodology.

Future work should pursue several directions:

(1) Analyze source code directly for comment density and
quality using static analysis tools, correlating changes with
commit patterns to provide a complete picture of documenta-
tion practices.

(2) Correlate documentation patterns with downstream
maintenance costs, bug severity, time-to-fix, and developer
onboarding time to establish whether the observed shifts have
measurable impacts on software quality outcomes.

(3) Conduct developer surveys and interviews to under-
stand conscious versus unconscious changes in documentation
practices, the role of Al tools in generating documentation,
and developer perceptions of documentation adequacy in Al-
assisted development.

(4) Perform controlled experiments comparing documenta-
tion quality and completeness with and without Al tools, iso-
lating the causal impact of Al assistance from other temporal
factors.

(5) Investigate whether Al-generated commit messages dif-
fer qualitatively from human-written ones in terms of infor-



mativeness, accuracy, and utility for archaeological debug-
ging [13], [17].
V. CONCLUSION

This study provides empirical evidence of how generative
Al adoption correlates with code documentation practices in
open-source software. Our findings indicate a complex shift:
documentation commit frequency decreased modestly (8.3%),
yet commit message detail increased substantially (56.8%
more words). This suggests not a decline in documentation
effort but a redistribution toward commit-level explanations
rather than in-code documentation. While the improvement
in commit message quality is encouraging, the decrease in
documentation commits warrants attention. Maintainability re-
quires comprehensive documentation at multiple levels: inline
comments explaining complex logic, docstrings describing
APIs, and commit messages explaining change rationale [1],
[15]. Organizations and developers should ensure that Al
adoption doesn’t inadvertently reduce in-code documentation
quality while improving commit messages.

We call for: (1) explicit documentation guidelines for Al-
assisted development emphasizing both inline and commit-
level documentation, (2) tool features supporting compre-
hensive commenting at all levels, (3) continued empirical
research on documentation quality and its relationship to
maintainability outcomes, and (4) community awareness that
documentation remains critical regardless of code generation
method. Together with our companion study on code review
and bug patterns, this work reveals a nuanced picture of Al’s
impact: potential productivity gains, shifts in where developers
invest effort, but also quality concerns that require thoughtful
mitigation strategies. The path forward requires balancing AI’s
capabilities with sustained commitment to software engineer-
ing best practices.
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