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Abstract.—The smart cities that collaborate with AI-
driven autonomous robots are attracting attention for
supporting various social activities in the real world.
In facilities that provide such services, various systems
managing the facility and robots may coexist in the
common area. By enabling the systems to interop-
erate and share information about the status of the
facility and robots, it becomes possible to realize a
variety of services that support safety and security
within the facility. However, while the operators of
the facility want to monitor the detailed conditions
of the robots, the operators of the robots are cau-
tious about providing the information about the status
of robots such as the moving trajectory and various
sensor data. To resolve this dilemma, we propose a
new system that enables estimation of the operational
conditions of the robots by verifying the positions
and trajectories at landmarks in the facility without
disclosing their internal information. In the proposed
system, we focus on the observation of environmental
information that accurately reflects the real-world sit-
uation for estimating the proximity between the robot
and each landmark. As the environmental information,
both systems on robots and a facility measure CSI
(Channel State Information) and acoustic information.
In addition, by utilizing zero-knowledge proof (ZKP)
technology, the system for the facility confirms the
reliability of the process for estimating the proximity of
the robots to the landmark without exchanging detailed
internal information. Through the proof-of-concept ex-
periment, applying the proposed system achieved high-
accuracy proximity detection with both methods (CSI
and acoustic information) yielding precision and recall
rates exceeding 0.90.

Index Terms—Zero-knowledge proof, CSI, Wi-Fi,
acoustic information, blockchain

I. Introduction

The smart cities that collaborate with autonomous
robots are attracting attention for supporting various
social activities in the real world. In facilities that provide
such services, various systems coexist including systems
for managing the state of the facility and systems for
managing the operation of the robots. By enabling the
systems to interoperate and share information about the
status of the facility and robots, it becomes possible to
realize a variety of services that support safety and security
within the facility such as detailed monitoring of facility
conditions and accident avoidance around robots.

The behavior of the robots is often controlled by AI
making it difficult to audit the decision-making processes
of the AI that inherently suffers from the black-box prob-
lem. To ensure safety in smart cities, a reliable framework
is required to verify that the AI observes the conditions
within the facility and behaves as intended by the facility’s
operators without compromising privacy. However, robot
operators are reluctant to share detailed trajectory and
sensor data, as such information constitutes confidential
operational data. To resolve this dilemma, a mechanism
is needed that can prove the reliability of important
operational conditions of the robots (e.g., proximity to
major landmarks) to the facility without disclosing the
detailed internal information.

The existing studies propose systems that verify the
approximate location of an observation target without
knowing its specific position based on environmental infor-
mation dependent on each area and time within a facility.
Existing methods using environmental information such
as CSI and acoustic data are vulnerable to replay attacks
and data tampering [1] [2] [8] [9] [10]. Furthermore, these
methods lack mechanisms to prove processing correctness
to third parties. On the other hand, systems utilizing zero-
knowledge proofs (ZKP) are proposed as a technology to
prove the correctness of processing applied to data [3] [4].
ZKP technology enables proving that data is processed
correctly and that it satisfies the specific predefined con-
ditions without disclosing the data itself.

Therefore, this study focuses on the observation of en-
vironmental information that accurately reflects the real-
world situation for estimating the proximity between the
robot and each landmark in a facility. As the environ-
mental information, the proposed system combines CSI
with acoustic information, which possesses time and space
specific characteristics, to efficiently collect information
dependent on the location in the facility. Furthermore,
the ZKP technology is utilized for enabling the robot to
prove to other operators whether it passed through specific
locations without disclosing detailed movement history.
II. Related Works and Objectives of Our Study
A. Research on Device Location Estimation Using Wi-Fi
Sensing

Xie et al. (2019) propose an indoor positioning system
using Wi-Fi sensing that analyzes AoA, ToF, AoD, and



Doppler shift [2]. However, this method requires optimal
device placement and incurs high computational costs.

On the other hand, Gu et al. (2023) propose a sys-
tem that recognizes human behavior by utilizing Wi-Fi
sensing and machine learning techniques [6]. This system
uses time-series data of CSI (Channel State Information)
including amplitude and phase of radio waves around the
receiver. Specifically, by constructing a machine learning
model that takes CSI amplitude data as input, the system
enables human position estimation with 98% accuracy.
However, this approach requires collecting CSI for each
environment and constructing environment-specific mod-
els.

B. Research on Device Location Estimation Using Acoustic
Information

Karapanos et al. propose a two-factor authentication
system that verifies device proximity by comparing am-
bient sound observations [8] [9].

Furthermore, Liu et al. propose a SoundID, a dynamic
acoustic fingerprint-based two-factor authentication sys-
tem, as a countermeasure of man-in-the-middle (MITM)
attacks against location estimation based on acoustic fin-
gerprints, location specific features extracted from acoustic
information [10]. However, malicious attackers can poten-
tially bypass authentication by presenting forged acoustic
data or analysis results during the similarity verification
process. Therefore, it remains a critical challenge for prov-
ing correctness of the processing.

C. Research on Verification of Sensor Data Processing
Utilizing ZKP

A system utilizing zero-knowledge proofs (ZKP) is pro-
posed to prove the integrity of various types of data
without revealing the data itself. Ko et al. (2021) propose
a system that uses zero-knowledge proofs to verify that
a redacted image, created by blacking out portions of
an ID photo, is correctly edited from the authenticated
original image [3]. Specifically, by proving the editing
process via ZKPs, the method can verify whether the
image is correctly edited in a predefined process or not
without disclosing the original one.

Additionally, Guo et al. (2024) propose an authenti-
cation system enabling privacy protection of fingerprint
images by proving the correctness of the hashing process
applied to them using ZKP technology [4]. By constructing
a ZKP-based function to prove each step of the process,
the method becomes possible to address the risks of infor-
mation leakage and replay attacks inherent in biometric
authentication.

As described above, the use of ZKP technology enables
proving whether the predefined processing is correctly
applied to data or not without disclosing the data itself.

D. Objectives of Our Research
Existing research propose location estimation tech-

niques that observe environmental information depending
on specific times and locations. However, these techniques
are vulnerable as authentication methods due to data
falsification by attackers.

Therefore, this research proposes a new system that
focuses on environmental information such as CSI and

acoustic information and employs zero-knowledge proof
technology in the process of analyzing and comparing this
environmental information. This enables each operator to
prove the reliability of the location information of the
robot without disclosing environmental information, which
contains privacy-sensitive data, to other operators.

Specifically, in the proposed system, sensor nodes are
deployed at various points within the facility and on the
autonomous mobile robot itself, and continuously collect-
ing environmental information such as CSI and acoustic
data. When an operator attempts to verify the correctness
of the moving trajectory of the robot, proximity between
the robot and sensor nodes at each location is verified
by evaluating similarity between the environmental in-
formation observed by the robot with that observed at
each location. By applying zero-knowledge Succinct Non-
interactive Arguments of Knowledge (zkSNARKs), a type
of zero-knowledge proof, to this verification process, the
method can prove whether the processing to analyze and
compare the environmental information is performed cor-
rectly or not while keeping the environmental information
confidential.

III. Proposed Movement Trajectory
Verification System Using CSI and Acoustics

A. Overview of the Proposed System
As shown in Fig. 1, the proposed system consists of

fixed sensor nodes, robot-mounted sensor nodes, and a
data management platform. The fixed sensor nodes are
installed at various locations within the facility and con-
tinuously collect environmental information such as CSI
and acoustic data. Additionally, the robot-mounted sensor
node installed on an autonomous mobile robot performing
tasks such as security or delivery continuously collect en-
vironmental information while moving within the facility.

The fixed sensor nodes continuously monitor the state
of specific channels used for Wi-Fi communication and col-
lect CSI data. Simultaneously, the nodes collect acoustic
information using their onboard microphones and transmit
the collected environmental data to the data management
platform. Meanwhile, the robot-mounted sensor nodes
acquire environmental data and calculate its similarity
to that collected by the fixed sensor nodes at various
locations within the facility, which is publicly available on
the data management platform. Based on the calculated
similarity, the robot-mounted sensor node identifies the
fixed sensor node closest to the robot.

When calculating the similarity, the robot-mounted sen-
sor nodes generate a proof corresponding to the process-
ing by using ZKP (Zero-Knowledge Proof) technology
and register it to the data management platform. Sub-
sequently, facility operators can verify the accuracy of the
process for identifying location of each robot by validating
the registered proof. Through this process of verifying the
reliability of location, facility operators can confirm that
the robots execute tasks such as security and delivery
in the appropriate location without checking the detailed
moving trajectory.
B. Device Configuration of Sensor node

The sensor node consists of a Raspberry Pi 3 (2017)
which is a small computer supporting Wi-Fi communica-
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Fig. 1: Overall View of the Proposed System.

tion, connected to a USB microphone (DUNGZDUZ) for
acquiring acoustic information. Furthermore, Nexmon and
CSIkit are installed on the computer for CSI collection [7].
In this study, a 44-channel Wi-Fi frequency band (5.21-
5.23GHz) is selected for observation to collect CSI, and 10-
second measurements are continuously performed at one-
minute intervals.

C. Device Configuration of Data Management Platform
The data management platform consists mainly of an

IPFS (InterPlanetary File System) and a blockchain plat-
form, Hyperledger Fabric. Features extracted from the
environmental data such as CSI and acoustic information
collected by sensor nodes installed within the facility are
stored in the IPFS in conjunction with timestamp. On
the robot-mounted sensor node, proximity determination
processing based on features is executed within a mathe-
matical circuit corresponding with the processing for the
zero-knowledge proof, and the proof and the processing
results are stored on the blockchain. This allows verifiers
(e.g., facility operators) to confirm that the robot passes by
near the sensor node at a specific location in a trustworthy
manner.

IV. Proposed Proximity Determination Method
and Zero-Knowledge Proof Design

A. Proximity Determination Method Utilizing CSI Data
Wi-Fi-based proximity determination methods are pri-

marily classified into two phases. Phase 1 involves pre-
processing to generate CSI features from the original CSI
collected by sensor nodes. Phase 2 executes proximity
determination processing using the CSI features. Section
IV-A1 details the Phase 1, and Section IV-A2 details the
Phase 2.

1) Extraction of CSI Features: In this study, we adopt
deterministic mathematical approaches (FFT and Cross-
correlation) to validate the physical distinctiveness of the
environmental features.

Figure 2 illustrates the overview of a feature extraction
process based on CSI. In the proposed method, the average
amplitude is calculated at 50 ms intervals within the
10-second CSI data observed by each sensor node. If
there are intervals in which CSI data is not observed,
the average amplitude from the preceding and following
intervals is interpolated as the amplitude for that interval.

Preprocessing
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Fig. 2: Overview of Feature Extraction Process Based on
CSI.

Subsequently, a Fast Fourier Transform (FFT) is applied
to the time-series of CSI data for each of 64 subcarriers
on the 44 channel of Wi-Fi frequency band. With respect
to the frequency components of the output CSI data, the
average amplitude is then calculated at 0.1 Hz intervals
across the frequency range from 0 to 12.5 Hz. The posi-
tive components of the calculated frequency spectrum are
defined as the CSI features for that specific time. In this
study, the Fourier transform is performed using the FFT
function from NumPy, a numerical computation library
for Python, to calculate the frequency components of the
CSI data.

2) Proximity Determination Processing via CSI Feature
Comparison: The robot-mounted sensor node calculates a
similarity metric of the CSI features between each fixed
sensor node within the facility and itself. This method
adopts the cosine similarity between the feature vectors
as the similarity metric. The robot-mounted sensor node
calculates the cosine similarity for the CSI features cor-
responding to each fixed sensor node for each subcarrier.
Specifically, the method selects the specific number of the
subcarriers with the highest similarity and calculates their
average value of the similarity on the selected ones. The
appropriate number of subcarriers should be determined
by balancing computational efficiency and classification
accuracy. The appropriate values are investigated through
experiments in Section V-A.

The robot identifies its own location to be the site where
the sensor node with the highest similarity is installed. As
a specific processing step, the similarity is calculated for
each deployed sensor node, and the location indicating the
highest value is selected as a candidate. After executing
this process multiple times, the nearest sensor node is
determined by majority vote across the iterations. The
number of iterations in similarity comparison is defined as
the window size. The cosine similarity comparison using
CSI features is performed within the mathematical circuit
of ZKP, enabling the robot to perform the comparison
while keeping the information about the measured data
confidential.

B. Proximity Determination Method Utilizing Acoustic
Information

Figure 3 shows the procedure of a proximity determi-
nation process using acoustic information. The USB mi-
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Using Acoustic Information.

crophone of the sensor node collects acoustic information
10 times per minute, each for 3 seconds. The acoustic
information is collected at a sampling rate of 44.1 kHz
and represented as a vector with 132,300 elements.

In this proposed system, the cross-correlation shown in
Eq. (1) is adopted as the similarity metric for comparing
acoustic information.

Rxy(m) =
N−1∑
n=0

x(n) · y(n + m) (1)

The cross-correlation is calculated as the sum of element-
wise products and serves as a quantitative metric for as-
sessing similarity between acoustic signals. For two arrays
x and y indicating the acoustic information measured by
different sensor nodes, the product of each corresponding
element is computed, and their sum is determined as the
correlation value. The correlation value is calculated while
progressively shifting the first element of the array one by
one, and the highest value is adopted as the similarity
measure.

The cross-correlation is calculated between the robot-
mounted sensor node and each fixed sensor node in-
stalled within the facility. The sensor node that the cross-
correlation is the highest is considered a candidate for the
location of the robot. Similar to the method in Section
IV-A2, the closest sensor node is determined by majority
vote in the predefined window size and the optimal value
of the window size is experimentally verified in Section
V-B.

C. Verification of Similarity Calculation Using Zero-
Knowledge Proof Circuits

The robot-mounted sensor node proves the validity
of the CSI similarity and acoustic similarity calculation
processes using ZKPs. This system employs zkSNARKs,
a ZKP technology capable of proving arbitrary mathe-
matical processing, to generate proofs corresponding to
the process of calculating the similarity of environmental
information including CSI data and acoustic information
between each fixed sensor node and the robot-mounted
sensor node.

The zkSNARKs enables the generation of a mathe-
matical circuit corresponding to the similarity calculation
process, and the generation of proof information to verify
its validity. A circuit consists of numerous constraints,
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where the constraints refer to conditional expressions that
mathematically express the validity of computations in
zero-knowledge proofs. Each step of arithmetic operations
and logical processing is incorporated into the circuit
as a constraint, hence the more computations a process
involves, the greater the number of constraints becomes.

This proposed system employs snarkjs, a ZKP develop-
ment and execution support tool, and Circom, a circuit
description language [11] [12]. The zkSNARK algorithm
employs Groth16 and PLONK, and Section V-C compares
and evaluates the performance of both algorithms. The
robot-mounted sensor node registers the generated proof
to the blockchain, and operators (e.g., facility operators)
execute verification scripts based on this proof to reliably
confirm that the similarity calculation is properly per-
formed on the autonomous mobile robot.

V. Evaluation
A. Proximity Determination Accuracy Based on CSI

This section describes the accuracy evaluation experi-
ments for the CSI-based proximity determination method
described in Section IV-A. The fixed sensor nodes are de-
ployed at five locations within the Ritsumeikan University
campus. A robot-mounted sensor node is then deployed
to traverse these locations and collect CSI. The method
described in Section IV-A is applied to the collected data
to verify the proximity determination accuracy.

Figure 4 shows the setting of sensor node placement for
this experiment. As shown in this figure, five fixed sensor
nodes B-F are placed on the 5th and 9th floors of the
facility. In this experiment, we verify whether it is possible
to correctly identify a proximate fixed sensor node when
the robot-mounted sensor node passes within 5 meters of
each fixed sensor node, with the window size fixed at 1.

Figure 5 shows the relationship between the number of
subcarriers and each performance metric (i.e., precision,
recall, F1-score). As shown in this figure, for all cases of
the number of subcarriers, all metrics consistently show
high values above 0.9. Based on the experimental results,
considering computational efficiency and classification ac-
curacy comprehensively, we adopt only the highest simi-
larity for all subcarriers in subsequent experiments.

B. Proximity Determination Accuracy Based on Acoustic
Information

This section describes the experimental evaluation con-
ducted to assess the accuracy of the proximity detection
method using acoustic information described in Section
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IV-B. In this experiment, four fixed sensor nodes are in-
stalled at predetermined intervals within the Ritsumeikan
University campus, and proximity detection is performed
using the method described in Section IV-B. Figure 6
shows the setting of the placement of the fixed sensor
nodes environment for this experiment. The fixed sensor
nodes B-E are placed on the 9th floor at approximately
20 meters intervals. In this experiment, we verify whether
the robot-mounted sensor node A can correctly identify
nearby fixed sensor nodes when passing within 5 meters
of each sensor node.

Figure 7 shows the relationship between the window
size and each performance metric. As shown in this figure,
setting the window size to 3 or more achieves precision
and recall values of approximately 0.90. Based on these
experimental results, considering both computational effi-
ciency and detection accuracy, we adopt a window size of
3 for subsequent experiments. These results demonstrate
that the proposed acoustic-based method can effectively
identify proximate sensor nodes with high accuracy.

C. Performance Evaluation of Zero-Knowledge Proofs

This section describes experimental evaluations measur-
ing the execution time of proof generation and verification
processes in a proximity determination method utilizing
zero-knowledge proofs. The experiments were conducted
on a MacBook Pro running macOS, equipped with an
Apple M4 (10-core) processor and 24GB of memory. The
objective of this experiment is to verify whether the
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processing for identifying the closest sensor nodes can be
executed within a practical time.

In this evaluation, two representative zkSNARKs proto-
cols, Groth16 and PLONK, are adopted. Groth16 features
fast proof generation and small proof sizes, but requires
setup on the relevant computers for each mathematical
circuit. Conversely, PLONK allows a single generic setup
for different circuits, but tends to have longer proof gen-
eration times. Performance evaluation is conducted by
applying each protocol to the two proximity determination
algorithms described in the Section IV, which utilize CSI
and acoustic information.

The experimental results are shown in Fig. 8. Regard-
ing CSI, both Groth16 and PLONK achieve fast proof
generation at approximately 0.18 seconds. In contrast,
for acoustic information, proof generation takes 21.9 sec-
onds for Groth16 and 526.8 seconds for PLONK. This
difference arises because processing of similarity based on
acoustic information involves the comparison of numerous
elements, leading to an enormous number of constraints in
the circuit. Conversely, processing of CSI involves the com-
parison of fewer features than the acoustic information,
resulting in fewer constraints in the circuit. Calculating
the cross-correlation for acoustic information generates ap-
proximately 1.06 million constraints, whereas calculating
the cosine similarity for CSI features requires only about
90,000 constraints. This significantly lower number of
constraints results in a substantial difference in processing
time.

As mentioned above, Groth16 can process the proof
generation 24 times faster than PLONK for acoustic in-
formation, confirming its computational efficiency in large-
scale circuits. Conversely, PLONK’s generic setup allows
flexible switching between different proximity detection
methods, making it effective for systems combining mul-
tiple sensing techniques. On the other hand, verification
time is approximately 0.18-0.20 seconds across all con-
ditions, demonstrating practical performance for proof
verification in both approaches.

The result indicates that when processing high-
dimensional acoustic data (132,300 elements), the ZKP
circuit incurs a heavy computational cost (526.8s). This
explicitly demonstrates the difficulty of processing the raw
data in the ZKP, and an AI-based approach is expected
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to extract the important features from the raw data. By
compressing the raw data into a low-dimensional feature
vector using AI, the number of constraints can be reduced
by orders of the number of dimensions.

D. Security Discussion against Attack Scenarios
To evaluate the robustness of the proposed system, we

discuss its security against three typical attack scenarios:
Replay Attacks, Data Tampering, and Privacy Leakage.

1) Resistance to Replay Attacks: An attacker may at-
tempt to impersonate a legitimate robot at a specific
location by replaying previously recorded CSI or acous-
tic data. However, the proposed system calculates the
similarity between the data sensed by the robot and
the data sensed by the fixed sensor nodes at the same
timestamp. Since environmental information such as CSI
and ambient sound is highly time-variant and location-
specific, previously recorded data results in low similarity
scores when compared to the current environmental data
collected by the facility. Therefore, the replay attack fails
to generate a valid proof of proximity.

2) Prevention of Data Tampering: A malicious robot
might attempt to falsify its location by manipulating the
similarity calculation process. In the proposed system,
the entire process from feature extraction to similarity
calculation is executed within a zkSNARK circuit. The
verification on the blockchain ensures that the proof is
generated only if the computation is performed correctly
according to the predefined circuit. Consequently, it is
mathematically impossible for an attacker to generate a
valid proof using falsified intermediate values or incorrect
algorithms.

3) Privacy Preservation: Facility operators might at-
tempt to infer the robot’s raw sensor data from the
submitted proofs. Thanks to the Zero-Knowledge property
of zkSNARKs, the verifier (facility operator) can confirm
only the verification result (i.e., whether the similarity
score is valid) without gaining access to the private in-
puts (raw CSI/acoustic waveforms). This ensures that the
robot’s internal operational data remains confidential.

VI. Conclusion
In this study, we proposed a system for verifying the

reliability of movement trajectories of autonomous mobile
robots by measuring environmental information (i.e., CSI

and acoustic information) and adopting zero-knowledge
proofs to verify the correctness of the processing. The
proposed system enables verification of the processing
without disclosing the data, thereby achieving both pri-
vacy protection and transparency. Through experimental
evaluation, we demonstrated the effectiveness of the pro-
posed method for estimating the proximity between two
devices. By employing deterministic algorithms, we estab-
lished a reliable accuracy benchmark, which is essential
before transitioning to probabilistic Deep Learning models
(e.g., 1D-CNN) for improved computational efficiency in
future implementations. Additionally, we confirmed that
practical real-time performance can be achieved in proof
generation utilizing zero-knowledge proofs.

In future work, we will address the computational
overhead identified in the evaluation by integrating Deep
Learning models, such as Autoencoders or 1D-CNNs,
into the sensor nodes. These models will extract low-
dimensional feature vectors from raw environmental data,
significantly accelerating ZKP processing. Furthermore,
we aim to utilize the verified trajectory data to train
anomaly detection models, thereby constructing a com-
prehensive security system that audits the behavior of
autonomous robots.
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