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Abstract—RESTful APIs have become the dominant 

interaction mechanism for modern web services and the adoption 

of microservice architecture introduces new security challenges, 

particularly concerning stateful REST API vulnerabilities that 

require sequential calls to exploit. Existing methods operate on a 

single OpenAPI Specification (OAS) document, rendering them 

incapable of discovering the inter-service REST API dependencies 

inherent in a microservice architecture where it is ideal for each 

service to maintain its own independent OAS document. This lack 

of visibility prevents automated REST API dependency extraction 

in a multi-document environment. To address this gap, we propose 

a novel, automated method for extracting a global REST API 

dependency graph from multiple, distributed, and potentially 

inconsistent OAS documents. Our algorithm parses all provided 

OAS documents and employs an approach of exact matching and 

semantic similarity matching to resolve cross-document 

inconsistencies and identify REST API dependencies across 

service boundaries. 

Keywords—Communications, Microservice, Semantic Similarity, 

OpenAPI, Security, Testing 

I. INTRODUCTION 

Application Programming Interfaces (APIs) are the contracts 
that enable different software applications to communicate and 
exchange data with each other. They serve as an essential 
communication mechanism for digital systems. Additionally, 
Representational State Transfer (REST) has become the de facto 
standard for building these web services. The RESTful API 
leverages methods and URIs to interact, typically exchanging 
data via JSON or XML data formats. OpenAPI Specification 
(OAS), formerly known as Swagger[1], has seen widespread 
adoption as the most popular language for describing and 
documenting the RESTful APIs. 

According to the Q1 2025 State of API Security by Salt 
Security, the threat of API attacks is growing and 99% of 
organizations have encountered security problems in the past 
year[2]. To combat these threats, API fuzzing can be leveraged. 
It involves sending multiple, often malformed, requests to a 
single REST API endpoint to test for bugs or vulnerabilities. 
This approach presents opportunities for improvement. Some 
bugs or vulnerabilities are stateful. They can be triggered by 

executing a specific sequence of multiple REST API operations. 
This has led to the development of stateful REST API fuzzing. 
For stateful REST API fuzzing, extracting dependencies among 
the REST APIs is required. 

One of the efficient ways to extract dependencies between 
REST APIs and building REST API sequences is leveraging 
OAS. There are state-of-the-art methods that extract 
dependencies between REST APIs leveraging OAS, such as 
RESTler[3], RESTTESTGEN[4], Morest[5], NAUTILUS[6], 
and VoAPI2[7]. They explore deeper application states and 
uncover multi-API bugs and vulnerabilities. 

In microservice architecture (MSA), it is not guaranteed that 
there is one single OAS document for the entire application. An 
MSA, by design, consists of multiple independent services, each 
capable of defining its own separate OAS document. This 
creates a direction for new research, as existing methods do not 
consider the aggregation of different OAS documents or the 
inter-service dependencies that exist between the separate OAS 
documents. Additionally, in MSA, attention is required on the 
security[8] and the consistency of the REST APIs[9]. 

This paper proposes a novel method of automated RESTful 
API sequence construction in MSA. The core of our technique 
is the construction of a global REST API dependency graph by 
parsing and analyzing multiple, distributed, and potentially 
inconsistent OAS documents. Our algorithm operates in two 
phases: graph generation and graph traversal. The graph 
generation phase identifies both intra-dependencies and inter-
dependencies of the REST APIs using exact matching and 
semantic similarity matching. The graph traversal phase 
traverses the graph and executes the endpoints in sequences 
according to the dependencies identified with parameter-to-
parameter matched list and schema-to-schema matched list. 

The remainder of the paper is organized as follows. Section 
II provides the background information on the OAS and REST 
API dependency. Section III explains the motivation. Section IV 
mentions the types of cross-document inconsistencies. Section 
V presents the proposed method for extracting the dependencies 
and executing the operations. Section VI explains the evaluation 
of the proposed method. Section VII concludes the paper. 



II. BACKGROUND 

This section presents an example of an OpenAPI 
Specification (OAS) document and illustrates a dependency 
relation between RESTful APIs where response data from a 
producer API operation serves as an input for a subsequent 
consumer API operation. 

OAS is the language used for describing RESTful APIs. Fig. 
1 shows an example OAS document describing an HTTP GET 
operation for the path ‘/v1/user/{userId}’. The operation is 
tagged under ‘user’. The operation requires a ‘userId’ parameter, 
which is a string value, which is to be included in the URI path. 
If the request is successful, it returns ‘200’ status code with the 
response body schema defined as ‘user’. It also documents ‘401’ 
response for unauthorized requests. 

 

Fig. 1. OpenAPI Specification (OAS) document example 
 

The dependencies between the REST APIs require execution 
of the REST APIs in specific sequences. Fig. 2 shows an 
example of a REST API dependency. It illustrates a producer-
consumer dependency in the RESTful APIs. The endpoint on 
the right is the producer and the endpoint on the left is the 
consumer. The producer endpoint is a POST request used to 
create a ‘user’. When successful, the operation produces a 
unique ‘userId’ value that can be consumed by the consumer 
endpoint. The producer endpoint needs to be executed 
beforehand to successfully execute the consumer endpoint. 

 

Fig. 2. REST API Dependency Example 
 

III. PROBLEM AND MOTIVATION 

This section explains the problem this work focuses on and 
the motivation behind it. 

REST API dependency is inferred by following the pointers 
within the OAS document. Fig. 3 illustrates a producer-
consumer REST API dependency in the OAS document. API 1 
is a producer which generates ‘data B’ and API 2 is a consumer 
which uses ‘data B’. The data exists within one OAS document 
and therefore, consistent internal reference is guaranteed. 

When adopting multiple OAS documents for an MSA 
application, inter-service dependencies need to be identified. 
The inter-service dependencies can be discovered by matching 
the data across different OAS documents. From Fig. 4, a 
dependency between API 1 and API 2 can be inferred because 
they share common data. 

However, if there is an inconsistency between the data used 
across OAS documents, it presents a challenge. According to Fig. 
5, although both API 1 and API 2 use the same data, due to the 
inconsistency between the data ‘surname’ and ‘firstname’, it 
cannot be inferred that API 1 and API 2 share a common data. 
The data structures are not identical. As a result, a simple 
matching algorithm would fail to connect them or identify 
dependency between them, even though there is one. This 
example demonstrates why an advanced technique is required to 
resolve the inter-dependencies in the environment where 
multiple OAS documents are independently managed. 

 

Fig. 3. Single OAS document 
 

 

Fig. 4. Multiple OAS documents, identical data 
 

 

Fig. 5. Multiple OAS documents, disparate data 



IV. TYPES OF INCONSISTENCIES 

The work identifies 12 cross-document inconsistency types 
categorized into 3 domains: schema-to-parameter, schema-to-
schema, and property-to-property. The 12 inconsistency types 
are illustrated from Fig. 6 to 17. 

The schema-to-parameter domain from type 1 to 3 addresses 
cases where a producer’s response schema property acts as a 
consumer’s request parameter, varying from exact matches to 
semantically related or unrelated names. For type 1, the producer 
API returns a schema containing a property that is used by the 
consumer API as a parameter with an identical name. For type 
2, the producer API returns a schema property that corresponds 
to the consumer API parameter with a different but semantically 
related name. For type 3, the producer API returns a schema 
property that corresponds to the consumer API parameter with a 
different and semantically unrelated name. 

The schema-to-schema domain from type 4 to 9 
encompasses schema-to-schema relationships, managing 
scenarios where a producer’s response schema corresponds to a 
consumer’s request body schema despite discrepancies in 
schema names, property counts, or semantic similarities. For 
type 4, the producer’s response schema and the consumer’s 
request body schema share the identical name and possess 
identical properties. For type 5, the producer’s response schema 
and the consumer’s request body schema share the identical 
name but they differ in the count of the contained properties. For 
type 6, the producer and consumer schema names are different 
but semantically related, while their underlying properties are 
identical. For type 7, the producer and consumer schema names 
are identical but the internal property names are different, yet 
semantically related. For type 8, both the schema names and the 
property names differ, yet they remain semantically related. For 
type 9, both the schema and the property names differ and they 
are semantically unrelated. 

The property-to-property domain from type 10 to 12 
involves inconsistencies, where a consumer’s request schema is 
composed of properties derived from multiple producer APIs, 
distinguished by whether the property names exactly match, are 
semantically related, or are unrelated. For type 10, the consumer 
API request schema is composed of properties derived from the 
multiple producer APIs where all the property names match. For 
type 11, the consumer API request schema is composed of 
properties derived from the multiple producer APIs where the 
property names differ but are semantically related. For type 12, 
the consumer API request schema is composed of properties 
derived from the multiple producer APIs where the property 
names differ and are semantically unrelated. 

 

 

Fig. 6. Type 1 inconsistency. 
 

 

Fig. 7. Type 2 inconsistency. 
 

 

Fig. 8. Type 3 inconsistency 
 

 

Fig. 9. Type 4 inconsistency 
 

 

Fig. 10. Type 5 inconsistency 
 

 

Fig. 11. Type 6 inconsistency 
 



 

Fig. 12. Type 7 inconsistency 
 

 

Fig. 13. Type 8 inconsistency 
 

 

Fig. 14. Type 9 inconsistency 
 

 

Fig. 15. Type 10 inconsistency 
 

 

Fig. 16. Type 11 inconsistency 
 

 

Fig. 17. Type 12 inconsistency 
 

V. METHODOLOGY 

This section illustrates the detailed proposed method of 
extracting RESTful API dependency in MSA applications. 

The diagram in Fig. 18 illustrates the high-level design of the 
proposed method. It begins by taking multiple OAS documents 
as input. It parses the documents and extracts the parameters and 
schemas. Based on the parameters and schemas, exact matching 
and semantic similarity matching are conducted to identify 
dependencies between the REST API operations. A graph is 
generated with an endpoint as a node and a dependency as an 
edge. The matching algorithm generates the data structures 
(parameter-to-parameter matched list, schema-to-schema 
matched list) while processing the first step. In the next step, 
graph traversal is executed to call the REST API operations in 
the sequences according to the identified dependencies. 

 

Fig. 18. Design overview 

A. Graph Generation 

The first phase is generating a global REST API dependency 
graph. Fig. 19 outlines the matching algorithm used to identify 
REST API dependencies. The process begins by aggregating all 
the OAS documents into a single logical pool. It then iterates 



through each individual API operation endpoint, assigning a 
unique ID for each endpoint. 

After parsing the operations, it selects a target API operation 
and checks whether the target API operation only requires path 
or query parameters. If it does, it conducts parameter match, 
which is checking the existence of an identical field between the 
target API operation’s parameters and the source API 
operation’s response properties, and parameter semantic 
similarity match, which is checking the existence of a 
semantically similar field between the target API operation’s 
parameters and the source API operation’s response properties. 
If any match is found, it is inferred that there is a dependency 
between the two API operations. It also checks whether the 
target API has a request body. If it does, it conducts parameter 
match, parameter semantic similarity match. Additionally, 
between the target API operation’s request body schema and the 
source API operation’s response schema, it conducts schema 
name match, which is checking the existence of an identical 
schema name, schema match, which is checking the number of 
identical contained properties, schema name semantic similarity 
match, which is checking the existence of  a semantically similar 
schema name, and property semantic similarities match, which 
is checking the existence of a semantically similar property. If 
any match is found, it is inferred that there is a dependency 
between the two API operations. 

After completing the matching algorithm, each API 
operation is mapped to a node and each dependency is mapped 
to an edge to form a global REST API dependency graph. 

 

Fig. 19. Matching algorithm 

B. Graph Traversal 

The second phase is traversing the global REST API 
dependency graph and executing the API operations in 
sequences according to the dependencies identified. During the 
first phase for any match found, an entry is added in parameter-
to-parameter matched list or schema-to-schema matched list. 
The graph traversing is done leveraging these two lists. 

Graph traversing with parameter-to-parameter matched list 
allows executing API operations with values from hidden 
dependent API operations due to inconsistent parameters. An 
example is shown in Fig. 20. The producer endpoint 
‘/group/create’ is executed, which returns ‘group’ object 
containing ‘groupId’. Then it executes a consumer API 
operation endpoint ‘/permission/{groupNumber}’ which 
requires a path parameter named ‘groupNumber’. By consulting 
the parameter-to-parameter matched list, the system finds an 
entry that ‘groupId’ and ‘groupNumber’ are matched. It allows 
processing that the ‘testGroupId’ value produced by 
‘/group/create’ endpoint can be used for the ‘groupNumber’ 
parameter in the ‘/permission/{groupNumber}’ endpoint. This 
successfully executes the API operation with dependency 
despite the different property and parameter names, which is a 
type of inconsistency between two independent OAS documents. 

Graph traversing with schema-to-schema matched list 
allows executing API operations with the values from hidden 
dependent API operations due to inconsistent schemas. An 
example is shown in Fig. 21. The producer endpoint 
‘/group/create’ is executed, which returns a ‘group’ object. Then, 
it needs to execute the consumer endpoint ‘/permission/reset’, 
which requires a ‘cluster’ object as its input. By consulting the 
schema-to-schema matched list, it finds an entry that ‘group’ 
schema matches ‘cluster’ schema. The system knows that it can 
use the ‘group’ object data to make a call to ‘/permission/reset’ 
endpoint. It successfully executes the API with dependency 
despite the different schema names, which is a type of 
inconsistency between two independent OAS documents. 

After completing the second phase, API operations are 
executed in order according to the identified dependencies. If 
there is a match found between two API operations in the first 
phase, the dependency between these two API operations are 
identified and the API operations are executed in order in the 
second phase. If there is not a match found in the first phase, 
there is not a dependency between the two API operations and 
the operations are not executed in order in the second phase. 

 

Fig. 20. Traversing with parameter-to-parameter 
matched list 



 

Fig. 21. Traversing with schema-to-schema matched list 
 

VI. EVALUATION 

To evaluate the proposed method, a prototype was 
implemented in Python[10] using WordSegment[11] for 
parameter, schema name, property value segmentation and 
Sentence-BERT[12] for semantic similarity calculation. To test 
the prototype, a test application was developed with Spring 
Boot[13], which consists of 3 microservices hosted on a Ubuntu 
24.04.3 virtual machine. The testbed comprises 19 API 
endpoints and 30 ground-truth API dependencies, designed to 
incorporate 16 instances of the 12 cross-document inconsistency 
types embedded in inter-service and intra-service dependencies. 

The method’s effectiveness is measured based on the 
percentage of API operations successfully executed during 
graph traversal. The result demonstrates that at optimal semantic 
similarity thresholds of 0.2 and 0.4, it achieves 84% coverage. 
As the similarity threshold increases to 0.8, the coverage drops 
to 58% as the algorithm rejects valid dependency links that are 
semantically related but not highly similar, causing breaks in the 
execution chains. Table I shows the coverage according to each 
threshold. A direct comparison with the existing methods was 
not feasible by the limitation that the existing methods operate 
on single OAS document, rendering them incompatible in the 
multi-document environment. 

The number of edges in the generated graph represents the 
potential producer-consumer API dependencies identified. The 
number of edges varies significantly depending on the semantic 
similarity threshold applied during the graph generation phase. 
At the low threshold, the algorithm generates an over-
approximation of the graph with 323 edges and at the high 
threshold, the algorithm filters out low-confidence edges, 
drastically reducing the count to 46. Table I shows how the 
number of edges changes according to the thresholds. As the 
threshold increases, it reduces the coverage but it reduces the 
resource required to compute the proposed method. 

TABLE I.  Node count, edge count, coverage 

Threshold 0.2 0.4 0.6 0.8 Ideal 

Node Count 19 19 19 19 19 

Edge Count 323 199 68 46 30 

Executed Nodes 16 16 15 11 19 

Coverage 84% 84% 79% 58% 100% 

VII. CONCLUSION 

This work addresses the challenge for stateful RESTful API 
testing in modern microservice architecture (MSA). In MSA, it 
is ideal to maintain an independent OAS document for each 
service while the existing methods assume one single 
comprehensive OAS document. To handle multiple OAS 
documents in MSA, inter-service REST API dependencies 
across separate independent OAS documents need to be 
identified. We define the 12 types of the cross-document 
inconsistencies and propose the method that constructs the 
global REST API dependency graph that identifies the 
dependencies despite the inconsistencies. Based on the graph, 
the REST API operations are executed in order. 

This work provides an automated black-box approach to 
construct comprehensive REST API sequences from multiple 
independent OAS documents in MSA. This method provides a 
foundation for enabling stateful bug or vulnerability detection 
across the entire MSA application with multiple OAS 
documents, rather than detecting within an isolated service. 
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