

Automated RESTful API Sequence Construction

with Cross-Document Inconsistencies

Seokwon Oh

Department of Computer Science

and Engineering

Seoul National University

Seoul, Republic of Korea

swoh@mmlab.snu.ac.kr

Taekyoung “Ted” Kwon

Department of Computer Science

and Engineering

Seoul National University

Seoul, Republic of Korea

tkkwon@snu.ac.kr

Abstract—RESTful APIs have become the dominant

interaction mechanism for modern web services and the adoption

of microservice architecture introduces new security challenges,

particularly concerning stateful REST API vulnerabilities that

require sequential calls to exploit. Existing methods operate on a

single OpenAPI Specification (OAS) document, rendering them

incapable of discovering the inter-service REST API dependencies

inherent in a microservice architecture where it is ideal for each

service to maintain its own independent OAS document. This lack

of visibility prevents automated REST API dependency extraction

in a multi-document environment. To address this gap, we propose

a novel, automated method for extracting a global REST API

dependency graph from multiple, distributed, and potentially

inconsistent OAS documents. Our algorithm parses all provided

OAS documents and employs an approach of exact matching and

semantic similarity matching to resolve cross-document

inconsistencies and identify REST API dependencies across

service boundaries.

Keywords—Communications, Microservice, Semantic Similarity,

OpenAPI, Security, Testing

I. INTRODUCTION

Application Programming Interfaces (APIs) are the contracts
that enable different software applications to communicate and
exchange data with each other. They serve as an essential
communication mechanism for digital systems. Additionally,
Representational State Transfer (REST) has become the de facto
standard for building these web services. The RESTful API
leverages methods and URIs to interact, typically exchanging
data via JSON or XML data formats. OpenAPI Specification
(OAS), formerly known as Swagger[1], has seen widespread
adoption as the most popular language for describing and
documenting the RESTful APIs.

According to the Q1 2025 State of API Security by Salt
Security, the threat of API attacks is growing and 99% of
organizations have encountered security problems in the past
year[2]. To combat these threats, API fuzzing can be leveraged.
It involves sending multiple, often malformed, requests to a
single REST API endpoint to test for bugs or vulnerabilities.
This approach presents opportunities for improvement. Some
bugs or vulnerabilities are stateful. They can be triggered by

executing a specific sequence of multiple REST API operations.
This has led to the development of stateful REST API fuzzing.
For stateful REST API fuzzing, extracting dependencies among
the REST APIs is required.

One of the efficient ways to extract dependencies between
REST APIs and building REST API sequences is leveraging
OAS. There are state-of-the-art methods that extract
dependencies between REST APIs leveraging OAS, such as
RESTler[3], RESTTESTGEN[4], Morest[5], NAUTILUS[6],
and VoAPI2[7]. They explore deeper application states and
uncover multi-API bugs and vulnerabilities.

In microservice architecture (MSA), it is not guaranteed that
there is one single OAS document for the entire application. An
MSA, by design, consists of multiple independent services, each
capable of defining its own separate OAS document. This
creates a direction for new research, as existing methods do not
consider the aggregation of different OAS documents or the
inter-service dependencies that exist between the separate OAS
documents. Additionally, in MSA, attention is required on the
security[8] and the consistency of the REST APIs[9].

This paper proposes a novel method of automated RESTful
API sequence construction in MSA. The core of our technique
is the construction of a global REST API dependency graph by
parsing and analyzing multiple, distributed, and potentially
inconsistent OAS documents. Our algorithm operates in two
phases: graph generation and graph traversal. The graph
generation phase identifies both intra-dependencies and inter-
dependencies of the REST APIs using exact matching and
semantic similarity matching. The graph traversal phase
traverses the graph and executes the endpoints in sequences
according to the dependencies identified with parameter-to-
parameter matched list and schema-to-schema matched list.

The remainder of the paper is organized as follows. Section
II provides the background information on the OAS and REST
API dependency. Section III explains the motivation. Section IV
mentions the types of cross-document inconsistencies. Section
V presents the proposed method for extracting the dependencies
and executing the operations. Section VI explains the evaluation
of the proposed method. Section VII concludes the paper.

II. BACKGROUND

This section presents an example of an OpenAPI
Specification (OAS) document and illustrates a dependency
relation between RESTful APIs where response data from a
producer API operation serves as an input for a subsequent
consumer API operation.

OAS is the language used for describing RESTful APIs. Fig.
1 shows an example OAS document describing an HTTP GET
operation for the path ‘/v1/user/{userId}’. The operation is
tagged under ‘user’. The operation requires a ‘userId’ parameter,
which is a string value, which is to be included in the URI path.
If the request is successful, it returns ‘200’ status code with the
response body schema defined as ‘user’. It also documents ‘401’
response for unauthorized requests.

Fig. 1. OpenAPI Specification (OAS) document example

The dependencies between the REST APIs require execution
of the REST APIs in specific sequences. Fig. 2 shows an
example of a REST API dependency. It illustrates a producer-
consumer dependency in the RESTful APIs. The endpoint on
the right is the producer and the endpoint on the left is the
consumer. The producer endpoint is a POST request used to
create a ‘user’. When successful, the operation produces a
unique ‘userId’ value that can be consumed by the consumer
endpoint. The producer endpoint needs to be executed
beforehand to successfully execute the consumer endpoint.

Fig. 2. REST API Dependency Example

III. PROBLEM AND MOTIVATION

This section explains the problem this work focuses on and
the motivation behind it.

REST API dependency is inferred by following the pointers
within the OAS document. Fig. 3 illustrates a producer-
consumer REST API dependency in the OAS document. API 1
is a producer which generates ‘data B’ and API 2 is a consumer
which uses ‘data B’. The data exists within one OAS document
and therefore, consistent internal reference is guaranteed.

When adopting multiple OAS documents for an MSA
application, inter-service dependencies need to be identified.
The inter-service dependencies can be discovered by matching
the data across different OAS documents. From Fig. 4, a
dependency between API 1 and API 2 can be inferred because
they share common data.

However, if there is an inconsistency between the data used
across OAS documents, it presents a challenge. According to Fig.
5, although both API 1 and API 2 use the same data, due to the
inconsistency between the data ‘surname’ and ‘firstname’, it
cannot be inferred that API 1 and API 2 share a common data.
The data structures are not identical. As a result, a simple
matching algorithm would fail to connect them or identify
dependency between them, even though there is one. This
example demonstrates why an advanced technique is required to
resolve the inter-dependencies in the environment where
multiple OAS documents are independently managed.

Fig. 3. Single OAS document

Fig. 4. Multiple OAS documents, identical data

Fig. 5. Multiple OAS documents, disparate data

IV. TYPES OF INCONSISTENCIES

The work identifies 12 cross-document inconsistency types
categorized into 3 domains: schema-to-parameter, schema-to-
schema, and property-to-property. The 12 inconsistency types
are illustrated from Fig. 6 to 17.

The schema-to-parameter domain from type 1 to 3 addresses
cases where a producer’s response schema property acts as a
consumer’s request parameter, varying from exact matches to
semantically related or unrelated names. For type 1, the producer
API returns a schema containing a property that is used by the
consumer API as a parameter with an identical name. For type
2, the producer API returns a schema property that corresponds
to the consumer API parameter with a different but semantically
related name. For type 3, the producer API returns a schema
property that corresponds to the consumer API parameter with a
different and semantically unrelated name.

The schema-to-schema domain from type 4 to 9
encompasses schema-to-schema relationships, managing
scenarios where a producer’s response schema corresponds to a
consumer’s request body schema despite discrepancies in
schema names, property counts, or semantic similarities. For
type 4, the producer’s response schema and the consumer’s
request body schema share the identical name and possess
identical properties. For type 5, the producer’s response schema
and the consumer’s request body schema share the identical
name but they differ in the count of the contained properties. For
type 6, the producer and consumer schema names are different
but semantically related, while their underlying properties are
identical. For type 7, the producer and consumer schema names
are identical but the internal property names are different, yet
semantically related. For type 8, both the schema names and the
property names differ, yet they remain semantically related. For
type 9, both the schema and the property names differ and they
are semantically unrelated.

The property-to-property domain from type 10 to 12
involves inconsistencies, where a consumer’s request schema is
composed of properties derived from multiple producer APIs,
distinguished by whether the property names exactly match, are
semantically related, or are unrelated. For type 10, the consumer
API request schema is composed of properties derived from the
multiple producer APIs where all the property names match. For
type 11, the consumer API request schema is composed of
properties derived from the multiple producer APIs where the
property names differ but are semantically related. For type 12,
the consumer API request schema is composed of properties
derived from the multiple producer APIs where the property
names differ and are semantically unrelated.

Fig. 6. Type 1 inconsistency.

Fig. 7. Type 2 inconsistency.

Fig. 8. Type 3 inconsistency

Fig. 9. Type 4 inconsistency

Fig. 10. Type 5 inconsistency

Fig. 11. Type 6 inconsistency

Fig. 12. Type 7 inconsistency

Fig. 13. Type 8 inconsistency

Fig. 14. Type 9 inconsistency

Fig. 15. Type 10 inconsistency

Fig. 16. Type 11 inconsistency

Fig. 17. Type 12 inconsistency

V. METHODOLOGY

This section illustrates the detailed proposed method of
extracting RESTful API dependency in MSA applications.

The diagram in Fig. 18 illustrates the high-level design of the
proposed method. It begins by taking multiple OAS documents
as input. It parses the documents and extracts the parameters and
schemas. Based on the parameters and schemas, exact matching
and semantic similarity matching are conducted to identify
dependencies between the REST API operations. A graph is
generated with an endpoint as a node and a dependency as an
edge. The matching algorithm generates the data structures
(parameter-to-parameter matched list, schema-to-schema
matched list) while processing the first step. In the next step,
graph traversal is executed to call the REST API operations in
the sequences according to the identified dependencies.

Fig. 18. Design overview

A. Graph Generation

The first phase is generating a global REST API dependency
graph. Fig. 19 outlines the matching algorithm used to identify
REST API dependencies. The process begins by aggregating all
the OAS documents into a single logical pool. It then iterates

through each individual API operation endpoint, assigning a
unique ID for each endpoint.

After parsing the operations, it selects a target API operation
and checks whether the target API operation only requires path
or query parameters. If it does, it conducts parameter match,
which is checking the existence of an identical field between the
target API operation’s parameters and the source API
operation’s response properties, and parameter semantic
similarity match, which is checking the existence of a
semantically similar field between the target API operation’s
parameters and the source API operation’s response properties.
If any match is found, it is inferred that there is a dependency
between the two API operations. It also checks whether the
target API has a request body. If it does, it conducts parameter
match, parameter semantic similarity match. Additionally,
between the target API operation’s request body schema and the
source API operation’s response schema, it conducts schema
name match, which is checking the existence of an identical
schema name, schema match, which is checking the number of
identical contained properties, schema name semantic similarity
match, which is checking the existence of a semantically similar
schema name, and property semantic similarities match, which
is checking the existence of a semantically similar property. If
any match is found, it is inferred that there is a dependency
between the two API operations.

After completing the matching algorithm, each API
operation is mapped to a node and each dependency is mapped
to an edge to form a global REST API dependency graph.

Fig. 19. Matching algorithm

B. Graph Traversal

The second phase is traversing the global REST API
dependency graph and executing the API operations in
sequences according to the dependencies identified. During the
first phase for any match found, an entry is added in parameter-
to-parameter matched list or schema-to-schema matched list.
The graph traversing is done leveraging these two lists.

Graph traversing with parameter-to-parameter matched list
allows executing API operations with values from hidden
dependent API operations due to inconsistent parameters. An
example is shown in Fig. 20. The producer endpoint
‘/group/create’ is executed, which returns ‘group’ object
containing ‘groupId’. Then it executes a consumer API
operation endpoint ‘/permission/{groupNumber}’ which
requires a path parameter named ‘groupNumber’. By consulting
the parameter-to-parameter matched list, the system finds an
entry that ‘groupId’ and ‘groupNumber’ are matched. It allows
processing that the ‘testGroupId’ value produced by
‘/group/create’ endpoint can be used for the ‘groupNumber’
parameter in the ‘/permission/{groupNumber}’ endpoint. This
successfully executes the API operation with dependency
despite the different property and parameter names, which is a
type of inconsistency between two independent OAS documents.

Graph traversing with schema-to-schema matched list
allows executing API operations with the values from hidden
dependent API operations due to inconsistent schemas. An
example is shown in Fig. 21. The producer endpoint
‘/group/create’ is executed, which returns a ‘group’ object. Then,
it needs to execute the consumer endpoint ‘/permission/reset’,
which requires a ‘cluster’ object as its input. By consulting the
schema-to-schema matched list, it finds an entry that ‘group’
schema matches ‘cluster’ schema. The system knows that it can
use the ‘group’ object data to make a call to ‘/permission/reset’
endpoint. It successfully executes the API with dependency
despite the different schema names, which is a type of
inconsistency between two independent OAS documents.

After completing the second phase, API operations are
executed in order according to the identified dependencies. If
there is a match found between two API operations in the first
phase, the dependency between these two API operations are
identified and the API operations are executed in order in the
second phase. If there is not a match found in the first phase,
there is not a dependency between the two API operations and
the operations are not executed in order in the second phase.

Fig. 20. Traversing with parameter-to-parameter
matched list

Fig. 21. Traversing with schema-to-schema matched list

VI. EVALUATION

To evaluate the proposed method, a prototype was
implemented in Python[10] using WordSegment[11] for
parameter, schema name, property value segmentation and
Sentence-BERT[12] for semantic similarity calculation. To test
the prototype, a test application was developed with Spring
Boot[13], which consists of 3 microservices hosted on a Ubuntu
24.04.3 virtual machine. The testbed comprises 19 API
endpoints and 30 ground-truth API dependencies, designed to
incorporate 16 instances of the 12 cross-document inconsistency
types embedded in inter-service and intra-service dependencies.

The method’s effectiveness is measured based on the
percentage of API operations successfully executed during
graph traversal. The result demonstrates that at optimal semantic
similarity thresholds of 0.2 and 0.4, it achieves 84% coverage.
As the similarity threshold increases to 0.8, the coverage drops
to 58% as the algorithm rejects valid dependency links that are
semantically related but not highly similar, causing breaks in the
execution chains. Table I shows the coverage according to each
threshold. A direct comparison with the existing methods was
not feasible by the limitation that the existing methods operate
on single OAS document, rendering them incompatible in the
multi-document environment.

The number of edges in the generated graph represents the
potential producer-consumer API dependencies identified. The
number of edges varies significantly depending on the semantic
similarity threshold applied during the graph generation phase.
At the low threshold, the algorithm generates an over-
approximation of the graph with 323 edges and at the high
threshold, the algorithm filters out low-confidence edges,
drastically reducing the count to 46. Table I shows how the
number of edges changes according to the thresholds. As the
threshold increases, it reduces the coverage but it reduces the
resource required to compute the proposed method.

TABLE I. Node count, edge count, coverage

Threshold 0.2 0.4 0.6 0.8 Ideal

Node Count 19 19 19 19 19

Edge Count 323 199 68 46 30

Executed Nodes 16 16 15 11 19

Coverage 84% 84% 79% 58% 100%

VII. CONCLUSION

This work addresses the challenge for stateful RESTful API
testing in modern microservice architecture (MSA). In MSA, it
is ideal to maintain an independent OAS document for each
service while the existing methods assume one single
comprehensive OAS document. To handle multiple OAS
documents in MSA, inter-service REST API dependencies
across separate independent OAS documents need to be
identified. We define the 12 types of the cross-document
inconsistencies and propose the method that constructs the
global REST API dependency graph that identifies the
dependencies despite the inconsistencies. Based on the graph,
the REST API operations are executed in order.

This work provides an automated black-box approach to
construct comprehensive REST API sequences from multiple
independent OAS documents in MSA. This method provides a
foundation for enabling stateful bug or vulnerability detection
across the entire MSA application with multiple OAS
documents, rather than detecting within an isolated service.

ACKNOWLEDGMENT

This paper is based on the first author’s 2026 master’s thesis.

REFERENCES

[1] Swagger, https://swagger.io/

[2] Salt Security, Q1 2025 State of API Security,
https://content.salt.security/state-api-report.html

[3] V. Atlidakis, P. Godefroid and M. Polishchuk, "RESTler: Stateful REST
API Fuzzing," 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), Montreal, QC, Canada, 2019, pp. 748-758

[4] E. Viglianisi, M. Dallago and M. Ceccato, "RESTTESTGEN: Automated
Black-Box Testing of RESTful APIs," 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
Porto, Portugal, 2020, pp. 142-152

[5] Y. Liu et al., "Morest: Model-based RESTful API Testing with Execution
Feedback," 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE), Pittsburgh, PA, USA, 2022, pp. 1406-1417

[6] Gelei Deng, Zhiyi Zhang, Yuekang Li, Yi Liu, Tianwei Zhang, Yang Liu,
Guo Yu, and Dongjin Wang, “NAUTILUS: automated RESTful API
vulnerability detection,” In Proceedings of the 32nd USENIX Conference
on Security Symposium (SEC '23), USENIX Association, USA, 2023,
Article 313, 5593–5609

[7] Wenlong Du, Jian Li, Yanhao Wang, Libo Chen, Ruijie Zhao, Junmin
Zhu, Zhengguang Han, Yijun Wang, and Zhi Xue, “Vulnerability-
oriented testing for RESTful APIs,” In Proceedings of the 33rd USENIX
Conference on Security Symposium (SEC '24). USENIX Association,
USA, 2024, Article 42, 739–755

[8] R. Kanishka Jayalath, H. Ahmad, D. Goel, M. Shuja Syed and F. Ullah,
"Microservice Vulnerability Analysis: A Literature Review With
Empirical Insights," in IEEE Access, vol. 12, pp. 155168-155204, 2024

[9] Alexander Lercher, “Managing API Evolution in Microservice
Architecture”, In Proceedings of the 2024 IEEE/ACM 46th International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion '24), Association for Computing Machinery, New York, NY,
USA, 2024, 195–197.

[10] Python, https://www.python.org/

[11] WordSegment, https://pypi.org/project/wordsegment/

[12] Nils Reimers and Iryna Gurevych, “Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks,” In EMNLP-IJCNLP, 2019,
pp. 3982-3992

[13] Spring Boot, https://spring.io/projects/spring-boot

