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Abstract—In Japan, evacuation drills are legally mandated
for educational institutions and companies to promote disaster
prevention and risk mitigation. However, conventional drills
assume a condition where all participants are in the same place
at the same time, making it difficult to share detailed behavioral
information with those who cannot participate. Existing studies
propose an extended reality (XR)-based system that can simulate
realistic scenarios (e.g., flames, smoke, and sound), enhancing
immersion and training effectiveness. However, these systems
typically do not consider recording detailed behaviors of the
participants or providing intuitive feedback to them. Moreover,
the XR-based system rely on SLAM functionality on the XR
headset for recognizing 3D structure of the field and localing the
user, which restricts the number and size of environmental maps
including the structure of a specific area that can be managed.
As a result, their application to large-scale drills spanning entire
facilities is difficult. To address these challenges, we propose a
system that records behaviors of the participants in real time
using motion-capture sensors and enables intuitive sharing of the
recorded behaviors with others who conduct drills at the same
location. In addition, rather than managing environmental maps
solely on XR headsets, the proposed system centrally manages
the maps on a server and dynamically distributes the appropriate
map according to the current position of headset. This approach
mitigates SLAM-related limitations on the number and coverage
area of environmental maps to supports evacuation drills across
large-scale facilities.

Index Terms—Extended reality (XR), evacuation training,
motion capture, SLAM, environmental map

I. INTRODUCTION

Japan is geographically prone to natural disasters due to its
location, topography, geology, and meteorological conditions.
According to surveys by the Cabinet Office in Japan, natural
disasters cause extensive damage every year, and in the case
of large-scale disasters, the number can ranges from several
thousand to tens of thousands [1].

In response to this background, evacuation drills for disaster
prevention and mitigation are mandated in Japan, mainly in
educational institutions, companies, and local governments.
In particular, in facilities where large numbers of people
gather, such as schools and office buildings, regular evacuation
drills are indispensable for enabling prompt responses during
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emergencies. However, most conventional evacuation drills
still rely on the condition where all trainees gather at the same
time and location , and there is no intuitive method to share
the situations of the drills with those who cannot participate.

To address such issues, existing studies propose a fire evac-
uation drill support system utilizing extended reality (XR) [2].
By using XR headsets, virtual elements such as flames, smoke,
and sounds are superimposed onto the real world, thereby
creating an immersive training environment as if trainees are
in an actual fire scene. These systems also record behavioral
data such as evacuation time, evacuation routes, number of
contacts with flames or smoke, and frequency and duration
of postural changes. After the drill, the data are delivered as
textual feedback presented via XR headsets. Compared with
traditional tabletop or paper-based drills, these systems are
expected to provide higher immersion and learning effects.
However, the feedback is provided only in textual information,
and sufficient mechanisms are not developed to allow trainees
to intuitively review their own behaviors or to share them
among multiple trainees.

In addition, XR headsets are equipped with simultaneous
localization and mapping (SLAM) functionality, which is es-
sential for recognizing 3D structures of the field and localizing
trainees to realize the stable superimpose of virtual content
onto the real space. However, current XR devices impose
restrictions on the coverage area of the real space that can be
recongnized [3]. Therefore, it is difficult to realize evacuation
drills that encompass an entire large-scale facility such as
buildings with multiple floors as the training environment.

To address these challenges, this study proposes a new sys-
tem that enables detailed recording behaviors of trainees and
reproducing them by superimposing the virtual objects corre-
sponding with the past trainees onto the real space utilizing
XR technologies. In the proposed system, the movements and
behaviors of the trainees are recorded using motion capture
sensors in real time and are subsequently shared with others in
an intuitive manner. Furthermore, to overcome the limitations
of areas that can be managed by XR headsets, the proposed



system manages environmental maps including 3D structures
of the specific area of the field on a centralized server rather
than on individual devices. By recognizing the location of
the trainee, the server selects and distirbutes appropriate maps
to the trainee. With this functionality, the proposed system
enables effective evacuation drills that can flexibly support
entire facilities.

II. RELATED WORK AND OBJECTIVES OF THIS STUDY
A. Fire Evacuation Training System Using Mixed Reality

Sakaguchi et al. propose a fire evacuation training system
that utilizes extended reality (XR) [2]. In this system, flames,
smoke, and sound are superimposed onto the real world
using an XR headset, thereby reproducing fire situations and
enabling highly immersive evacuation training. Furthermore,
the system records data related with the behaviors of the
trainee such as evacuation time, evacuation routes, number
of contacts with flames and smoke, and the frequency and
duration of postural changes. These data are presented as
feedback on the XR headset worn by trainees. However, in this
study, the feedback is primarily presented in textual format,
which lacks immersion when provided to a large number of
trainees.

B. VR Evacuation Training System with Gaze Visualization

Ii et al. propose a VR-based evacuation training system
equipped with functions for visualizing gaze of trainees [4].
In this system, the trainees wear a head-mounted display
and perform evacuation actions within a virtual environment.
During the training, their movement trajectories and gaze data
are recorded, allowing the trainees to review their evacuation
behavior afterward through third-person perspectives. This
enables insights such as “the trainee kept focusing on the
fire” or “the trainee failed to notice injured persons,” thereby
raising awareness of habits on evacuation and decision-making
tendencies. However, this system does not faithfully reflect the
structure or spatial characteristics of actual buildings, making
it less suitable for practical training aligned with real-world
environments.

C. Objectives of This Study

Existing studies propose XR-based evacuation training sys-
tems. However, the systems do not assume the implementation
of functions that record detailed evacuation behaviors and
provide intuitive feedback to multiple trainees.

Therefore, this study proposes a new system that records
the behaviors of trainees using motion capture sensors and
shares them with other trainees who later conduct training at
the same location. Specifically, the system employs the SLAM
functionality built on XR headsets to perform accurate indoor
localization, linking the behaviors of trainees with their po-
sitions for recording. The SLAM (Simultaneous Localization
and Mapping) is a technique that simultaneously performs self-
localization and recognition of 3D structures in a field for
map construction, using information obtained from sensors
such as cameras, LiDAR, and IMUs (Inertial Measurement
Units) [5]. The recorded behavioral data are then shared with
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Fig. 1: Overview of the proposed system.

subsequent trainees at the same site and displayed on the XR
headsets, enabling intuitive sharing of evacuation behaviors
during training.

In addition, instead of storing and managing environmen-
tal maps solely within XR headsets, the proposed system
introduces a mechanism to store the maps on a server and
dynamically distribute them based on the current position of
the trainee. This approach overcomes the limitations of SLAM
with respect to the number of maps that can be stored on
the headset, thereby enabling evacuation training across large-
scale facilities.

III. PROPOSED EVACUATION TRAINING SUPPORT
NETWORK SYSTEM

A. Overview of the Proposed System

An overview of the proposed system is shown in Fig. 1. The
proposed system consists of sensor nodes worn by trainees and
a server that manages behavioral records and environmental
maps. The processes in the proposed system are divided into
three stages: a Preparation Stage, a Training Record Stage,
and a Feedback Stage.

In the Preparation Stage, the sensor node relies on the
XR headset (Meta Quest 3) to scan the indoor environment
through its built-in SLAM functionality for constructing the
environmental maps. The generated map is then transmitted
to the server.

In the Training Record Stage, the sensor node estimates
its position using the SLAM function of the XR headset. To
record the initial position just after starting the training, a data
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structure called a spatial anchor is used, including a specific
position and orientation of the trainee on the coordiante system
of the virtual space. Subsequently, motion data obtained from
a mobile motion capture device (Sony Mocopi) are recorded
with timestamps and transmitted to the server in real time,
along with the results of self-localization and the UUID of the
spatial anchor. The server associates the received motion data
with the spatial anchor corresponding with the current position
and stores them as behavioral records during training.

Furthermore, during both the Training Record Stage and
the Feedback Stage, the sensor node continuously transmits
the positional information of the trainee to the server. Based
on this data, the server determines which environmental maps
should be acquired or discarded and sends corresponding
instructions to the sensor node. Following these instructions,
the sensor node dynamically updates its stored maps, ensuring
that only the necessary data are retained within the limited
capacity of the sensor node.

In the Feedback Stage, the sensor node transmits the UUID
of the spatial anchor corresponding to the recorded motion
data. The server searches for the motion data associated with
the received UUID and sends it back to the sensor node. The
sensor node then superimposes the corresponding behavioral
records onto the real space.

B. Configuration of the Sensor Node

The hardware configuration of the sensor node is shown in
Fig. 2. For motion capture, the system employs a mobile mo-
tion capture device (Sony Mocopi). Mocopi estimates the full-
body three-dimensional pose from time-series accelerometer
and gyroscope data obtained from a small number of wearable
sensors. Although IMU-based position estimation generally
suffers from drift caused by the integration of acceleration
signals, Mocopi mitigates this issue by incorporating a pre-
trained Al model that directly estimates joint positions at each
sensor-attached body part while compensating for accumulated
errors. Furthermore, body joints without attached sensors (e.g.,
elbows and knees) cannot be uniquely determined only from
geometric constraints due to the many degrees of freedom of
the human body. Mocopi addresses this challenge by apply-
ing Al-driven pose interpolation to infer natural intermediate
joint positions. Through these mechanisms, Mocopi achieves
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Fig. 3: Example of scanned results of real-world environments.

continuous and natural full-body motion estimation despite its
minimal sensor configuration [6] [7].

For spatial scanning and self-localization, the SLAM func-
tionality of the XR headset (Meta Quest 3) is used. The Meta
Quest 3 integrates SLAM by combining multiple external
cameras with an internal IMU for the SLAM. This allows
real-time understanding of the three-dimensional structure of
the training space and the current positon of the headset,
simultaneously [8]. During the Preparation Stage, the SLAM
functionality is used to scan the training space and generate an
environmental map in JSON format. In the Training Record
Stage and the Feedback Stage, the headset transmits real-
time positional information estimated by the SLAM to the
server. The server, in turn, issues instructions to add or
delete environmental maps on the headset. Additionally, in the
Feedback Stage, the XR headset overlays recorded behavioral
data onto the real environment.

C. Process Flow in the Preparation Stage

In the Preparation Stage, the SLAM functionality on the XR
headset is used to create environmental maps of the training
space. These maps are then transmitted and registered on the
server, enabling subsequent processes to utilize shared spatial
data. First, the trainee starts the sensor node and walks around
the training space while scanning the environment using the
SLAM. The generated environmental maps are stored in JSON
format within the sensor node. An example of scanned spatial
data is shown in Fig. 3. The map is generated in JSON format
and is assigned UUIDs. The server manages these maps and
records spatial relationships among them. In this way, the
server maintains a graph structure in which nodes represent
areas and edges represent connections. This structure forms
the foundation for dynamically adding or deleting maps during
training according to changes in the position of the trainee.

D. Process Flow in the Training Record Stage

In the Training Record Stage, the sensor node first performs
self-localization using the SLAM functionality of the XR
headset. A spatial anchor is set at the initial training position
to record the starting point. At the same time, motion capture
is initiated. The UUID and positional information of the
spatial anchor and the motion data are transmitted from the
XR headset to the server. The server adjusts the display
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position and orientation of the motion data based on the
coordinates of the spatial anchor and stores them together with
the UUID. This ensures that behaviors of the trainee are stored
in association with their positions.

Additionally, during the Training Record Stage, the sensor
node continuously transmits its current position to the server.
The server identifies the current environmental map and adja-
cent areas corresponding to the location of the trainee and
sends instructions for updating environmental maps. These
instructions specify which maps to add and which to delete.

E. Process Flow in the Feedback Stage

In the Feedback Stage, the sensor node performs self-
localization using the SLAM function of the XR headset. The
sensor node then transmits the UUID of the spatial anchor
corresponding to the recorded motion data to the server. The
server retrieves the motion data corresponding with the UUID
and transmits it to the sensor node. After that, the sensor
node overlays the retrieved motion data onto the real-world
environment displayed on the XR headset, as illustrated in
Fig. 4. During the Feedback Stage, the sensor node also
continues to transmit real-time positional information to the
server. The server uses these data to provide instructions for
dynamically updating environmental maps. This process is
similar to that in the Training Record Stage.

IV. ENVIRONMENTAL MAP UPDATING METHOD

This section provides a detailed explanation of the process
flow in the Preparation Stage, described in Section III-C,
especially the method for updating environmental maps.

A. Details of Environmental Maps

The environmental maps used in the proposed system are
generated by the SLAM functionality embedded in the XR
headset. When a trainee wears the XR headset, the center of
the play area (boundary) specified at startup is automatically
set as the origin (0,0,0) of the coordinate system of the envi-
ronmental map. As the user physically moves within the train-
ing space for scanning the surrounding environment, three-
dimensional structures such as floors and walls are captured
and recorded as an environmental map. The generated map
reflects the structure of the real-world environment, allowing
virtual objects to be placed in accurate positions. Up to 15

TABLE I: Data structure of a JSON file defining
an environment map.

‘ Item ‘ Value ‘ Description
UUID 41A6DAAFC43 Identifier of the map
SemanticClassifications | FLOOR Classification label

Transform.Translation

[1.3897, —0.0377, —0.1488]

Center coordinates

Transform.Rotation

[270.0, 7.7712, 0.0]

Orientation

PlaneBounds.Min

[—4.1162, —2.2421]

Minimum  boundary
coordinates

PlaneBounds.Max

[4.1169, 2.2444]

Maximum  boundary
coordinates

PlaneBoundary2D

[4.1147, 2.2368],
[—4.1162, 2.2444],

Floor polygon vertices
[z, y]

[—4.1162, —2.2421],
[4.1169, —2.2421]
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Fig. 5: Overview of the conversion method.

environmental maps can be stored on the internal storage of
the XR headset, each uniquely identified by a UUID. The
format of the map is JSON, where geometric information such
as three-dimensional structures and metadata of the map are
stored in text-based format.

B. Management of Environmental Maps on the Server

In the proposed system, environmental maps scanned by the
XR headset are centrally managed by the server. Each map
corresponds to a single area in the training space, and the
data are stored as JSON files. The data structure of a JSON
file defining an environmental map is shown in Tab. I. This
JSON file includes a UUID for identifying the area, semantic
classifications (SemanticClassifications), transformation infor-
mation (position and orientation), and geometric information
such as floor shapes and ranges (PlaneBoundary2D).

The identification of environmental maps on the server is
based on the UUID assigned to elements classified as FLOOR
in the JSON file. The FLOOR element represents the floor
surface of a area, and the server uses this information to
determine the position and extent of the area. In particular,
the PlaneBoundary2D stores multiple vertices representing
the floor contour in [z, y] format. Since the coordinate system
is different between the headset and the server, a conversion
processing of the coordinates of the map is required.

An overview of the conversion method is shown in Fig. 5.
In this method, the values of the Rotation item in the
Transform field are first used to rotate the floor geometry
into the correct orientation. Next, the Translation values
are used as the center coordinates of the floor, and all vertex
coordinates are translated relative to this center. Through this



TABLE II: Data structure of the adjacency list.

’ Field \ Example ‘
from Area A UUID
to Area B UUID, Area C UUID, Area D UUID

Note: The to field stores UUIDs of multiple adjacent areas as a
comma-separated string. When a one-way relation from—to is registered,
the reverse relation to—from is also automatically registered on the
server, effectively treating it as a bidirectional adjacency.
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procedure, the environmental map stored in the JSON file can
be converted into the coordinate system on the server.
Additionally, the server constructs adjacency lists that de-
scribe the physical spatial relationship among all environmen-
tal maps. The data structure of the adjacency list is shown in
Tab. II. The adjacency refers to the condition in which areas
are directly connected and accessible. For example, if Area A
is adjacent to Area B, the UUID of Area B is registered in
the adjacency list of Area A, and vice versa. This adjacency
information is maintained internally on the server as a graph
structure, where nodes represent areas and edges represent
connections between the areas. This structure is utilized for
route searching during training and for determining priorities
when updating the environmental map on the sensor node.

C. Environmental Map Updating Method

The storage capacity of XR headsets is limited, and the
maximum number of environmental maps that can be stored
simultaneously is 15. To address this, the proposed system
introduces a mechanism in which only the maps necessary for
the current position of trainee are retained, while unnecessary
maps are deleted. The process is applied in both the Training
Record Stage and the Feedback Stage. The flow of the
environmental map updating method is shown in Fig. 6.

At the start of training, the sensor node sends its estimated
current position obtained through SLAM, along with a list of
UUIDs of currently stored maps, to the server. Based on this
information, the server identifies the area where the trainee is
located and its adjacent areas, and extracts the corresponding
maps. Furthermore, the server uses a Dijkstra algorithm to
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>
X

Fig. 7: Selection and update procedure for maps.

search for a pre-specified destination in the adjacency graph
of areas, and extracts the maps corresponding to the areas
along the path.

Here, the Dijkstra algorithm is a method for determining
the shortest distance from a starting point to each vertex in
a weighted graph with non-negative edge weights [9]. The
shortest path and its cost to the destination can be obtained
by iteratively selecting the vertex with the smallest tentative
distance and updating the distances of its neighboring vertices.
In this setting, vertices correspond to areas, and edge weights
correspond to the distances between the centers of adjacent
areas. Based on the results, the server selects which environ-
mental maps should be added and which should be deleted,
and transmits this information to the sensor node via HTTP
communication. If the number of maps to be acquired exceeds
the storage limit, the server specifies UUIDs of maps that can
be deleted according to priority. The server then instructs their
removal and subsequently directs the sequential downloading
of the required maps.

Figure 7 illustrates the selection and update procedure
for environmental maps. High-priority maps include those
corresponding to the current area of trainee and adjacent areas.
This ensures accurate self-localization and proper placement
of virtual objects in the current location. Additionally, maps
along the path to the destination are sequentially selected as
acquisition targets, with the number limited to 15 according
to their necessity. Following the received instructions, the XR
headset deletes unnecessary maps, downloads the required
maps in JSON format from the server and stores them lo-
cally. This enables smooth updating of maps during training
while retaining only the maps necessary for the current and
upcoming locations.

V. EVALUATION OF THE EFFECTIVENESS OF THE
PROPOSED SYSTEM
A. Experimental Setup

Because the proposed system should promptly optimize the
environmental maps on the sensor node based on the current



position of trainee, we mainly evaluate the real-time perfor-
mance of updating the maps. Focusing on the in-training map-
update pipeline described in Sections 3 and 4, we measure the
end-to-end processing time from selecting the environmental
maps required for a route to a destination to completing their
acquisition.

The target pipeline consists of four components: (i) trans-
mission of the current position and the list of held maps,
(ii) server-side selection of required maps and dispatch of
addition/deletion instructions, (iii) deletion of unneeded maps
and downloads of necessary maps on the sensor node, and (iv)
loading the downloaded JSON files as environmental maps.
Here, the server-side selection denotes the procedure that uses
the trainee position and the UUIDs of the stored maps. This
process searches the areas at the current location and along
the route to the destination, extracts the relevant maps, and
determines which should be added to or deleted from the
sensor node. In this experiment, we evaluate the processing
time of each component and derive the average of the total
processing time.

Experiments are conducted under two network conditions
that differ in upstream (backhaul) characteristics. Environ-
ment « is a relatively stable network, whereas Environment 3
is a congested network with many users. Under both condi-
tions, we repeat the same processing ten times and calculate
the average processing time.

At the beginning of each trial, the XR headset on the sensor
node holds only one environmental map (the map of the area
where the sensor node is currently located). The sensor node
then acquires 14 additional maps consecutively to reach the
maximum of 15 maps. This scenario emulates a use case in
which the route to the destination is long and traverses many
areas, placing the highest load on the map-update pipeline.
All target maps are stored in JSON format. Each map has an
average file size of approximately 10 KB, resulting in a total
of about 140 KB for 14 files.

B. Results

Table III summarizes the results. In the stable network (En-
vironment «), the average end-to-end time is approximately
0.053 seconds, and even in the congested network (Environ-
ment () it is approximately 0.117 seconds. Since both are well
below one second, the system can update environmental maps
in real time relative to trainee movement.

The dominant portion of the total time is consumed by
the server-side process of selection and instruction dispatch,
accounting for approximately 92% in Environment v and 97%
in Environment 3. Since this step directly reflects network
latency and server load, differences in network conditions
appear prominently in the results. By contrast, “new download
of environmental maps” and “JSON file loading” each take less
than a few milliseconds in both environments, which can be
attributed to the small data size and light-weight I/O on the XR
headset. Even in Environment 3, the total time remains under
0.2 seconds, indicating that sufficient real-time performance
can be achieved in typical indoor networks such as office

TABLE III: Average processing time

\ Process [ Time (ms), o | Time (ms), 3 |
Position & held-map list transmission 1.0 1.0
Map selection & instruction dispatch (server) 49 114
New download of environmental maps 0.002 0.002
JSON file loading 3.0 2.0

[ Total ‘ 53 ‘ 117 ‘

or commercial buildings. Overall, the results demonstrate that
the proposed system can maintain responsiveness in realistic
indoor training scenarios.

VI. CONCLUSION AND FUTURE WORK

This study proposed a system that records the movements of
trainee in real time using motion-capture sensors and enables
intuitive presentation and sharing of detailed behaviors with
subsequent trainees. To overcome constraints on the creation
and management of environmental maps on XR headsets, the
system centrally manages maps on a server and dynamically
updates them according to the current position of the trainee.
Through evaluation experiments, we demonstrated that en-
vironmental maps can be updated in real time in response
to trainee movement during training. As future work, we
will apply Al-based analysis to the recorded motion data
to automatically recognize key trainee behaviors and iden-
tify inefficient or unsafe movement patterns. By leveraging
machine-learning models on the time-series sensor data, we
aim to derive objective performance indicators and provide
more effective feedback during evacuation training.
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