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Abstract— Reliable classification of wafer map defect 

patterns helps process engineers identify yield-limiting issues in 

semiconductor fabrication plants. Hybrid CNN–Transformer 

models such as iFormer, which combine local convolutions with 

global self-attention, have recently achieved strong results on 

this task. However, iFormer’s Single-Head Modulation 

Attention (SHMA) still performs expensive global attention over 

all spatial tokens and provides little inductive bias for thin, line-

shaped defects such as scratches. We introduce Axial-iFormer 

and a lightweight companion model that replace SHMA with a 

Modulated Axial Attention block. The new block factors 2D 

attention into row-wise and column-wise operations and 

modulates the resulting context through a gating branch, 

preserving long-range dependencies while lowering 

computational cost. On the WM-811K wafer map benchmark, 

the performance-oriented Axial-iFormer-S increases Scratch 

Recall to 82.85%, a gain of 3.35 percentage points over the 

iFormer-S baseline. The efficiency-oriented Axial-iFormer-S-

Lite reduces the parameter count by 29% yet still surpasses the 

baseline on overall defect detection, indicating that Axial-

iFormer is well suited to yield monitoring scenarios with tight 

computational budgets. 
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I. INTRODUCTION 

Modern semiconductor fabrication at nanometer 
technology nodes is highly sensitive to small process 
variations, so even subtle drifts can translate into substantial 
yield loss. To analyze such issues, engineers inspect wafer bin 
maps, two-dimensional images that encode the pass/fail status 
of individual dies. Characteristic spatial patterns on these 
maps are studied under Wafer Map Pattern Recognition 
(WMPR) and are strongly associated with specific tools or 
process steps, which makes automatic pattern classification an 
important component of yield analysis. Early WMPR systems 
relied on visual inspection or simple statistical rules, but the 
growing scale and diversity of wafer data have led researchers 
to adopt deep learning models instead. 

Deep neural networks for wafer maps increasingly adopt 
hybrid designs that mix Convolutional Neural Networks 
(CNNs) with Vision Transformers (ViTs). iFormer is a 
representative model in this category: it augments 

convolutional features with a global context branch based on 
Single-Head Modulation Attention (SHMA). SHMA keeps 
the attention module compact, but it still performs global 
context modeling over all spatial tokens at once. This full-
image processing is costly for edge devices and, more 
importantly, treats the feature map as a single sequence 
without explicitly encoding axis-aligned structures. As a 
result, thin linear defects such as scratch patterns may be 
under-represented, causing false negatives in yield-critical 
situations. 

To address these challenges, we propose Axial-iFormer, a 
specialized architecture designed for robust and efficient 
wafer map classification. Our approach replaces the standard 
global attention in iFormer with Modulated Axial Attention. 
This modification introduces two key contributions: 

1. Efficient Axial Decomposition: We decompose the 
computationally expensive global attention into 
consecutive 1D axis-wise (row and column) operations. 
This structural change significantly reduces the 
computational overhead while enhancing the model's 
sensitivity to horizontal and vertical defect patterns, such 
as scratches. 

2. Stabilized Learning via Modulation: A naive application 
of Axial Attention often leads to information loss and 
training instability. We resolve this by incorporating the 
gating mechanism of iFormer. This integration ensures 
that the efficient axial features are robustly modulated, 
preventing performance degradation. Experimental 
results on the WM-811K dataset show that our approach 
improves Scratch Recall by 3.35 percentage points 
compared to the baseline, while our lightweight variant 
(S-Lite) reduces parameters by 29%, demonstrating a 
superior trade-off between accuracy and efficiency. 

The remainder of this paper is organized as follows. 
Section II reviews related works on wafer map pattern 
recognition and efficient vision architectures. Section III 
details the proposed Axial-iFormer architecture, focusing on 
the Modulated Axial Attention mechanism. Section IV 
presents the experimental setup, comparative results, and 
efficiency analysis. Finally, Section V concludes the paper 
with directions for future research. 



 

 

II. RELATED WORK 

A. Wafer Map Pattern Recognition  

Early approaches to WMPR primarily relied on manual 
feature extraction combined with traditional machine learning 
algorithms, such as clustering and density-based methods [1]. 
However, these methods often struggled to generalize to the 
increasing diversity and complexity of defect patterns in large-
scale fabrication data. With the advent of deep learning, CNNs 
became the standard for wafer map classification due to their 
strong capability in extracting local spatial features [2],[3]. 
Despite their success, standard CNNs have a limited receptive 
field, which makes it challenging to capture global 
dependencies required for distinguishing complex or spatially 
spread-out defect patterns across the entire wafer. 

B. Efficient Hybrid Vision Architectures 

To overcome the locality limitations of CNNs, recent 
studies have introduced hybrid architectures that incorporate 
ViTs [4] and hierarchical designs like Swin Transformer [5]. 
A notable state-of-the-art model in this line of work is iFormer 
[6], which effectively combines the local representation power 
of CNNs with the global modeling ability of self-attention. 
iFormer utilizes a SHMA mechanism to capture global 
context while mitigating the memory overhead of standard 
Multi-Head Attention. However, its global attention 
mechanism still processes all spatial tokens simultaneously, 
which remains computationally intensive for resource-
constrained edge applications [7]. Furthermore, treating the 
feature map as a unified sequence lacks the specific inductive 
bias needed to detect fine-grained linear defect patterns, such 
as scratches, which often appear along specific axes. 

C. Axial Attention Mechanism  

Axial Attention was proposed to improve the efficiency of 
self-attention on multidimensional data [8]. Instead of 
applying attention to the entire flattened feature map, this 
mechanism decomposes the operation into two separate 1D 
attention steps along the height (row) and width (column) 
axes. This factorization allows the model to capture long-
range dependencies with significantly reduced computational 
redundancy compared to global attention. In this work, we 
adopt this mechanism to efficiently capture the horizontal and 
vertical correlations typical of scratch defects. Crucially, we 
integrate it with the gating mechanism of iFormer to resolve 
the training instability that can occur when applying raw Axial 
Attention to sparse wafer data. 

Fig. 1. Structure of the Proposed Modulated Axial Attention Block 

III. METHODOLOGY 

This section describes the proposed Axial-iFormer. We 
adopt the hierarchical pyramidal structure of the original 
iFormer to effectively process multi-scale defect patterns. The 
core innovation lies in the later stages, where we replace the 
original SHMA blocks with our proposed Modulated Axial 
Attention blocks. 

A. Proposed Modulated Axial Attention Block 

The Modulated Axial Attention module, illustrated in Fig. 
1, is designed to replace the global attention in the original 
SHMA block and to address its limitations in detecting fine-
grained linear defects. Distinct from the original design, the 
input features are first processed by a 1 × 1 convolution and 
Sigmoid activation, then split into a Gate branch and a Context 
branch. Instead of processing all spatial tokens 
simultaneously, this module decomposes the context 
modeling into two consecutive 1D operations: Row Attention 
followed by Column Attention. 

• Axial Decomposition: This factorization allows the 
model to explicitly capture long-range dependencies 
along the horizontal and vertical axes, which directly 
corresponds to the geometric characteristics of scratch 
defects. Furthermore, this structural change 
significantly reduces the computational redundancy 
compared to standard all-to-all attention mechanisms. 

• Gated Modulation: This efficient axial context is then 
integrated using the existing gating (modulation) 
mechanism of the SHMA block. The feature branch 
(Gate) and the context branch (Axial Attention output) 
are fused via element-wise multiplication, ensuring 
that the axial context is robustly incorporated into the 
final features, thereby stabilizing the training process. 
Empirically, removing this gating mechanism and 
using Axial Attention alone reduces Scratch Recall 
from 82.85% to 70.29%, confirming that modulation 
is essential for stable training on sparse wafer maps. 

B. Model Variants 

We propose two variants of Axial-iFormer to address  
different deployment scenarios: 

• Axial-iFormer-S (Standard): This performance-
oriented variant keeps the same channel configuration 
as the baseline iFormer-S, preserving feature 
expressiveness with a particular focus on recall for 
linear scratch patterns. 

• Axial-iFormer-S-Lite (Lightweight): Designed for 
real-time edge monitoring, this variant strategically 
reduces the channel width in the deeper stages. As 
shown in our experiments, this reduction lowers the 
parameter count by 29% while preserving the 
structural advantages of the axial mechanism.  

IV. EXPERIMENTS 

A. Experimental Setup 

To ensure a fair and rigorous evaluation, we conducted 
experiments on the WM-811K dataset, which consists of real-
world wafer maps. We removed unlabeled data and applied a 
stratified split, using 80% of the data for training and 20% for 
testing. Crucially, to guarantee that performance gains are 
derived solely from architectural improvements rather than 
data preprocessing, we applied an identical set of 7 custom 

 



 

 

augmentations (including random rotation, random erasing, 
and Gaussian blur) to both the baseline and our proposed 
models. 

To quantitatively evaluate the model performance, we 
utilize standard classification metrics: Precision, Recall, and 
F1-score. These metrics are defined as follows : 

 Precision =
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Here, $%, &% , and &'  denote the number of true 
positives, false positives, and false negatives, respectively. In 
our experiments, considering the class imbalance, we report 
the Macro F1-score to treat all defect types equally. 

B. Main Results: Robustness in Defect Classification 

Table I summarizes the overall performance on the 9-class 
classification task. Our primary objective is to improve the 
detection rate (Recall) of 'Scratch' defects, which are typically 
fine-grained linear patterns that global attention mechanisms 
often fail to capture. 

As shown in Table I, our performance-oriented model, 
Axial-iFormer-S, achieved a Scratch Recall of 82.85%, 
outperforming the baseline iFormer-S (79.50%) by 3.35 
percentage points. In addition to scratches, Axial-iFormer-S 
also improved recall for other geometric defect patterns, such 
as Edge-Loc (+0.67 percentage points) and Donut (+0.90 
percentage points). Taken together, these gains suggest that 
decomposing global attention into axial components 
strengthens the inductive bias for linear features and helps 
reduce false negatives in yield management. 

We further investigate the role of the gating mechanism by 
training an Axial-only variant that replaces SHMA with pure 
Axial Attention while removing the modulation gate. Under 
the same training setup on WM-811K, this variant achieved 
an overall accuracy of 96.76%, a macro F1-score of 0.8365, 
and a Scratch Recall of 70.29%, all lower than both iFormer-
S (97.80% / 0.9044 / 79.50%) and our Axial-iFormer-S 
(97.80% / 0.9067 / 82.85%). This result indicates that naive 
Axial Attention alone can even degrade performance on 
sparse wafer maps, and that the gating mechanism is crucial 
for stabilizing Axial Attention and achieving high recall on 
scratch defects. 

TABLE I.  OVERALL PERFORMANCE COMPARISON 

Model Overall Acc (%) Macro F1 Scratch Recall (%) 

iFormer-S 97.80 0.9044 79.50 

Axial-iFormer-S 97.80 0.9067 82.85 

Axial-iFormer-S-Lite 97.77 0.9058 82.43 

C. Efficiency Analysis 

For deployment in resource-constrained edge devices, 
model efficiency is as critical as performance. Our lightweight 
variant, Axial-iFormer-S-Lite, was designed by reducing 
channel dimensions in deeper stages. To validate its 
efficiency, we measured the number of parameters, FLOPs 
(using fvcore library), and inference latency on an NVIDIA 
H100 Tensor Core GPU with an input resolution of 224 ×

224. As shown in Table II, the S-Lite model has only 4.43M 
parameters and 0.79G FLOPs. This represents a 29.1% 

reduction in parameters and a 28.2% reduction in 
computational cost compared to the baseline iFormer-S 
(6.25M parameters, 1.10G FLOPs). Furthermore, it achieves 
an inference latency of 4.69 ms, which is faster than the 
baseline (4.95 ms). This confirms that the proposed 
architecture offers a superior trade-off, maintaining 
computational efficiency suitable for real-time edge 
monitoring. 

TABLE II.  MODEL COMPLEXITY AND INFERENCE  

Model Params (M) FLOPs (G) Latency (ms) 

iFormer-S 6.25 1.10 4.95 

Axial-iFormer-S 8.44 1.28 6.76 

Axial-iFormer-S-Lite 4.43 0.79 4.69 

D. Robustness Verification 

To further verify the robustness of our approach, we 
evaluated the models on a binary classification task (Scratch 
vs. Non-scratch). In this scenario, Axial-iFormer-S achieved a 
Scratch Precision of 93.97%, an improvement of 3.36 
percentage points over the baseline (90.61%). This indicates 
that our model not only detects more defects (high recall) in 
complex multi-class scenarios but also distinguishes them 
more accurately (high precision) in targeted tasks, indicating 
its robustness against false positives. 

V. CONCLUSION  

In this paper, we proposed Axial-iFormer, an iFormer-
based architecture tailored to wafer map defect classification. 
Motivated by the difficulty of capturing thin, axis-aligned 
defects with standard global attention, we replaced the SHMA 
block with a Modulated Axial Attention module that 
factorizes 2D context modeling into row-wise and column-
wise attention and injects this axial context through the 
original gating branch. 

On the WM-811K benchmark, the performance-oriented 
Axial-iFormer-S improves Scratch Recall by 3.35 percentage 
points over the iFormer-S baseline, while keeping overall 
accuracy and Macro F1 at a comparable level. In addition, 
Axial-iFormer-S increases recall for other geometric defect 
patterns such as Edge-Loc and Donut, indicating that axial 
decomposition strengthens the inductive bias for linear and 
edge-aligned structures. The lightweight Axial-iFormer-S-
Lite reduces the number of parameters by about 29.1% and 
lowers FLOPs and latency, yet still achieves slightly higher 
Macro F1 and Scratch Recall than the baseline, making it more 
suitable for deployment on resource-constrained tools. 

Despite these gains, not all defect types benefit equally 
from the proposed design, and improvements for several 
classes with more irregular spatial patterns remain modest 
compared to scratches. As future work, we plan to investigate 
a hybrid design that combines window-based attention, which 
is effective for local feature extraction, with axial attention for 
long-range axis-wise context. We also aim to evaluate Axial-
iFormer and its variants in real in-line monitoring 
environments to study their robustness under process drifts 
and unseen defect patterns. 
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