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Abstract—Breast cancer remains one of the leading causes of
mortality worldwide, particularly among women, with more than
300,000 new cases reported annually. Conventional drug screen-
ing for anticancer compounds is costly and time-consuming,
motivating the adoption of machine-learning-based in silico
approaches. SMILES representations are widely used in predic-
tive molecular modeling. However, the feature space generated
from SMILES descriptors is often high-dimensional and not all
features contribute meaningfully to classification performance.
Therefore, feature selection is essential to reduce dimensionality,
improve learning efficiency, and enhance model accuracy. This
study develops a Support Vector Machine (SVM) model to
classify antiproliferative activity of SMILES-based compounds
while integrating Glowworm Swarm Optimization (GSO) as
a metaheuristic feature selection strategy. An initial Variance
Threshold reduced more than 800 molecular descriptors to
fewer than 200, and GSO further refined the subset with
reduction rates of 55-57%. All SVM kernels demonstrated
performance improvement after feature reduction, with the RBF
kernel achieving the most stable generalization results with
0.85 accuracy using GSO-selected features, which increased to
0.86 following hyperparameter tuning. These findings indicate
that swarm-based feature optimization can effectively reduce
dimensionality while maintaining strong predictive capability.
Overall, the proposed GSO-SVM framework shows promising
potential for in silico anticancer screening, with future research
directed toward expanding evaluation across different cancer
cell lines and exploring more advanced molecular representation
techniques.
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I. INTRODUCTION

Cancer remains one of the leading causes of death world-
wide and continues to pose a major global health burden,
consistently ranking among the third to fourth highest causes
of mortality [1]. In 2020, an estimated 2.3 million new breast
cancer cases were reported, accounting for 11.7% of all newly
diagnosed cancers, with a total of 684,996 recorded deaths
[2]. In the United States, breast cancer stands as the second
most common cause of cancer-related death among women,
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following lung cancer, with approximately 316,000 new cases
reported annually [3].

The MDA-MB cell line, a representative model of Triple-
Negative Breast Cancer (TNBC), one of the most aggressive
breast cancer subtypes, is widely used in studies investigating
antiproliferative activity of natural products [4,5]. However,
conventional drug discovery approaches are often limited by
high costs, long development cycles, and relatively low effi-
cacy. These challenges have motivated the adoption of in silico
strategies, particularly Machine Learning (ML)-based models,
as promising alternatives to improve research efficiency while
reducing financial burden and minimizing risks associated with
preclinical and clinical testing [6,7].

Several studies have previously explored the use of MDA-
MB-231 breast cancer cells as a model for antiproliferative
screening and computational drug discovery. In 2017, He et al.
developed a machine learning model for predicting compound
activity in MDA-MB-231 cells, reporting 84% accuracy with
an AUC greater than 0.88 [8]. A few years later, Nada et al. in
2023 introduced a dual-cell evaluation framework for MCF-7
and MDA-MB-231, where Random Forest outperformed other
models with R? > 0.7 [9]. Another contribution came from
Islam et al. who conducted a comparative study across five ML
classifiers for breast cancer prediction, with Artificial Neural
Networks reaching the highest accuracy (98.57%) and Logistic
Regression the lowest (95.7%) [11].

Based on the literature survey, numerous studies have im-
plemented conventional ML models for breast cancer detection
and drug discovery, achieving relatively high predictive per-
formance. However, most of these works do not incorporate
systematic hyperparameter optimization or feature selection
during model development, resulting in suboptimal learning
efficiency. The implementation of feature selection methods in
QSAR modeling is essential to enhance the predictive power
and accuracy of the developed models. For instance, Alkady
et al. in 2019, successfully reduced dimensional complexity
from 1666 features to just 8 significant attributes, achieving



an accuracy of 95% [12]. In 2021, Ewees et al. introduced
a novel feature selection method by hybridizing the Slime
Mould Algorithm and the Firefly Algorithm (SMAFA). When
evaluated on QSAR modeling datasets, this approach achieved
accuracies of 0.84 for HIN1 and 0.96 for Hepatitis [13].
Considering that the dataset used in this study contains a
large number of molecular descriptors which won’t contribute
many to classification performance, a metaheuristic Glow-
worm Swarm Optimization (GSO) approach is adopted to
reduce feature dimensionality and identify the most informa-
tive subset of features. The GSO algorithm has been widely
reported as an effective feature selection strategy, capable of
efficiently exploring the search space and determining optimal
feature combinations [14].

This study aims to predict the antiproliferative activity of
compounds against MDA-MB-231 breast cancer cells using a
hybrid Glowworm Swarm Optimization—Support Vector Ma-
chine (GSO-SVM) approach. To the best of our knowledge,
this is one of the first studies to implement this specific
hybrid framework for MDA-MB-231 activity screening. GSO
is employed as the optimization method due to its simple
mechanism, its ability to avoid local optima, and its effec-
tiveness in identifying optimal feature combinations through
adjustable parameters such as the number of agents and the
search radius. Meanwhile, SVM serves as the classification
algorithm responsible for identifying the optimal hyperplane
that accurately separates classes, offering strong generalization
capability and robustness against overfitting. By integrating the
strengths of both methods, the resulting model is expected to
provide more optimal and reliable predictions of antiprolifer-
ative activity.

II. MATERIALS AND METHODS
A. Dataset

This study utilizes a dataset obtained from the Pub-
Chem repository maintained by the U.S. National Library
of Medicine, consisting of 762 chemical compounds whose
antiproliferative activity against MDA-MB breast cancer cells
was evaluated using the MTT assay over a 48-hour incuba-
tion period [15]. Each compound is represented using the
Simplified Molecular Input Line Entry System (SMILES), a
textual encoding of molecular structure, and is associated with
an IC5p value measured in uM. Compounds with IC5y <
1.7uM are categorized as inhibitors, whereas those with
I1C50 > 1.7 uM are classified as neutral.

Molecular descriptors were generated from SMILES rep-
resentations utilizing the PaDEL-Descriptor library. Specifi-
cally, the compounds were encoded as PubChem fingerprints,
transforming each molecular structure into a high-dimensional
binary vector. In this representation, a bit value of 1 signifies
the presence of a specific chemical substructure, while a value
of 0 indicates its absence. This approach resulted in an initial
feature set of over 800 descriptors, which were subsequently
refined using a Variance Threshold (02 < 0.1) to eliminate
non-informative or constant attributes. As illustrated in Fig. 1,
this preprocessing stage establishes a structured feature space

prior to the application of Glowworm Swarm Optimization for
final feature selection
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Fig. 1. Conversion of SMILES strings into PubChem binary fingerprints

The dataset was randomly partitioned into two subsets using
an 80%—20% split, resulting in 609 samples for model training
and 153 samples for independent testing. The overall class
distribution is illustrated in Fig. 2.

306 303

EEE Neutral
s Inhibitor

300 A

2501

2004

150 4

Values

100 4

50 -

Train Test
Dataset

Fig. 2. Dataset distribution

B. Feature Selection

Glowworm Swarm Optimization (GSO) is a swarm-
intelligence—based optimization algorithm introduced by Kr-
ishnanand and Ghose in 2008 to address multimodal optimiza-
tion problems, where the objective function contains multiple
local optima [16].

In GSO, each agent (referred to as a glowworm) maintains
a luciferin value that reflects the quality of its position in
the search space. This luciferin value is updated iteratively
according to Equation (1)

Li(t+1) = (1= p)Li(t) + ~vJ (z;(t)) 1)

where L;(t) denotes the luciferin value of agent i at
iteration ¢, p is the luciferin decay constant, v is the luciferin



enhancement constant, and J(z;(t)) represents the objective
function value at the agent’s current position.

After updating the luciferin values, each agent evaluates
its neighboring agents within a local sensing radius and then
probabilistically selects one neighbor with a higher luciferin
level. The selection probability is defined as shown in Equation

2
_ L;j(t) — Li(t)
 Ykeniw Ln(t) = Li(®)]

where p;;(t) denotes the probability that agent ¢ selects
agent j as its target neighbor, L;(t) and L;(t) represent the
luciferin values of agents j and 4, respectively, and V;(¢) is the
set of potential neighboring agents within the decision radius
of agent .

Once the target neighbor is selected, the agent updates its
position by moving toward the chosen neighbor. The new
position is computed as shown in Equation (3)

;(t) — wi(t)
zi(t+ 1) =x;(t) + s 2,0 — O] 3)
where x;(t) denotes the position of agent ¢ at iteration ¢,
x;(t) represents the position of the selected neighboring agent,
and s is the fixed step size.

The fitness value for each agent is determined as a weighted
combination of classification accuracy and the proportion of
utilized features, as formulated by Halladay and Dozier in
Equation (4)

pij(t) ()

N, selected ( 4)
Pﬂmm

where f; denotes the fitness score of the i-th agent, w
represents the feature reduction weight (0 < w < 1), Ngelected
is the number of selected features, and N is the total
number of available features [17]. The parameter w serves as
a tuning factor to control the trade-off between maximizing
classification accuracy and minimizing feature dimensionality.

To perform feature selection using GSO, several key param-
eters are configured as listed in Table 1.

fi =w - (1 — accuracy) + (1 — w) -

TABLE I. GLOWWORM SWARM OPTIMIZATION PARAMETERS

Parameter
population_size

Description Value
Number of glow- 25
worms (agents) in
the population
Maximum number 80
of iterations

max_iters

C. Model Development

Support Vector Machine (SVM) is a widely used machine
learning algorithm for various classification tasks. Introduced
by Cortes and Vapnik in 1995, SVM aims to identify the
optimal separating line or hyperplane that best distinguishes
two data classes [18]. This hyperplane is constructed such
that it maximizes the margin, i.e., the distance between the
hyperplane and the closest data points from each class, thereby

improving the model’s generalization capability for unseen
data.

Figure 3 illustrates the fundamental concept of SVM, where
two groups of data points are separated by a hyperplane. The
points lying on the boundary of the margin are referred to as
support vectors, as they play a crucial role in determining the
position and orientation of the separating hyperplane.

Support Vectors

Fig. 3. Support Vector Machine illustration

For linearly separable data, SVM determines the optimal
hyperplane by minimizing the norm of the weight vector w,
as shown in Equation (5). Each training instance must satisfy
the constraint given in Equation (6).
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yi(w-x;+0) > 1 (6)

The corresponding separating hyperplane is defined in
Equation (7),

w-x+b=0 @)

and the two margin boundaries can be written in Equa-

tion (8).
w-X+b==%l1 ()

Kernel functions enable SVM to handle data that are not
linearly separable by implicitly transforming them into a
higher-dimensional feature space. Commonly used kernels and
their corresponding equations are listed in Table II.

TABLE II. KERNEL FUNCTIONS EQUATIONS

Kernel Equation

Linear K(zi,xj) = x; - x;

Polynomial | K(zi,x;) = (% - z; + 1)¢

RBF K(zi,x;) = exp(—yllws — z;|?)

Each kernel type possesses specific parameters that neces-
sitate precise adjustment to attain optimal classification per-
formance. To address this, a hyperparameter tuning process is
utilized to identify the most effective parameter configuration



within a predefined search space [19]. In this study, GridSearch
is employed to systematically evaluate all possible parameter
combinations, a strategy aligned with the findings of Afinda
et al., who demonstrated that such optimization significantly
enhances SVM model performance [20]. The tuning procedure
is conducted for Linear, Polynomial, and RBF kernels, with
their respective parameter ranges detailed in Table III.

TABLE III. SUPPORT VECTOR MACHINE HYPERPARAMETERS

Parameter Value Range

c [0.001,0.01,0.1,1, 10, 100, 1000]
Degree [1,2,3,4,5]

v {"auto’, ’scale’ }

Kernel {Linear, Polynomial, RBF}

D. Model Validation

Model performance was systematically evaluated using four
primary classification metrics, namely accuracy, precision,
recall, and F1-score. These metrics are computed based on the
confusion matrix, which summarizes the relationship between
the actual class labels and the model’s predicted outputs.

Table IV presents the structure of a standard confusion
matrix.

TABLE IV. CONFUSION MATRIX

Predicted
Actual
Positive Negative
Positive TP (True Positive) | FN (False Negative)
Negative | FP (False Positive) | TN (True Negative)

The evaluation metrics are computed using Equations (9-
12).

TP+TN
A = 1

ccuracy TP+ FP+ TN L FN x 100 ()
Precision = D (10)

TP+ FP

TP
Recall = ———— 11
T TP PN an
Precision - Recall

Fl.Score — 9 - recision - Reca (12)

Precision + Recall

Using these four metrics provides a comprehensive assess-
ment of the model’s classification performance, particularly
when dealing with datasets exhibiting class imbalance. Among
these metrics, accuracy is used as the primary indicator for
selecting the best-performing model [22].

III. RESULTS AND DISCUSSION
A. Feature Selection

The Variance Threshold (02 < 0.1) method was initially
applied to remove low-variance features, as such features
typically contribute little to the classification process. This
preprocessing step reduced the original feature set from more
than 800 to fewer than 200 features. GSO was then employed
to further refine the feature subset by evaluating the fitness
values associated with different feature combinations. As
shown in Fig. 4, the fitness values for each kernel generally
decrease after several initial iterations.
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Fig. 4. Convergence Graph

Table V summarizes the number of selected features ob-
tained from each kernel along with the corresponding reduc-
tion percentage relative to the original feature set. Both the
Linear and RBF kernels produced identical feature subsets.
The Polynomial kernel yielded a slightly different number of
features, although the overall reduction rate remains compara-
ble to the other kernels.

TABLE V. FEATURE SELECTION REDUCTION

Kernel Selected Features | Reduction Percentage
Linear 124 55.7%
RBF 124 55.7%
Polynomial 121 56.8%

A comparison of model accuracy using the full feature
set and the GSO-selected feature subset for each kernel is
presented in Fig. 5. The Linear kernel exhibits the most
substantial improvement, with an accuracy increase of nearly
0.2 compared to its full-feature baseline.

B. Model Development

After the feature selection process, the model underwent a
hyperparameter tuning stage using Gridsearch Method to fur-
ther improve its predictive capability by determining the most
optimal SVM parameter configuration. This procedure allows
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Fig. 5. Accuracy comparison using all features and selected features

the model to identify optimal values of C, ~y, and polynomial
degree, thereby enhancing the decision boundary structure and
reducing misclassification rates [20]. The selected hyperpa-
rameters for each kernel are presented in Table VI. Notably, the
Polynomial kernel required parameter tuning to reach its best
performance, resulting in an improvement of 0.6%, while the
Linear and RBF kernels performed optimally without altering
their default settings.

TABLE VI. HYPERPARAMETER TUNING RESULTS

Kernel Parameter | Default Value | Best Value
Linear C 1 1
C 1 100
Polynomial degree 3 2
¥ scale auto
C 1 1
RBF
¥ scale scale

As shown in Fig. 6, the improvement effect is primarily
observed in the Polynomial kernel, where tuning reduced the
model’s sensitivity to feature scaling and adjusted the decision
boundary to better capture non-linear class relationships. This
finding aligns with the hyperparameter shift in Table VI, where
increasing C' and lowering the degree from 3 to 2 improved
generalization by preventing excessive curve fitting on the
training data.

C. Model Validation

Once all schemes were applied, each kernel was evaluated
using a confusion matrix, as presented in Table VII. The
evaluation considered four basic metrics, True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative
(FN), on both the training and testing data. From the training
results, the Polynomial kernel achieved the highest TP and
TN values, indicating better accuracy in classification. On the
other hand, the Linear kernel showed the highest FP and FN,
which led to the weakest performance among the kernels.
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Fig. 6. Accuracy default parameters and best parameters

TABLE VII. CONFUSION MATRIX RESULTS

Model ™ | FP | N FN
Train Set

Linear 266 35 264 44

Polynomial 288 13 280 28

RBF 269 32 268 40
Test Set

Linear 64 12 63 14

Polynomial 65 11 65 12

RBF 65 11 66 11

A different trend is observed on the test set. The RBF
kernel demonstrates the strongest generalization ability with
an accuracy of 0.86, followed closely by the Polynomial kernel
at 0.85. This suggests that although Polynomial performs
most effectively during training, RBF generalizes better when
evaluated on unseen data. The Linear kernel consistently
shows the lowest performance in both evaluation stages.

A complete summary of evaluation metrics is provided in
Table VIII. On the training set, Polynomial records the highest
Accuracy, Precision, Recall, and F1-Score, reflecting not only
high predictive capability but also classification stability. On
the test set, the RBF kernel maintains the most balanced and
consistent scores across all metrics (0.855 for Accuracy, Preci-
sion, Recall, and F1-Score). These results indicate that RBF is
the most suitable kernel for achieving optimal generalization,
particularly when combined with a reduced feature subset.

IV. CONCLUSION

This study demonstrated the effectiveness of Glowworm
Swarm Optimization (GSO) as a feature selection method for
enhancing Support Vector Machine (SVM) performance in
predicting the antiproliferative activity of compounds against
MDA-MB-231 breast cancer cells. After the initial Variance
Threshold reduction, GSO successfully refined the feature



TABLE VIII. VALIDATION PARAMETER CALCULATION RESULTS

Model Accuracy Precision ‘ Recall ‘ F1-Score
Train Set
Linear 0.870 0.858 0.884 0.871
Polynomial 0.933 0.911 0.957 0.934
RBF 0.882 0.871 0.894 0.882
Test Set
Linear 0.830 0.821 0.842 0.831
Polynomial 0.850 0.844 0.855 0.850
RBF 0.856 0.855 0.855 0.855

subset further, improving model efficiency without compro-
mising predictive capability. The evaluation of all three kernels
revealed consistent performance enhancement after feature
selection, with the Linear kernel achieving the most significant
increase in accuracy at 0.18.

Hyperparameter tuning played an important role in refining
model performance. Although the Linear and RBF kernels
retained their default parameters as the optimal configuration,
the Polynomial kernel achieved better results when tuned using
alternative parameter values achieving 0,6% higher that default
parameters. Among the three kernels, the RBF kernel produced
the most balanced and consistent classification performance,
achieving an Accuracy and F1-Score of 0.855, indicating
strong generalization capability on unseen data.

Although the results are promising, the scope of this study
remains confined to one breast cancer cell line (MDA-MB-
231), and GSO parameter tuning has not been performed. As
such, broader conclusions cannot yet be generalized. Future
research may consider optimizing GSO parameters to enhance
feature selection performance and validating the approach
using other breast cancer cell lines.
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