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Abstract—Fully Homomorphic Encryption (FHE) enables deep
neural network inference on encrypted inputs, providing strong
privacy guarantees for machine-learning-as-a-service. In this
work, we study CNN inference on MNIST using FHE16, a TFHE-
based bitwise FHE framework that lowers gate-bootstrapping
cost by introducing 16-bit arithmetic and adopting efficient
multi-input gate evaluation. We construct an end-to-end pipeline
that trains a compact CNN in plaintext, quantizes weights and
activations to integer form compatible with FHE16, and compiles
the network into a Boolean circuit executed over encrypted bits.
The resulting homomorphic inference relies on core FHE16 prim-
itives for multi-operand accumulation and ciphertext–plaintext
arithmetic, allowing exact evaluation of the discretized model
without polynomial approximations.

Experiments on an Intel Xeon Gold 6240R CPU show that the
plaintext floating-point model achieves 81.82% accuracy, while
the quantized integer model with scale factor 64 attains 80.47%.
Encrypted inference over 1,000 MNIST test samples reaches
78.00% accuracy. The average end-to-end latency is 434.204 s
per image, dominated by the convolution stage. These results
demonstrate the feasibility of TFHE-based bitwise CNN inference
under FHE16 and highlight convolutional bootstrapping as the
primary performance bottleneck.

Index Terms—Fully Homomorphic Encryption, FHE16, Quan-
tized DNN, Public Key Cryptosystem

I. INTRODUCTION

Machine-learning-as-a-service (MLaaS) has become
widespread, yet outsourcing inference to a remote provider
raises privacy concerns because user inputs may be exposed
to the server [1], [2]. Fully Homomorphic Encryption (FHE)
addresses this problem by enabling inference directly over
ciphertexts and returning encrypted predictions that only the
client can decrypt [3], [4]. A major obstacle to practical FHE-
based inference is efficiency, since homomorphic operations
accumulate noise and require costly bootstrapping to support
deep computations [4].
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Existing homomorphic DNN inference has mainly adopted
arithmetic FHE schemes such as BGV/BFV [5]–[7] and
CKKS [8], [9]. While these schemes achieve high throughput
using ciphertext packing, their bootstrapping procedures rely
on large bootstrapping keys and incur substantial computa-
tional cost, which is a bottleneck for deeper networks. In
contrast, TFHE-style bitwise FHE [10]–[12] evaluates Boolean
circuits with relatively lightweight gate bootstrapping, shifting
the performance focus from multiplicative depth to circuit size.

In this work, we evaluate a compact CNN on MNIST [13],
[14] under FHE16, a TFHE-based low-cost bootstrappable sys-
tem that reduces gate-bootstrapping overhead by introducing
16-bit arithmetic and efficient multi-input gate evaluation [15],
[17]. We present an end-to-end pipeline from plaintext train-
ing to integer quantization and encrypted Boolean inference.
In addition, we provide an explicit accounting of FHE16
primitive usage and a layerwise runtime breakdown, which
together identify the dominant bottlenecks of TFHE-based
CNN inference in practice.

II. BACKGROUND

This section reviews the cryptographic primitives and de-
sign choices that underpin our encrypted CNN inference
pipeline [13], [14]. We first summarize the role of bootstrap-
ping in FHE, then contrast arithmetic FHE schemes with
TFHE-based bitwise FHE schemes, and finally describe the
specific optimizations introduced by FHE16 that motivate this
work.

FHE enables evaluation of functions over encrypted data
by providing homomorphic addition and multiplication. A
fundamental limitation of all practical FHE constructions is
ciphertext noise: each homomorphic operation increases the
noise embedded in a ciphertext, and once this noise grows
beyond a correctness bound, decryption fails. Bootstrapping
resolves this problem by homomorphically refreshing cipher-
texts through a decryption-related procedure, thereby reducing



noise and restoring the ability to continue homomorphic
computation. As a result, bootstrapping is the key technique
that enables homomorphic evaluation of circuits of unbounded
depth, but its cost often dominates end-to-end performance.

Arithmetic FHE schemes such as BGV/BFV [5]–[7] and
CKKS [8], [9] evaluate polynomial arithmetic over integer
rings or approximate real/complex fields. The main advantage
of them for machine learning is packing: many plaintext values
can be embedded into a single ciphertext, allowing SIMD-style
batch evaluation and hence achieving high throughput [18].
However, the same rich ciphertext structure makes bootstrap-
ping expensive. In particular, refreshing packed ciphertexts
requires large bootstrapping keys and a computationally ex-
pensive bootstrapping procedure, which becomes a bottleneck
for deep networks or models requiring frequent refresh. Con-
sequently, arithmetic FHE inference is applicable to shallow
circuits or requires careful parameter tuning and activation
approximations to avoid excessive bootstrapping.

TFHE-style bitwise FHE follows a different paradigm.
Instead of packing many values into one ciphertext, TFHE-
based FHE schemes encrypt individual bits in lightweight
LWE ciphertexts and evaluate Boolean gates directly. Their
defining feature is gate bootstrapping [11], [12], [16], which
refreshes ciphertexts at the gate level with substantially smaller
bootstrapping keys and lower per-refresh cost than arithmetic
bootstrapping. This permits arbitrary Boolean circuit depth,
while shifting the performance focus from multiplicative depth
to circuit size. In other words, TFHE-style inference is most
efficient when the target computation can be expressed with
a small number of Boolean gates, even if the logical depth is
large.

FHE16 builds on the TFHE bootstrapping framework and
introduces two optimizations that are especially relevant for
DNN inference [15], [17]. First, FHE16 incorporates 16-bit
integer arithmetic in the gate-bootstrapping procedure, which
significantly reduces the computational cost of each refresh
operation compared with conventional TFHE implementations.
Second, while standard TFHE circuits are naturally expressed
as compositions of two-input gates, FHE16 supports efficient
evaluation of multi-input gate operations. This capability re-
duces the number of parallel bootstrapping calls required to
implement prefix and reduction circuits on encrypted bits.
As a consequence, multi-operand arithmetic and comparison-
based selection can be realized with fewer bootstraps than
would be needed in a strictly binary-gate TFHE circuit. These
properties make FHE16 a suitable backend for Boolean CNN
inference, where convolutions and pooling require repeated
multi-operand accumulations under encryption.

For the full cryptographic construction, parameter sets, and
security analysis of FHE16, we refer the reader to the original
reference paper [15].

III. HOMOMORPHIC IMPLEMENTATION OF CNN

We train a compact CNN on MNIST in plaintext. The
network consists of two 3×3 convolutional layers with average
pooling [24], followed by two fully connected layers [23]

that output ten logits. This architecture is deliberately made
small in order to control Boolean circuit size under gate
bootstrapping [11], [12], [16].

After the training is completed, we quantize weights and
activations to 32-bit integers [19], [20]. Weights are stored in
two’s complement form, while activations are represented as
unsigned values. ReLU activations [21], [22] are replaced by
a thresholded sign operation applied after quantization. This
replacement produces a discrete nonlinearity that is straight-
forward to implement as a Boolean comparison. The quantized
network therefore becomes an integer circuit composed of dot
products, additions, shifts, and comparisons.

To execute this quantized model with FHE16, we trans-
late each integer operation into its bit-level Boolean cir-
cuit. Convolution and dense layers reduce to repeated 32-
bit multiplications and multi-operand additions. Multiplication
is implemented using ciphertext–plaintext SMULLCONSTANT
operations, while additions rely on the ADD3 reduction strat-
egy to minimize the number of bootstrapped steps required to
sum many operands. Pooling over 2×2 windows is computed
as the sum of four encrypted values followed by a right
shift by two bits, which corresponds to division by four and
incurs only minor circuit overhead. The ReLU nonlinearity is
realized homomorphically using the MAX primitive, and the
final prediction is obtained argmax over decrypted logits.

In the encrypted inference protocol, the client encodes
each MNIST pixel into a 32-bit integer and encrypts all
bits with the FHE16 public parameters. The server evaluates
the compiled Boolean CNN on ciphertexts and returns an
encrypted prediction, which the client decrypts.

IV. ANALYSIS OF HOMOMORPHIC OPERATION COST

Our CNN is intentionally made compact to make Boolean
inference under FHE16 tractable [13]–[15]. The whole archi-
tecture outline is shown in Fig 1. Each MNIST input is a
grayscale image of size 28 × 28, and we encrypt every pixel
independently. Consequently, a single inference begins with
784 = 28 × 28 ciphertext encryptions. The encrypted image
is then processed by a single convolution layer followed by a
ReLU nonlinearity, a sum-pooling layer, and a fully connected
output layer.

In the convolution layer, we apply 3×3 kernels with stride 3.
Using three output channels (equivalently, three filters) allows
the model to extract multiple local patterns while keeping
circuit size manageable. With no padding, this configuration
produces feature maps of spatial size 9× 9 per filter, yielding
an encrypted activation tensor of size 3×9×9. Because FHE16
natively supports only integer arithmetic, smooth nonlinearities
such as sigmoid are not directly evaluable. We therefore
employ ReLU as the activation during training and realize
it homomorphically via the max(0, x) primitive at inference
time. It stabilizes optimization in plaintext (by alleviating
vanishing gradients) and provides a discrete nonlinearity that
aligns well with bitwise encrypted computation.

After activation, we apply 3 × 3 sum pooling [24] to
each channel. Since pooling aggregates non-overlapping 3×3



Fig. 1. The FHE16-based CNN Architecture.

windows, the spatial resolution is reduced from 9 × 9 to
3× 3, resulting in an encrypted tensor of size 3× 3× 3. The
pooled tensor is flattened into a 27-dimensional vector, which
feeds directly into the classifier. Notably, our encrypted model
omits an additional hidden layer to avoid extra homomorphic
multiplications and accumulations. Instead, the 27 pooled
features are connected directly to ten output nodes, each
representing one of ten classes {0, . . . , 9}.

We now detail the homomorphic-cost profile of this archi-
tecture in terms of the core FHE16 primitives. Each convolu-
tion output requires computing an inner product over a 3× 3
receptive field. Thus, nine ciphertext–plaintext multiplications
are needed per each convolution output, implemented with
SMULLCONSTANT. Because the convolution layer produces
3 × 9 × 9 outputs, the total number of ciphertext–plaintext
multiplications in the convolution layer is

3 · 3 · 3 · 9 · 9 = 2187.

The nine multiplication outputs of each convolution filtering
must then be summed. Using the ADD3 reduction strategy,
summing nine operands requires four ADD3 calls (three to
reduce nine to three operands, and one more to reduce three
to one). Therefore, the total number of ADD3 executions in
the convolution layer is

4 · 3 · 9 · 9 = 972.

Also, bias addition is performed once per each convolution
output via ADDCONSTANT, leading to

3 · 9 · 9 = 243

ADDCONSTANT calls. Finally, ReLU is evaluated elementwise
using max(0, x), so we apply one homomorphic Max for each
activation and the total number of Max operations is

3 · 9 · 9 = 243.

The subsequent 3 × 3 sum-pooling layer has the same
arithmetic structure as the convolutional accumulation, except
that it aggregates raw activations without multiplication. Each
pooled output sums nine ciphertexts and therefore requires
four ADD3 calls. Since the pooling output has size 3× 3× 3,
the pooling layer performs

4 · 3 · 3 · 3 = 108

ADD3 executions in total.
In the fully connected layer [23], each of the ten class logits

is computed as the weighted sum of the 27 pooled features. For
each class, we perform 27 ciphertext–plaintext multiplications,
requiring

27 · 10 = 270

SMULLCONSTANT operations. The 27 products per class are
accumulated using ADD3 in a tree-like fashion: 27 → 9 →
3 → 1, which requires total 13(= 9+3+1) ADD3 executions
per class. Hence, the fully connected layer uses

13 · 10 = 130

ADD3 operations. Each logit further adds a bias term via one
ADDCONSTANT, yielding

10

ADDCONSTANT executions.



TABLE I
EXPERIMENTAL ENVIRONMENT AND ACCURACY UNDER DIFFERENT

EVALUATION MODES.

Item Value
CPU Intel Xeon Gold 6240R (2.40 GHz)
Cores / Threads 24 / 48
Architecture x86 64
Dataset MNIST test set
# Test samples (FHE) 1,000
Plain (float) accuracy 81.82%
Plain (int, scale=64) accuracy 80.47%
FHE16 accuracy 78.00%

Overall, these counts show that the dominant homomorphic
workload arises from encrypted convolution, where the com-
bination of per-window multiplications and bootstrapped ad-
ditions drives gate volume and latency. The pooling and fully
connected stages contribute comparatively fewer bootstrapped
operations, consistent with the compact design goals of our
FHE16-based CNN.

V. EXPERIMENTS

A. Experimental Setup

As summarized in Table I, all experiments were executed
on a single Intel Xeon Gold 6240R CPU running at 2.40 GHz
(x86 64, 24 physical cores, 48 threads). We evaluate a com-
pact CNN, which was trained on MNIST and subsequently de-
ployed under FHE16 for encrypted inference. The network is
intentionally made shallow and low-width to keep the Boolean
circuit size tractable under bitwise gate bootstrapping, which
prioritizes circuit volume over depth. The baseline plaintext
model with floating-point weights achieves an accuracy of
81.82%. To match the integer-only computation supported
by FHE16, we quantize the trained parameters using a scale
factor of 64 and represent activations in the same low-bitwidth
integer domain. The resulting integer-weight model retains
80.47% accuracy in plaintext and serves as a reference for
all homomorphic evaluations reported in this section. Unless
otherwise stated, all runtimes are measured on a per-image
basis and averaged over 1,000 MNIST test samples.

B. End-to-End Accuracy

Homomorphic inference was conducted on 1,000 MNIST
test samples (Table I), and the encrypted accuracy is reported
as the average over these runs. It is shown that FHE16-
based CNN inference achieves 78.00% accuracy. Since FHE16
evaluates discretized Boolean circuit exactly, any remaining
gap with respect to quantized plaintext inference does not arise
from homomorphic approximation error. Instead, the differ-
ence is attributable to circuit-level implementation constraints,
such as fixed bit-width saturation/overflow behavior, the spe-
cific rounding and rescaling schedule induced by integer-only
execution, and the exact MAX-based realization of ReLU.
These effects, combined with the compact architecture (stride-
3 downsampling, sum pooling, and a hidden-layer-free classi-
fier), explain the modest accuracy drop observed in encrypted
inference.

TABLE II
AVERAGE RUNTIME PER MNIST IMAGE UNDER FHE16 INFERENCE.

PERCENTAGES ARE COMPUTED WITH RESPECT TO THE TOTAL LATENCY.

Stage Time (s) Share (%)
Encryption 117.895 27.15
Convolution 259.000 59.65
ReLU (MAX) 3.512 0.81
SumPool 13.023 3.00
Flatten 0.000 0.00
Fully Connected 39.944 9.20
Argmax + Decryption 0.001 < 0.01
Total 434.204 100.00

C. Runtime Breakdown

We measure end-to-end latency per encrypted image, in-
cluding encryption on the client side and homomorphic eval-
uation on the server side. Table II summarizes the average
time per stage. The total mean latency is 434.204 s per image,
highlighting the substantial overhead of bitwise bootstrapped
inference. Convolution dominates the runtime, accounting for
nearly 60% of the total cost, while encryption itself contributes
about 27%. Nonlinear activation and pooling are compara-
tively minor, and flattening is free in our implementation
because it corresponds only to a permutation of ciphertext
references. Argmax and decryption are negligible relative to
bootstrapped circuit evaluation.

These measurements align with the primitive-count analysis
in Section IV (where convolution incurs the largest volume
of SMULLCONSTANT and multi-operand accumulation oper-
ations), confirming that convolution filtering is the primary
driver of bootstrapping workload. In contrast, pooling and
the final linear classifier require significantly fewer boot-
strapped operations. Consequently, any end-to-end acceler-
ation of TFHE-family CNN inference must focus on the
convolution stage, either by reducing its gate/primitive count
through architectural co-design and circuit optimization, or by
accelerating bootstrapping via parallelism or hardware support.

VI. CONCLUSION

We investigated privacy-preserving CNN inference on
MNIST using FHE16, a TFHE-based bitwise fully homomor-
phic encryption framework optimized through 16-bit arith-
metic and efficient multi-input gate evaluation. Our work es-
tablished a complete pipeline that starts with plaintext training,
proceeds through integer quantization compatible with FHE16,
and culminates in Boolean encrypted inference. This demon-
strates that practical CNN inference can be realized under a
purely bitwise, gate-bootstrapping setting without relying on
polynomial activation approximations, thereby preserving the
exactness of discrete nonlinear operations once the model is
quantized.

The empirical study shows that the encrypted model retains
most of the accuracy of its quantized plaintext counterpart,
confirming that the dominant accuracy degradation stems from
discretization rather than errors introduced during homomor-
phic evaluation. In terms of performance, our experiments
show the key characteristic of TFHE-style inference: the



overall latency is governed primarily by the cost and frequency
of bootstrapped bit-level operations, especially those arising
from convolution filtering.

Taken together, these results highlight both the promise
and the current limitations of bitwise FHE for DNN infer-
ence. Note that FHE16 materially improves the efficiency
of multi-operand operations, making compact CNNs feasible
on real hardware. However, scaling to larger datasets or
deeper architectures will require further co-design between
network structure and Boolean circuit cost. Future work should
emphasize stronger discretized training (e.g., binary/ternary
weights), circuit-minimizing accumulation strategies for con-
volutions, and parallel or hardware-accelerated bootstrapping.
Advancing in these directions is essential for turning TFHE-
based inference from a proof of feasibility into a practical
MLaaS deployment.
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