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Abstract—Deep learning-based Automatic Modulation 

Classification (AMC) has emerged as a critical technology for 

spectrum sensing and cognitive radio applications. However, the 

vulnerability of these models to adversarial attacks poses 

significant security concerns in wireless communication systems. 

This paper presents a comprehensive evaluation of adversarial 

robustness for a VTCNN2-based AMC model using the 

RadioML2016.10A dataset. We systematically analyze three 

representative adversarial attacks—FGSM, DeepFool, and 

C&W—and evaluate two defense mechanisms: adversarial 

training and Denoising Autoencoder (DAE). Our experimental 

results demonstrate that the baseline model is highly susceptible 

to adversarial perturbations, with accuracy dropping from 54.02% 

to as low as 10.80% under DeepFool attack. FGSM-based 

adversarial training improves robustness across multiple attacks, 

increasing accuracy under FGSM from 17.59% to 33.47% and 

improving robustness under DeepFool (10.80%→15.36%) and 

C&W (29.41%→40.67%), with a modest clean-accuracy drop 

(54.02→51.48%). In contrast, DAE preprocessing preserves clean 

accuracy(53.94%) but provides negligible improvement under 

FGSM(17.59→17.48) and only limited gains under iterative L2 

attacks such as DeepFool (10.80%→21.16%) and C&W 

(29.41%→32.81%). These findings highlight the urgent need for 

robust defense mechanisms in deep learning-based wireless 

communication systems. 
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I. INTRODUCTION 

Automatic Modulation Classification (AMC) is a 
fundamental task in wireless communication systems, enabling 
receivers to automatically identify the modulation scheme of 
incoming signals without prior knowledge. This capability is 
essential for spectrum sensing in cognitive radio networks, 
electronic warfare, and signal intelligence applications. With the 
advent of deep learning, convolutional neural networks (CNNs) 
have demonstrated remarkable performance in AMC tasks, 
achieving high classification accuracy across various signal-to-
noise ratio (SNR) conditions. 

 However, deep neural networks are known to be vulnerable 
to adversarial examples—carefully crafted input perturbations 
that are imperceptible to humans but can cause misclassification. 
In the context of wireless communications, adversarial attacks 
on AMC systems could enable malicious actors to evade 
detection, disrupt spectrum sensing, or compromise 
communication security. Despite the critical implications, the 
adversarial robustness of deep learning-based AMC models 
remains underexplored. 

In this paper, we conduct a systematic evaluation of 
adversarial vulnerabilities in a VTCNN2-based AMC model. 
Our contributions are threefold: (1) We evaluate three 
representative adversarial attacks—Fast Gradient Sign Method 
(FGSM), DeepFool, and Carlini & Wagner (C&W)—on the 
RadioML2016.10A benchmark dataset; (2) We analyze the 
effectiveness of adversarial training as a defense mechanism; (3) 
We investigate the limitations of Denoising Autoencoder (DAE) 
based defense for wireless signal protection. 

II. RELATED WORK 

A. Deep Learning for AMC 

O'Shea et al. pioneered the application of deep learning to 
AMC with their VTCNN2 architecture, demonstrating that 
CNNs can effectively learn discriminative features from raw In-
phase/Quadrature (IQ) signal data [1]. Subsequent works have 
explored various architectures including residual networks, 
recurrent neural networks, and attention mechanisms to further 
improve classification performance. 

B. Adversarial Attacks on Wireless System 

Recent studies have begun investigating adversarial 
vulnerabilities in wireless deep learning systems. Sadeghi and 
Larsson demonstrated that adversarial perturbations can 
significantly degrade AMC performance [2]. Flowers et al. 
explored physical-layer adversarial attacks in over-the-air 
scenarios [3]. However, comprehensive evaluations  

 comparing multiple attack methods and defense strategies 
remain limited. 



III.  METHODOLOGY 

A. Dataset 

 We utilize the RadioML2016.10A dataset, a widely adopted 
benchmark for AMC research [4]. The dataset contains over 
220,000 samples of IQ signal data with shape (2, 128), 
representing 11 modulation types across 20 SNR levels ranging 
from −20 dB to +18 dB in 2 dB increments. Table I summarizes 
the dataset characteristics. 

B. Baseline Model Architecture 

We employ a modified VTCNN2 architecture as our 
baseline classifier. The model takes normalized IQ signals 
reshaped to (1, 2, 128) as input. The architecture consists of two 

convolutional blocks: Conv2d(1→256) and Conv2d(256→80), 

each followed by batch normalization, ReLU activation, and 
max pooling. Dropout (0.5) is applied  

 before fully connected layers (2560→ 256→ 11). The 

model contains approximately 500K parameters. 

 

Fig. 1. VTCNN2 model architecture: Input(1, 2, 128) → 

Conv2d+BN+ReLU+Maxpool → Conv2d+BN+ReLU+Maxpool → Dropout 

→ FC layers → Output(11). 

Implementation details: The baseline VTCNN2 model is trained using the 

Adam optimizer with a learning rate of 5 × 10−4 and a batch size of 256 for 20 

epochs. The dataset is split into 154,000 training samples and 66,000 test 
samples, following the standard RadioML2016.10A protocol. Input IQ samples 

are normalized to the range [0, 1] before being fed into the network. 

C. Adversarial Attack Methods 

• FGSM[5]: Single-step adversarial attack that perturbs 
the input in the direction of the sign of the gradient of the 
loss with respect to the input. It is computationally 
efficient and widely used as a baseline gradient-based 
attack. 
            𝑥𝑎𝑑𝑣 = 𝑥 + 𝜖 ⋅ 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦))              (1) 

• DeepFool[6]: an iterative attack that approximates the 
classifier as locally linear and moves the input toward the 
closest decision boundary. At each iteration, it computes 
the minimal perturbation required to cross the boundary, 
resulting in a perturbation with minimal 𝐿2 − 𝑛𝑜𝑟𝑚. 

             𝑥𝑖+1 = 𝑥𝑖 + {
|𝑓(𝑥𝑖)|

||∇𝑥(𝑓(𝑥𝑖)||2
2} ∇𝑥𝑓(𝑥𝑖)                (2) 

• C&W[7]: The Carlini–Wagner attack formulates 
adversarial example generation as an optimization 
problem. It searches for the smallest perturbation that 
causes misclassification while ensuring the perturbed 
sample satisfies classifier constraints. It is considered 
one of the strongest gradient-based white-box attacks. 

              min
𝛿

||𝛿||
2

2
+ 𝑐 ⋅ 𝑓(𝑥 + 𝛿)                          (3) 

     𝑓(𝑥′) = max (max
𝑖≠𝑡

(𝑍(𝑥′)𝑖) − 𝑍(𝑥′)𝑡 , −𝜅)       (4) 

• Attack configuration. FGSM uses an 𝐿∞  perturbation 
budget 𝜖 = 0.005  on normalized [0,1] IQ inputs. 
DeepFool is configured with 50 steps and overshoot 0.02. 
The C&W(𝐿2) attack uses 𝑐 = 1𝑒 − 4, 𝜅 = 0, 30 steps, 
and learning rate 0.005. 

D. Defense Mechanisms 

• Adversarial Training [8]: Training data is augmented 
with FGSM-generated adversarial examples (ε = 0.005). 
The model is trained on mixed clean and adversarial 
samples for 5 epochs. We use the Adam optimizer with 
learning rate 5e-4 for 5 epochs, training on a mixture of 
clean and FGSM samples (𝜖 = 0.005). 

• Denoising Autoencoder (DAE): A lightweight 
convolutional autoencoder trained to reconstruct clean 
signals from adversarial inputs as a preprocessing 
defense. 

IV. EXPERIMENTAL RESULTS 

A. Baseline Performance 

The baseline model achieves an overall accuracy of 54.02% 
across all SNR levels. Table II shows accuracy by SNR. 
Performance improves significantly with higher SNR, reaching 
81.6% at 10 dB. At low SNR (−20 to −12 dB), accuracy is near 

random (~9–12%). For SNR ≥ 0 dB, average accuracy is 

approximately 80%. 

 

Fig. 2. Classification accuracy versus SNR. Sigmoidal curve from ~0.09 at 

−20 dB to ~0.80 plateau for SNR ≥ 0 dB 

TABLE I. RADIOML.2016.10A DATASET OVERVIEW 

Parameter Value 

Signal Format IQ, Shape (2, 128) 

Total Samples 220,000+ 

Modulation Types 11 

SNR Range -20 to +18dB 

Train / Test 154,000 / 66,000 



B. Adversarial Attack Evaluation 

Table III reports accuracy under attacks. The baseline drops 
from 0.5402 (clean) to 0.1759 (FGSM, ε = 0.005), 
0.1080(DeepFool), and 0.2941 (C&W), where DeepFool is the 
most effective. 

C. Defense Mechanism Evaluation 

FGSM-based adversarial training improves robustness not 

only to FGSM (0.1759 → 0.3347) but also to DeepFool 

(0.1080→0.1536) and C&W (0.2941→0.4067), with a modest 

clean-accuracy drop (0.5401→ 0.5148). DAE preprocessing 

preserves clean accuracy (0.5394) but yields negligible 

improvement under FGSM (0.1759→0.1748) and limited gains 

under iterative 𝐿2  attacks (0.1080→ 0.2116 for DeepFool, 

0.2941→0.3281 for C&W). 

 

V. DISCUSSION 

Our results reveal critical insights about adversarial 
robustness in AMC systems. The substantial accuracy 

degradation (54% → 10–29%) confirms high vulnerability to 

adversarial perturbations, posing serious security concerns for 
cognitive radio applications. 

DeepFool's superior effectiveness stems from its iterative 
optimization that precisely identifies minimal perturbations to 
cross decision boundaries. In IQ signal space, learned features 
are sensitive to targeted perturbations in specific input directions. 

Adversarial training's effectiveness (83% relative 
improvement) demonstrates that training-time defenses provide 
meaningful protection. However, the clean accuracy decrease 
highlights the fundamental accuracy-robustness trade-off 
requiring careful balance in deployments. Robustness is strongly 
SNR-dependent, for SNR ≥  0 dB, the baseline accuracy 
decreases from approximately 0.79 in clean signals to about 0.31 
under FGSM, whereas adversarial training restores it to around 

0.51. DeepFool remains the strongest attack across SNRs, and 
adversarial training only partially mitigates its impact. 

The DAE failure is noteworthy. Unlike image domains, 
wireless IQ signals exhibit high sensitivity to small amplitude 
and phase perturbations, and discriminative modulation patterns 
are often embedded in fine-grained signal structures. 
Reconstruction statistics indicate that the DAE behaves almost 
as an identity mapping on clean inputs, yielding very small 
reconstruction error, while simultaneously compressing the 
input dynamic range. This MSE-driven smoothing effect can 
attenuate modulation-specific features together with adversarial 
perturbations. As a result, DAE preprocessing preserves clean 
accuracy but provides negligible robustness improvement under 
FGSM and only limited gains under iterative L2 attacks such as 
DeepFool and C&W. These observations suggest that 
reconstruction-based defenses optimized for pixel-wise fidelity 
are insufficient for wireless signal protection, and that effective 
defenses should explicitly account for the structural 
characteristics of modulation patterns. 

VI. CONCLUSION 

This paper presents a comprehensive adversarial robustness 
evaluation for deep learning-based AMC. Experiments on 
RadioML2016.10A demonstrate VTCNN2 models are highly 
susceptible to attacks, with DeepFool achieving the most severe 
degradation (10.80%). FGSM-based adversarial training 
provides effective defense across multiple attacks, while DAE 
preserves clean accuracy but offers limited robustness 
improvements. 

These findings underscore the critical need for robust deep 
learning models in wireless systems. Future directions include 
certified defenses, adversarial transferability analysis, and 
wireless-specific defense strategies. 

 

 

 

TABLE II. BASELINE ACCURACY BY SNR 

SNR ACC. SNR ACC. 

-10 0.186 4 0.791 

-8 0.310 6 0.800 

-6 0.493 8 0.792 

-4 0.613 10 0.816 

-2 0.704 12-18 0.79-0.81 

0 0.759 Overall 0.5402 

2 0.784 Avg(SNR≥0) 0.80 

TABLE III. CLASSIFICATION ACCURACY UNDER ATTACKS AND DEFENSES (FGSM: 𝜖 = 0.005) 

Model/Defense Clean FGSM DeepFool C&W 

Baseline 0.5402 0.1759 0.1080 0.2941 

Adv. Training (FGSM) 0.5148 0.3347 0.1536 0.4067 

DAE (preproc.) 0.5394 0.1748 0.2116 0.3281 

Note that 𝜖 applies only to FGSM; DeepFool and C&W follow the configurations described in Section III.C 
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