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Abstract—Deep learning-based Automatic Modulation
Classification (AMC) has emerged as a critical technology for
spectrum sensing and cognitive radio applications. However, the
vulnerability of these models to adversarial attacks poses
significant security concerns in wireless communication systems.
This paper presents a comprehensive evaluation of adversarial
robustness for a VTCNN2-based AMC model using the
RadioML2016.10A dataset. We systematically analyze three
representative adversarial attacks—FGSM, DeepFool, and
C&W—and evaluate two defense mechanisms: adversarial
training and Denoising Autoencoder (DAE). Our experimental
results demonstrate that the baseline model is highly susceptible

to adversarial perturbations, with accuracy dropping from 54.02%

to as low as 10.80% under DeepFool attack. FGSM-based
adversarial training improves robustness across multiple attacks,
increasing accuracy under FGSM from 17.59% to 33.47% and

improving robustness under DeepFool (10.80% —15.36%) and
C&W (29.41%—40.67%), with a modest clean-accuracy drop
(54.02—51.48%). In contrast, DAE preprocessing preserves clean
accuracy(53.94%) but provides negligible improvement under
FGSM(17.59—+17.48) and only limited gains under iterative L2
DeepFool (10.80%—21.16%) and C&W

(29.41%—32.81%). These findings highlight the urgent need for

robust defense mechanisms in deep learning-based wireless
communication systems.

attacks such as
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I. INTRODUCTION

Automatic Modulation Classification (AMC) is a
fundamental task in wireless communication systems, enabling
receivers to automatically identify the modulation scheme of
incoming signals without prior knowledge. This capability is
essential for spectrum sensing in cognitive radio networks,
electronic warfare, and signal intelligence applications. With the
advent of deep learning, convolutional neural networks (CNNs)
have demonstrated remarkable performance in AMC tasks,
achieving high classification accuracy across various signal-to-
noise ratio (SNR) conditions.
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However, deep neural networks are known to be vulnerable
to adversarial examples—carefully crafted input perturbations
that are imperceptible to humans but can cause misclassification.
In the context of wireless communications, adversarial attacks
on AMC systems could enable malicious actors to evade
detection, disrupt spectrum sensing, or compromise
communication security. Despite the critical implications, the
adversarial robustness of deep learning-based AMC models
remains underexplored.

In this paper, we conduct a systematic evaluation of
adversarial vulnerabilities in a VTCNN2-based AMC model.
Our contributions are threefold: (1) We evaluate three
representative adversarial attacks—Fast Gradient Sign Method
(FGSM), DeepFool, and Carlini & Wagner (C&W)—on the
RadioML2016.10A benchmark dataset; (2) We analyze the
effectiveness of adversarial training as a defense mechanism; (3)
We investigate the limitations of Denoising Autoencoder (DAE)
based defense for wireless signal protection.

II. RELATED WORK

A. Deep Learning for AMC

O'Shea et al. pioneered the application of deep learning to
AMC with their VTCNN2 architecture, demonstrating that
CNNs can effectively learn discriminative features from raw In-
phase/Quadrature (IQ) signal data [1]. Subsequent works have
explored various architectures including residual networks,
recurrent neural networks, and attention mechanisms to further
improve classification performance.

B. Adversarial Attacks on Wireless System

Recent studies have begun investigating adversarial
vulnerabilities in wireless deep learning systems. Sadeghi and
Larsson demonstrated that adversarial perturbations can
significantly degrade AMC performance [2]. Flowers et al.
explored physical-layer adversarial attacks in over-the-air
scenarios [3]. However, comprehensive evaluations

comparing multiple attack methods and defense strategies
remain limited.



1. METHODOLOGY

A. Dataset

We utilize the RadioML2016.10A dataset, a widely adopted
benchmark for AMC research [4]. The dataset contains over
220,000 samples of IQ signal data with shape (2, 128),
representing 11 modulation types across 20 SNR levels ranging
from —20 dB to +18 dB in 2 dB increments. Table I summarizes
the dataset characteristics.

TABLE I. RADIOML.2016.10A DATASET OVERVIEW

Parameter Value

Signal Format 1Q, Shape (2, 128)

Total Samples 220,000+
Modulation Types 11

SNR Range -20 to +18dB
Train / Test 154,000 / 66,000

B. Baseline Model Architecture

We employ a modified VTCNN2 architecture as our
baseline classifier. The model takes normalized IQ signals
reshaped to (1, 2, 128) as input. The architecture consists of two
convolutional blocks: Conv2d(1—>256) and Conv2d(256—80),
each followed by batch normalization, ReLU activation, and
max pooling. Dropout (0.5) is applied

before fully connected layers (2560 — 256 — 11). The
model contains approximately SO0K parameters.
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Fig. 1. VTCNN2 model architecture: Input(1, 2, 128) —
Conv2d+BN+ReLU+Maxpool — Conv2d+BN+ReLU+Maxpool — Dropout
— FC layers — Output(11).

Implementation details: The baseline VTCNN2 model is trained using the
Adam optimizer with a learning rate of 5 X 10~ and a batch size of 256 for 20
epochs. The dataset is split into 154,000 training samples and 66,000 test
samples, following the standard RadioML2016.10A protocol. Input IQ samples
are normalized to the range [0, 1] before being fed into the network.

C. Adversarial Attack Methods

o FGSM]5]: Single-step adversarial attack that perturbs
the input in the direction of the sign of the gradient of the
loss with respect to the input. It is computationally
efficient and widely used as a baseline gradient-based
attack.

Xaav = X + € - sign(Vy/ (6, x,y)) (1

e DeepFool[6]: an iterative attack that approximates the
classifier as locally linear and moves the input toward the
closest decision boundary. At each iteration, it computes
the minimal perturbation required to cross the boundary,
resulting in a perturbation with minimal L, — norm.
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e C&W][7]: The Carlini-Wagner attack formulates
adversarial example generation as an optimization
problem. It searches for the smallest perturbation that
causes misclassification while ensuring the perturbed
sample satisfies classifier constraints. It is considered
one of the strongest gradient-based white-box attacks.
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e Attack configuration. FGSM uses an L, perturbation
budget € = 0.005 on normalized [0,1] IQ inputs.
DeepFool is configured with 50 steps and overshoot 0.02.
The C&W(L,) attack uses ¢ = 1e — 4,k = 0, 30 steps,
and learning rate 0.005.

D. Defense Mechanisms

e Adversarial Training [8]: Training data is augmented
with FGSM-generated adversarial examples (g = 0.005).
The model is trained on mixed clean and adversarial
samples for 5 epochs. We use the Adam optimizer with
learning rate 5e-4 for 5 epochs, training on a mixture of
clean and FGSM samples (¢ = 0.005).

e Denoising Autoencoder (DAE): A lightweight
convolutional autoencoder trained to reconstruct clean
signals from adversarial inputs as a preprocessing
defense.

IV. EXPERIMENTAL RESULTS

A. Baseline Performance

The baseline model achieves an overall accuracy of 54.02%
across all SNR levels. Table II shows accuracy by SNR.
Performance improves significantly with higher SNR, reaching
81.6% at 10 dB. At low SNR (—20 to —12 dB), accuracy is near

random (~9-12%). For SNR > 0 dB, average accuracy is
approximately 80%.
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Fig. 2. Classification accuracy versus SNR. Sigmoidal curve from ~0.09 at
—20 dB to ~0.80 plateau for SNR > 0 dB



TABLE II. BASELINE ACCURACY BY SNR

SNR ACC. SNR ACC.

10 0.186 4 0.791
-8 0310 6 0.800
-6 0.493 8 0.792
4 0.613 10 0.816
2 0.704 12-18 0.79-0.81
0 0.759 Overall 0.5402
2 0.784 Ave(SNR>0) 0.80

B. Adversarial Attack Evaluation

Table III reports accuracy under attacks. The baseline drops
from 0.5402 (clean) to 0.1759 (FGSM, & = 0.005),
0.1080(DeepFool), and 0.2941 (C&W), where DeepFool is the
most effective.

C. Defense Mechanism Evaluation

FGSM-based adversarial training improves robustness not
only to FGSM (0.1759 — 0.3347) but also to DeepFool
(0.1080—0.1536) and C&W (0.2941—0.4067), with a modest
clean-accuracy drop (0.5401 — 0.5148). DAE preprocessing
preserves clean accuracy (0.5394) but yields negligible
improvement under FGSM (0.1759—0.1748) and limited gains
under iterative L, attacks (0.1080 — 0.2116 for DeepFool,
0.2941—0.3281 for C&W).

V. DISCUSSION

Our results reveal critical insights about adversarial
robustness in AMC systems. The substantial accuracy
degradation (54% — 10 - 29%) confirms high vulnerability to
adversarial perturbations, posing serious security concerns for
cognitive radio applications.

DeepFool's superior effectiveness stems from its iterative
optimization that precisely identifies minimal perturbations to
cross decision boundaries. In 1Q signal space, learned features

are sensitive to targeted perturbations in specific input directions.

Adversarial  training's  effectiveness (83%  relative
improvement) demonstrates that training-time defenses provide
meaningful protection. However, the clean accuracy decrease
highlights the fundamental accuracy-robustness trade-off
requiring careful balance in deployments. Robustness is strongly
SNR-dependent, for SNR > 0 dB, the baseline accuracy
decreases from approximately 0.79 in clean signals to about 0.3 1
under FGSM, whereas adversarial training restores it to around

0.51. DeepFool remains the strongest attack across SNRs, and
adversarial training only partially mitigates its impact.

The DAE failure is noteworthy. Unlike image domains,
wireless 1Q signals exhibit high sensitivity to small amplitude
and phase perturbations, and discriminative modulation patterns
are often embedded in fine-grained signal structures.
Reconstruction statistics indicate that the DAE behaves almost
as an identity mapping on clean inputs, yielding very small
reconstruction error, while simultaneously compressing the
input dynamic range. This MSE-driven smoothing effect can
attenuate modulation-specific features together with adversarial
perturbations. As a result, DAE preprocessing preserves clean
accuracy but provides negligible robustness improvement under
FGSM and only limited gains under iterative L2 attacks such as
DeepFool and C&W. These observations suggest that
reconstruction-based defenses optimized for pixel-wise fidelity
are insufficient for wireless signal protection, and that effective
defenses should explicitly account for the structural
characteristics of modulation patterns.

VI. CONCLUSION

This paper presents a comprehensive adversarial robustness
evaluation for deep learning-based AMC. Experiments on
RadioML2016.10A demonstrate VTCNN2 models are highly
susceptible to attacks, with DeepFool achieving the most severe
degradation (10.80%). FGSM-based adversarial training
provides effective defense across multiple attacks, while DAE
preserves clean accuracy but offers limited robustness
improvements.

These findings underscore the critical need for robust deep
learning models in wireless systems. Future directions include
certified defenses, adversarial transferability analysis, and
wireless-specific defense strategies.

TABLE III. CLASSIFICATION ACCURACY UNDER ATTACKS AND DEFENSES (FGSM: € = 0.005)

Model/Defense Clean FGSM DeepFool C&W
Baseline 0.5402 0.1759 0.1080 0.2941

Adv. Training (FGSM) 0.5148 0.3347 0.1536 0.4067
DAE (preproc.) 0.5394 0.1748 0.2116 0.3281

Note that € applies only to FGSM; DeepFool and C&W follow the configurations described in Section II1.C
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