
A Hybrid AI-Graph Engine for the All-in-One
Automated Security Operations Center (SOC)

Ghaylan Muhammad Fatih, Ghazi Akmal Fauzan, Abdillah Ahmad, and John (Jong Uk) Choi
MarkAny

1 Ssanglim BLDG, 286 Toegye-Ro, Jung-Gu, Seoul, Korea, 04615
{ghaylan, ghazi, abid}@ganeshait.com, juchoi@markany.com

Abstract—The contemporary cybersecurity landscape is char-
acterized by a fundamental asymmetry: highly automated of-
fensive operations juxtaposed against defensive operations that
remain heavily reliant on human analysts. This disparity intro-
duces significant risk, particularly for under-resourced Small
and Medium Enterprises (SMEs). To mitigate this challenge,
this paper proposes an “All-in-One System for Automating
SOC,” utilizing a four-layer architecture that integrates detection,
interpretation, and response. This work presents the design and
implementation of the system’s core interpretation engine: a
hybrid AI-Graph API service. The engine receives raw telemetry
from the Detection Layer and executes a two-stage analysis:
(1) A Large Language Model (LLM) service analyzes raw
data (e.g., process trees) to infer relevant MITRE ATT&CK
Tactics, Techniques, and Procedures (TTPs). (2) The identified
TTP is subsequently employed to query a Knowledge Graph
(Neo4j), retrieving critical enrichment data (e.g., Threat Actors,
Mitigations) and associated compliance mappings (e.g., NIST,
CIS). The engine generates a structured JSON output, which
serves as the designated input for the Playbook Synthesis Layer.
By automating the manual interpretation phase, this engine
transforms raw EDR alerts into actionable response playbooks,
thereby bridging the critical gap between threat detection and
automated response.

Index Terms—Automated SOC, Knowledge Graph, API, EDR,
SOAR, FastAPI, LLM, Incident Response, MITRE ATT&CK,
Compliance

I. INTRODUCTION

A fundamental asymmetry defines the contemporary cy-
bersecurity landscape. Offensive operations, including ran-
somware and credential theft, are increasingly automated and
commoditized [6]. Conversely, defensive operations remain
heavily reliant on manual human processes for analysis and
response. This disparity results in an unsustainable operational
posture for many organizations, particularly those lacking
dedicated 24/7 security personnel and the requisite budget [5].

A. The Need for Automation in Modern Security Operations

Personnel working in Security Operations Centers (SOCs)
face significant operational challenges. They are frequently
overwhelmed by high volumes of security telemetry with-
out receiving the actionable intelligence required for rapid
response. This influx of granular alerts from disparate security
tools leads to analyst fatigue [5], increasing the probabil-
ity that critical threats are overlooked. The primary issue
is not a data deficit, but rather the system’s inability to
correlate low-level computer events with broader adversarial

behaviors or organizational security policies. This inefficient
process results in prolonged containment times—averaging
277 days—providing adversaries with substantial dwell time
to achieve their objectives [4].

Security automation initially focused on centralized data
collection via SIEM platforms and the use of Cybersecurity
Knowledge Bases (KB) to assist manual interpretation [1].
However, to significantly reduce response times, defensive
systems must transition to a model where detection is directly
coupled with automated response. This requires shifting the
initial stages of triage and interpretation from human analysts
to automated computational processes.

B. From Information to Action

The core objective of this paper is to transition security
systems from passive information delivery to active reme-
diation. Previous research focused on establishing database
connections that provided analysts with threat context [1].
While beneficial, this approach resulted in static information
for human consumption. This paper introduces a system that
transforms this intelligence into an active component of the
security infrastructure.

For automation to be effective, threat intelligence must
be converted from human-readable reports into machine-
executable commands. The architecture and Application Pro-
gramming Interface (API) presented in this work provide
the framework for this conversion. By establishing rigorous
protocols for communication between the detection system
and the knowledge base, a threat query is transformed into
a direct remediation command, allowing the system to initiate
self-defense protocols. This reduces the time-to-remediation
from hours or days to mere seconds.

C. Bridging Open-Source EDR and Automation

This research addresses a critical gap in security architec-
ture: the integration of open-source Endpoint Detection and
Response (EDR) tools with automated systems. Commercial
automation platforms often rely on rigid, manually authored
playbooks that lack the flexibility required for emerging threats
[1]. Conversely, robust open-source EDR tools like OpenEDR
provide granular telemetry but lack real-time integration with
decision-making frameworks [12].

Typically, these tools export data to centralized storage
(such as an ELK stack) for retrospective analysis. This batch-



processing approach is unsuitable for the low-latency, direct
API calls required for immediate threat response. This paper
presents a comprehensive design to resolve this connectivity
gap, enabling EDR tools to function as integrated components
of an automated defense ecosystem.

II. BACKGROUND AND RELATED WORK

A. The Threat-Compliance Knowledge Base

The foundation for this paper is our previous work, which
presented a graph-based knowledge base designed to bridge
the operational gap between threat intelligence and compliance
management [1]. The core problem was that critical security
domains operate in silos. Security teams track adversary
behaviors using frameworks like MITRE ATT&CK [3], while
governance teams manage defensive posture using frameworks
like the NIST Cybersecurity Framework (CSF) [2].

Our solution was a Neo4j graph database that models both
domains in a single, queryable resource. This was achieved
through a generalized, self-referencing schema for Control
nodes and an LLM-powered “semantic bridge” which auto-
mates the creation of [:MITIGATES] relationships.

B. The EDR-to-SOAR Automation Gap

Modern security defense relies on a “detect and respond”
paradigm, primarily driven by EDR and SOAR platforms.
EDR tools are highly effective at monitoring endpoint activity
and generating alerts mapped to TTPs from the ATT&CK
framework [10]. However, a critical “automation gap” exists
between EDR detection and effective SOAR-driven response.
An EDR alert, such as “T1059.001 detected,” lacks essential
business and security context. A SOAR playbook must answer:
Is this part of a known campaign? What compliance mandates
are at risk? This gap is currently filled by a human analyst,
who is prone to alert fatigue [5].

C. Knowledge Graphs and AI in Security Operations

The use of AI and knowledge graphs in cybersecurity is an
active area of research [7]. Works such as the Unified Cyber
Ontology (UCO) create a common vocabulary for disparate se-
curity domains [8]. Other research has demonstrated the power
of graph databases for attack path analysis [9]. However, many
existing approaches focus on static, offline analysis. Our work
differentiates itself by operationalizing the knowledge graph
in a real-time, event-driven architecture, combining an “AI
Analyst” (LLM) and a “Knowledge Brain” (Graph KB).

III. PROPOSED SYSTEM ARCHITECTURE

A. End-to-End Operational Workflow

The proposed architecture establishes a seamless, automated
workflow connecting threat detection to knowledge-based re-
sponse. The process operates as follows:

1) Detection: The EDR Agent collects raw telemetry con-
cerning system actions (e.g., process creation) [12].

2) Threat Correlation: The Correlation Engine analyzes
the telemetry using heuristic rules to identify potential
adversarial techniques.

3) API Request: The EDR Management Server initiates
a direct API call to the API Bridge with a structured
JSON payload.

4) Knowledge Base Query: The KB translates the request
into a Cypher query for the Neo4j database.

5) Response Identification: The KB identifies associated
“Control” nodes containing executable commands to
remediate the threat.

6) API Response: The KB returns a structured JSON
response containing contextual details and recommended
countermeasures.

7) Execution: The EDR Agent executes the remediation
command to neutralize the threat.

This entire sequence is designed for sub-minute execution.
Figure 1 illustrates the interaction between these components.

Fig. 1. Automated Detection-to-Response Sequence Diagram.

B. Component Architecture

The system is composed of modular components. Figure 2
illustrates the system’s structural organization.

Fig. 2. System Component Architecture.

1) The EDR System: The architectural foundation is the
EDR, built upon the OpenEDR framework [12]. The EDR
Agent provides high-fidelity telemetry, while the Correlation
Engine translates raw data into high-level security alerts (e.g.,
“Credential Stealing with Mimikatz”).

2) The API Bridge: The API Bridge serves as the orches-
tration hub, providing a secure interface between the EDR and
the Knowledge Base. The Request Format is strictly structured
(Table I), with the process_parent_tree providing crit-
ical forensic context for analysis.

The Response Format (Table II) is structured for both
machine execution and human oversight, encompassing
technique_info, context, and countermeasures.



TABLE I
SECURITY EVENT ANALYSIS REQUEST DATA

Field Name Data Type Description
adaptive event type String Threat classification

determined by the EDR
(e.g., “Credential Stealing”).

base event type String Primitive system event (e.g.,
“Virtual Memory Access”).

component String Source system generating the
telemetry.

process hash String SHA1 hash of the subject bi-
nary.

process parent tree Array Hierarchical process lineage of
the subject program.

TABLE II
SECURITY EVENT ANALYSIS RESPONSE DATA

Field Name Data Type Description
incident id String Unique identifier for the security

event.
technique info Object Metadata regarding the MITRE

ATT&CK technique.
context Object Enrichment data from the KB

(Threat Groups, Software).
countermeasures Array Executable actions/commands for

remediation.

C. The Knowledge Base as a Real-Time Decision Maker

The KB utilizes the dual-stage design established in
prior work [1]. Upon receiving a request, the KB con-
structs a Cypher query for the Neo4j database. The
adaptive_event_type is mapped to a MITRE Technique
ID to initiate graph traversal.

// Information from the API request is used here
WITH "T1003.001" AS techniqueId
// Find the technique and the controls that stop it
MATCH (tech:Technique {id: techniqueId})
// The MITIGATES link connects threat and defense
MATCH (ctrl:Control)-[:MITIGATES]->(tech)
// Only get controls with executable commands
WHERE ctrl.command IS NOT NULL
// Get extra information
OPTIONAL MATCH (tech)<--(grp:Group)
OPTIONAL MATCH (tech)<--(sw:Software)
RETURN
tech.id AS techniqueId,
tech.name AS techniqueName,
collect(DISTINCT grp.name) AS associatedGroups,
collect(DISTINCT sw.name) AS associatedSoftware,
collect({

category: ctrl.category,
action: ctrl.description,
command: ctrl.command

}) AS countermeasures

Listing 1. Cypher Query Example

D. Core API Logic

The core logic of the system is visualized in the flowchart
below. It orchestrates authentication, LLM inference, and
graph traversal.

The responsibilities of each component are summarized in
Table III.

Fig. 3. Flowchart of the Core API Logic for the /analyze Endpoint.

TABLE III
COMPONENT RESPONSIBILITIES

Component Primary Role Key Activities
EDR Agent Data Collection Telemetry monitoring, com-

mand execution [12].
Correlation
Engine

Triage Behavioral analysis, machine
learning [12].

API Bridge Orchestration Microservice management,
API gateway, OAuth 2.0.

Knowledge Base Decision Support Neo4j graph traversal, MITRE
ATT&CK mapping.

IV. IMPLEMENTATION

A. Technology Stack

The system is implemented as a containerized microservice
using modern Python frameworks:

• FastAPI: Utilized for native async/await support,
which is critical for handling non-blocking I/O-bound
calls to the LLM and Neo4j.

• Neo4j 5.x: A graph database selected for modeling
complex security relationships and performing high-speed
multi-hop traversals [9].

• LLM Service: Acts as the “AI Analyst,” serializing
the SecurityEventRequest into a prompt to infer
corresponding TTPs.

• Docker & NGINX: Ensures environment reproducibility
and provides reverse proxy services.

B. Algorithms

The /analyze endpoint functions as an asynchronous
orchestrator, as detailed in Algorithm 1.

The Get_Graph_Enrichment function executes a
multi-hop traversal of the Neo4j graph, gathering relevant
enrichment data in a single transaction (Algorithm 2).

V. EVALUATION AND METRICS

To validate the efficacy and performance of the interpreta-
tion engine, we conducted tests evaluating two primary areas:



Algorithm 1 Asynchronous Triage and Enrichment
Require: event: SecurityEventRequest, user: AuthToken
Ensure: response: SecurityEventResponse

1: Function ANALYZE SECURITY EVENT(event, user)
2: // Stage 1: Call LLM to identify TTP from raw event
3: inferred ttp data← await Identify TTP(event);
4: ttp id← inferred ttp data.id;
5: // Stage 2: Call Graph DB to enrich TTP
6: enrichment data ← await

Get Graph Enrichment(ttp id);
7: // Stage 3: Combine and return response
8: response← Combine(inferred, enrichment);
9: return response;

10: Function Identify TTP(event)
11: prompt← Format Event As Prompt(event);
12: llm result← LLM SERVICE.generate(prompt);
13: ttp data← Parse LLM Result(llm result);
14: return ttp data;

Algorithm 2 Graph Enrichment Traversal
Require: ttp id: String
Ensure: enrichment data: Enrichment Data

1: Function Get Graph Enrichment(ttp id)
2: // Initialize empty result lists
3: actors, software,mitigations, compliance← []
4: t← GRAPH.FindNode(Technique, id = ttp id)
5: // Find related threat actors and software
6: foreach g in GRAPH.FindNodes(Group, target = t)

do
7: ADD g TO actors;
8: // Find strategic mitigations
9: foreach m in GRAPH.FindNodes(Mitigation,

source = t) do
10: ADD m TO mitigations;
11: // Find compliance controls (Semantic Bridge)
12: foreach c in GRAPH.FindNodes(Control, target = t)

do
13: f ← GRAPH.FindNode(Framework, target = c);
14: ADD {control : c, framework : f} TO

compliance;
15: enrichment← {actors, software,
16: mitigations, compliance};
17: return enrichment;

(1) a qualitative demonstration of the end-to-end analysis
pipeline, and (2) a quantitative evaluation of latency against
established industry benchmarks.

A. Use Case Demonstration: PowerShell TTP Inference

To demonstrate the system’s capability, we submitted a
real-world EDR event to the /analyze endpoint. This
event simulates suspicious activity: a PowerShell process
(powershell.exe) spawned from an unexpected parent
(svchost.exe) under high-privilege (SYSTEM) creden-
tials. The raw event payload is visualized in Figure 4.

Fig. 4. Raw Security Event Input Payload (PowerShell Suspicion).

The API successfully processed this event and returned a
comprehensive SecurityEventResponse (Figure 5).

Fig. 5. Enriched JSON Response Output.

The output confirms the successful execution of the two-
stage pipeline:

1) Stage 1 (LLM Inference): The engine analyzed the in-
put and correctly identified the threat as TTP T1059.001
(PowerShell).

2) Stage 2 (Graph Enrichment): The engine enriched
the TTP, identifying “FIN7” as the associated actor,
“Execution Prevention” as a mitigation strategy, and
“CIS Controls 10.7” as the compliance mapping.

3) Response Generation: The engine generated a
recommended_playbook containing immediate re-
mediation steps.



B. Performance Evaluation: Latency

We conducted 100 stress tests against the /analyze
endpoint to measure the system’s end-to-end interpretation
time. The average response time for the complete two-stage
analysis was 24.97 seconds.

To contextualize this performance, we benchmarked the
system against the industry-standard “1/10/60 Challenge”
framework [11]. This framework dictates that organizations
should detect an intrusion within 1 minute, investigate within
10 minutes, and remediate within 60 minutes.

Our engine specifically targets the “10-minute” investigation
window—the phase where an analyst must interpret the alert’s
context. As shown in Table IV, our engine reduces investi-
gation time from the 10-minute (600-second) benchmark to
approximately 25 seconds. This represents an improvement of
over 95.8%, enabling investigations to occur at machine speed.

TABLE IV
PERFORMANCE COMPARISON: 1/10/60 BENCHMARK VS. AUTOMATED

Process Industry Benchmark
(1/10/60)

Automated Engine

Phase Investigation (The “10”) Stage 1 + Stage 2
Time 10 Minutes (600s) [11] 24.97 seconds
Output Analyst Understanding Structured JSON
Improvement >95.8% Reduction

VI. CONCLUSION AND FUTURE WORK

This paper has detailed the design and implementation of a
hybrid AI-graph interpretation engine, the core of the “All-in-
One Automated SOC” architecture. By utilizing a two-stage
hybrid AI architecture, this work automates the manual analyst
workflow. The FastAPI service orchestrates this analysis in
sub-minute time, providing essential interconnectivity.

Future work will focus on implementing the remaining
layers:

• Playbook Synthesis Layer (Layer 3): Developing a
service to consume JSON output and generate standard
CACAO playbooks.

• Playbook Operations Layer (Layer 4): Creating a
user interface to allow non-expert operators to execute
playbooks.

• Bi-Directional API: Extending the engine to allow the
Operations Layer to update the graph, enabling a contin-
uous learning loop.

Additionally, future optimizations will address the method-
ology of Stage 1. Instead of relying solely on an LLM to dter-
mine the corresponding ATT&CK TTP ID, future iterations
will explore using a vector database to create a search-based
retrieval method, aiming for higher accuracy, consistency, and
traceability.

REFERENCES

[1] G. M. Fatih, G. A. Fauzan, and J. Choi, “A Graph-Based Knowledge
Base for Integrating Adversary Behavior with Compliance Frameworks,”
2025.

[2] National Institute of Standards and Technology, “The NIST Cybersecu-
rity Framework (CSF) 2.0,” U.S. Department of Commerce, Feb. 2024.

[3] The MITRE Corporation, “MITRE ATT&CK,” [Online]. Available:
https://attack.mitre.org. [Accessed: Sep. 15, 2025].

[4] IBM, “Cost of a Data Breach Report 2025,” Ponemon Institute, 2025.
[5] T. Oltsik, “The Life and Times of Cybersecurity Professionals 2023,”

Enterprise Strategy Group (ESG), 2023.
[6] Verizon, “2025 Data Breach Investigations Report,” Verizon Enterprise,

2025.
[7] L. F. Sikos, AI in Cybersecurity. Springer, 2020.
[8] A. S. Boddy, U. Jaimini, N. L. Skarlat, and J. R. Santos, “The Unified

Cyber Ontology,” The MITRE Corporation, 2016.
[9] S. Noel and S. Jajodia, “Understanding complex network attack graphs,”

in Graph Theoretic and Topological Approaches to Security, Trust, and
Resilience, Cham: Springer, 2014, pp. 1–26.

[10] B. E. Strom et al., “MITRE ATT&CK design and philosophy,” The
MITRE Corporation, 2020.

[11] CrowdStrike, “The 1-10-60 Minute Challenge: A Frame-
work for Stopping Breaches Faster,” [Online]. Available:
https://www.crowdstrike.com/en-us/resources/crowdcasts/the-1-10-60-
minute-challenge-a-framework-for-stopping-breaches-faster/. [Accessed:
Nov. 27, 2025].

[12] OpenEDR, “Open Source Endpoint Detection and Response (EDR),”
[Online]. Available: https://www.openedr.com/. [Accessed: Oct. 30,
2025].


