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Abstract—In emergency situations, accurate location
information is essential for quickly securing the safety of the
caller. Although GNSS (Global Navigation Satellite System) is
widely used for outdoor positioning, its reliability decreases in
environments where satellite signals cannot be consistently
received. Therefore, to enhance both availability and accuracy,
it is necessary to improve localization performance with
alternative positioning infrastructures. In this study, we propose
a PDR (Pedestrian Dead Reckoning)-based map matching
method to continuously estimate the movement path of
smartwatch wearers. The constant movement of the wrist,
where the smartwatch is worn, makes it difficult to accurately
determine walking segments. To address this issue, we utilize a
HAR (Human Activity Recognition)-based deep learning
classification model to identify whether the wearer is walking.
For segments identified as walking, step detection, stride length
estimation, and turn event detection are performed to generate
PDR information. In the subsequent map matching stage,
pedestrian road digital maps are edited into a node-edge
structure, and the final movement trajectory is extracted based
on the PDR information. The performance of the proposed
method is validated through field experiments conducted in an
urban environment.

Keywords—Smartwatch, HAR, Deep Learning, PDR, Map
Matching

I. INTRODUCTION

In emergency situations, quickly determining the location
of a person under personal protection is important for reducing
rescue times and ensuring safety. While GNSS (Global
Navigation Satellite System) provides highly accurate
location information, its performance degrades significantly
in shadow areas, such as urban areas, due to signal blockage
[1]. To address these limitations, various positioning
technologies that utilize highly available mobile/wireless
infrastructures such as LTE (Long Term Evolution) and Wi-
Fi have been actively studied [2], [3]. Nevertheless, these
technologies are sensitive to environmental changes, requiring
constant data collection and frequent database updates.

Smartwatches are equipped with an IMU (Inertial
Measurement Unit) capable of continuously acquiring 3-axis
accelerometer and 3-axis gyroscope data regardless of the
surrounding environment. This enables continuously
estimating a pedestrian's location using inertial sensor-based
positioning algorithms [4]. However, the wrist is one of the
most active parts of the body, which can cause sensor signals
to become irregular due to unpredictable movements [5]. This
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means that the signal patterns of inertial data constantly
change depending on the user's actions, leading to a decrease
in the accuracy of inertial sensor-based positioning algorithms.

PDR (Pedestrian Dead Reckoning) is a representative
inertial sensor-based positioning technique that estimates
relative position based on a pedestrian's step count, stride
length, and heading information [6], [7], [8]. However, the
positioning performance of PDR significantly declines when
walking segments are not accurately identified. Applying
inertial data from non-walking wrist movements to the PDR
algorithm can result in false detections during the step
detection phase or accumulated errors during the stride length
estimation phase [9], [10]. Furthermore, irregular movements
and arm swings make it difficult to reliably estimate the
rotational direction [11]. To address this issue, this study
designs a HAR (Human Activity Recognition)-based DNN
(Deep Neural Network) classification model using 3-axis
acceleration data to first determine whether a smartwatch
wearer is walking. The HAR classification results directly
prevent PDR algorithms from being affected by inertial
signals originating from non-walking wrist movements.

Once walking segments are identified by the deep learning
model, PDR information is generated through step detection,
stride length estimation, and turn event detection. In the step
detection phase, the pedestrian’s steps are counted using a
peak detection method. Stride length is estimated using a
parameter-based model derived from gait characteristics. Turn
event detection utilizes a modified Z-score technique [12]
applied to 3-axis gyroscope data to determine the pedestrian’s
turning state at each step, such as straight, right turn, or left
turn. Through this process, one-dimensional PDR information
representing the pedestrian’s movement distance and turning
state is generated.

In this study, we propose a PDR-based map matching
method that integrates PDR information with a pedestrian
road digital map to estimate the movement route of a
smartwatch wearer. To achieve this, numerical data
representing pedestrian roads are converted into a node—edge
structure, and each node is connected bidirectionally to
account for the various possible walking paths. Afterward,
candidate starting points near the initial location are selected,
and candidate paths are sequentially removed based on the
movement distance and turning state derived from the PDR
information. Finally, the movement trajectory of the
smartwatch wearer is generated by selecting the route that
satisfies all PDR conditions.

The technique proposed in this paper was verified through
field tests conducted in urban environment. In the experiment,



Data Collection

Data preprocessing

{ "‘:
C e H 3
A Ao s
\ -
2
A B
/ g
N~ §
- s

| Feature value Class # Activity N i

Deep Model Training

Fig. 1. Framework of the HAR-based deep learning model.

we designed a predefined scenario that included various
walking patterns and comprehensively evaluated the HAR
classification performance, and map matching results. The
experimental results show that the proposed technique
successfully matches the true trajectories, demonstrating its
feasibility and potential for smartwatch-based pedestrian
navigation.

II. METHODOLOGY

This section describes the methodology used to estimate
the movement trajectory of smartwatch wearers. The proposed
approach identifies walking segments using a HAR-based
deep learning model and then generates PDR information
from the walking segments. The estimated PDR data are
subsequently matched with a pedestrian road digital map to
determine the final movement route. For clarity, key terms
used in this section are defined as follows. A pedestrian road
digital map is a numerical representation of walkable
pedestrian paths. The node-edge structure models this map as
a graph, where nodes represent intersections or discretized
path points and edges represent walkable segments with
associated distance and directional information. PDR
information refers to pedestrian movement data, including
distance and turning state, which are used as constraints in the
map-matching process.

A. HAR-based Classification Model

Fig. 1 shows the framework of the HAR-based deep
learning model. This model is used to identify walking
segments from the inertial sensor data of a smartwatch. First,
3-axis accelerometer data are collected for various activities,
including walking and non-walking. The walking types are
defined as Swing (walking with arms swinging), Handheld
(walking while using a smartphone), and Pocket (walking
with hands in pockets). Non-walking data are obtained by
maintaining a static state for each walking type.

The collected inertial sensor data undergo a series of
preprocessing procedures prior to model training. First, a low-
pass filter is applied to the raw accelerometer signals to reduce
noise caused by continuous and irregular wrist movements.
This filtering process removes unexpected outliers and
smooths the signal, improving the accuracy of the learning
model. Next, a sliding window technique with overlapping
windows is used to segment the time-series data, which
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Fig. 2. PDR information generation process using smartwatch IMU data.
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increases the flexibility of the training samples [13]. From
each segmented window, representative statistical features are
extracted to characterize motion patterns. Considering the
variability and asymmetry of activity data, features such as
mean, variance, standard deviation, and median can be
calculated. Finally, min-max normalization is applied to scale
all features into a range between 0 and 1, to reduce
dependence on a specific scale in the learning model.

The preprocessed data are used to train an FCL (Fully
Connected Layer)-based deep learning classification model.
The network consists of three hidden layers with 128, 64, and
32 nodes, respectively, and uses the ReLLU activation function.
Batch normalization is applied to improve training stability
and convergence. The output layer consists of six nodes
corresponding to three walking activities and three non-
walking activities. The model is trained using the Adam
optimization algorithm [14]. The dataset is divided into
training and validation sets at a ratio of 9:1, with early
stopping applied based on validation performance. After
training, the model outputs an activity class for each input
window, and only the segments identified as walking are
passed to the subsequent PDR information generation process.

B. PDR Information Generation

Once walking segments are identified through the HAR-
based classification model, PDR information is generated
using the IMU data corresponding to those segments. Fig. 2
shows the overall process of generating PDR information
from the inertial sensors embedded in the smartwatch. The
PDR process consists of step detection, stride estimation, and
turn event detection. In the step detection stage, the
acceleration power is calculated to convert the 3-axis
accelerometer signals into a single magnitude value, as
follows:

Accp, = \/Acci[ + Acc;’, + Accf’, -G )

where Acc,, is the acceleration power, Acci, is the acceleration
output in the i -axis acquired at time ¢, and G is gravity, which
is equal to 9.81 m/s>. A Butterworth low-pass filter with a
cutoff frequency of 2 Hz is applied to transform the
acceleration power into a sinusoidal form. The filtered power
signal is then used to count the pedestrian's steps through peak
detection.

Stride length represents the distance traveled per step. To
estimate stride length, a parameter-based approach is used,
which is related to the correlation between walking speed and
step frequency, as follows [15]:

Stride, =a-F + -V, +y (2)
where Fi and V; are the step frequency and variance of

acceleration power at the k-th step, respectively, and a, f, y
are model parameters. The model parameters can be estimated
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Fig. 3. Flowchart of the proposed PDR-based map matching algorithm.

using the least squares method based on pre-experimental data.

Due to various walking patterns and irregular wrist
movements, it is difficult to accurately estimate heading.
Therefore, this study utilizes a 3-axis gyroscope to determine
the pedestrian’s turning state. To do this, gyroscope signal
power is calculated using Eq. (1), excluding the gravity
component. The calculated power signal is then applied to the
modified Z-score technique, as follows:

Gyro,, —Median

Z, =0.6745-
MAD

3)

where gyrop, is the gyroscope signal power at time ¢, and
Median and MAD are the median and median absolute
deviation, respectively. A score is extracted for each step, and
a threshold is applied to determine turn events. A positive
value exceeding the threshold indicates a right turn, whereas a
negative value exceeding the threshold indicates a left turn.
This turn event detection technique is applicable to all walking
patterns. Finally, PDR information is generated by combining
the turning state according to the movement distance.

C. Map Matching

In the map matching stage, the PDR information is
combined with a pedestrian road digital map to estimate the
movement trajectory of the smartwatch wearer. Fig. 3 shows
the overall flow of the proposed map matching algorithm,
which consists of four steps: pedestrian map construction,
initial candidate point selection, candidate path removal, and
final trajectory determination.

First, pedestrian road network data are constructed using
the QGIS tool. Pedestrian road layers are created on walkable
paths, and node points are generated at intersections where
turning can occur. Subsequently, vertex points are extracted at
intervals of approximately 10 m between adjacent nodes to
construct detailed numerical data along walkable paths. The
constructed map is then converted into a bidirectional node-
edge structure. Each point is assigned a unique ID,
FromNodelD, ToNodelD, angle, distance, and geographic
coordinates. This node-edge map structure provides the
geometric constraints used for comparison with the PDR
information.

Based on the edited map, a cost matrix is generated,
containing movement distance and turning information
between adjacent nodes. This matrix represents the distance
and directional transitions required to move from one node to
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Fig. 4. Confusion matrix of the HAR-based classification model.

another and is used to determine whether each candidate path
is consistent with the movement distance and turn events of
the PDR information. In the initial step, all points located
within a certain radius of the GNSS-based initial position are
selected as candidate starting points. These candidates
represent all possible locations where the pedestrian may have
actually started.

The matching procedure is performed by comparing the
PDR movement distance and turning state with the candidate
paths on the map. If the distance or turning direction between
two nodes does not match the PDR information, the path is
immediately removed from the candidate set. This candidate
path removal process is performed sequentially according to
the PDR sequence, and the number of possible paths is
gradually reduced as turns progress. Ultimately, the route that
satisfies all PDR conditions is selected as the final trajectory
of the smartwatch wearer.

III. RESULTS

To evaluate the performance of the proposed method, field
experiments were conducted. The smartwatch used was a
Galaxy Watch 5 Pro, and inertial data were acquired at a
sampling rate of approximately 8 Hz. The experiments were
conducted based on a predefined scenario in a field
environment, and both the HAR classification accuracy and
the PDR-based map matching performance were analyzed.
The results validate the effectiveness of the proposed method.
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Fig. 5. True route defined for the experiment.
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A. Classification Results

We evaluated the performance of a HAR classification
model designed to identify walking signals from the inertial
sensors of the smartwatch. The entire dataset was divided into
training and validation sets to prevent overfitting. During the
training process, early stopping was applied when no
improvement in the validation accuracy was observed for a set
period. The test data, collected individually over
approximately 7 minutes for each activity type, were used to
verify the generalization performance of the model. Fig. 4
shows the confusion matrix representing the classification
results for six activity classes. All walking classes (Swing,
Handheld, Pocket) were accurately classified, and the non-
walking classes Standing (stop) and Handheld (stop) were also
identified without misclassifications. While a small number of
misclassifications occurred in the Pocket (stop) class, the
overall classification accuracy remained above 99%. Overall,
the experimental results confirm that the HAR classification
model can distinguish between walking and non-walking
activities with high accuracy. This capability plays a crucial
role in the subsequent PDR information generation process by
effectively filtering out non-walking signals.

B. PDR-based Map Matching Results

To validate the performance of the PDR-based map
matching method, experiments were conducted based on a
predefined scenario. The experiments were conducted in an
urban area in Jung-gu, Daegu, South Korea. Fig. 5 shows the
true walking trajectory of the participant, which includes
multiple turns. At each stop point, marked by yellow circles,
the participant remained stationary for approximately 2
minutes while including slight micro-movements. This
complex walking pattern provides crucial testing conditions
for evaluating the robustness of PDR-based turn detection and
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Fig. 7. Constructed pedestrian road digital map with nodes and vertices.

map matching.

Fig. 6 shows the PDR information generated from the
smartwatch IMU data, expressed in terms of movement
distance and turning state. Each spike represents a left or right
turn occurring during walking, while segments without peaks
correspond to "Straight." The results confirm that the PDR
algorithm successfully detects all turning events that occurred
along the true route. The detected turning states function as
key criteria for eliminating candidate paths during the map
matching process, and the distance information is used to
compare the true distance between adjacent nodes. Table I
sequentially organizes the PDR information generated in Fig.
6 and is used as quantitative input data for the map matching
procedure.

The pedestrian road map used in the experiment was
constructed using the QGIS tool, as shown in Fig. 7. Vertex
points were extracted at approximately 10 m intervals along
the centerline of walkable paths, while node points, marked by
orange circles, were placed at locations where turning could
occur. This structure was then converted into a bidirectional
node-edge graph, enabling direct comparison with the PDR
information. The combination of vertices and nodes provides
a map representation capable of modeling both directionality
and connectivity, making it suitable for the candidate path
elimination process based on turn events and distance
constraints.

Fig. 8 shows the result of applying the map matching
algorithm using the generated PDR information. In the initial

TABLE L GENERATED PDR RESULTS
Distance (m) Turning state

156.9581 Left
89.5077 Right
43.8353 Left
91.5947 Left
45.4585 Right
56.6730 Right
32.2713 Left

130.0506 Left
39.9334 Left
70.4294 Right
77.8786 Right
68.7104 Left

129.8740 Left

7.0823 Straight
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Fig. 8. Final route estimated through PDR-based map matching.



stage, a certain radius, shown as a blue circle, is set around the
GNSS-based initial position, and all points within this radius
are selected as candidate starting points. Subsequently, the
movement distances and turning events listed in Table I were
applied sequentially to remove inconsistent candidate paths.
This iterative candidate path elimination process becomes
even more decisive when a turn event occurs. In fact, because
the experimental route contained multiple turns, the number
of feasible candidate paths decreased rapidly as matching
progressed. Once matching is complete, only a single route
satisfying all PDR conditions remains. The final route
estimated is shown as a purple trajectory in Fig. 8, and it can
be confirmed that the route matches the true route in Fig. 5.

IV. CONCLUSION

In this study, we proposed a PDR-based map matching
method that estimates the movement route of a pedestrian
using the inertial sensors of a smartwatch. First, we distinguish
between walking and non-walking activities using a HAR
classification model, filtering out non-walking signals that
could affect PDR performance. The classification results
achieved an accuracy of over 99%. In the identified walking
segments, PDR data including movement distance and turning
information were generated through step detection, stride
estimation, and turn event detection. In addition, a pedestrian
road digital map was constructed using a combined structure
of nodes and vertices to enable comparison with PDR
information. The proposed map matching algorithm
successfully estimated the walking trajectory in the urban field
tests, showing full consistency with the predefined true route.
Even in scenarios involving multiple turns, turn events were
accurately reflected, and the candidate paths were consistently
reduced until a single correct route remained.

In the future, we plan to conduct additional experiments
across various walking environments to further enhance the
generalization capability of the algorithm. We also intend to
expand the coverage of the pedestrian road map and involve a
larger number of participants to strengthen the robustness and
applicability of the proposed method.
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