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Abstract—In emergency situations, accurate location 

information is essential for quickly securing the safety of the 

caller. Although GNSS (Global Navigation Satellite System) is 

widely used for outdoor positioning, its reliability decreases in 

environments where satellite signals cannot be consistently 

received. Therefore, to enhance both availability and accuracy, 

it is necessary to improve localization performance with 

alternative positioning infrastructures. In this study, we propose 

a PDR (Pedestrian Dead Reckoning)-based map matching 

method to continuously estimate the movement path of 

smartwatch wearers. The constant movement of the wrist, 

where the smartwatch is worn, makes it difficult to accurately 

determine walking segments. To address this issue, we utilize a 

HAR (Human Activity Recognition)-based deep learning 

classification model to identify whether the wearer is walking. 

For segments identified as walking, step detection, stride length 

estimation, and turn event detection are performed to generate 

PDR information. In the subsequent map matching stage, 

pedestrian road digital maps are edited into a node-edge 

structure, and the final movement trajectory is extracted based 

on the PDR information. The performance of the proposed 

method is validated through field experiments conducted in an 

urban environment. 
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I. INTRODUCTION 

In emergency situations, quickly determining the location 
of a person under personal protection is important for reducing 
rescue times and ensuring safety. While GNSS (Global 
Navigation Satellite System) provides highly accurate 
location information, its performance degrades significantly 
in shadow areas, such as urban areas, due to signal blockage 
[1]. To address these limitations, various positioning 
technologies that utilize highly available mobile/wireless 
infrastructures such as LTE (Long Term Evolution) and Wi-
Fi have been actively studied [2], [3]. Nevertheless, these 
technologies are sensitive to environmental changes, requiring 
constant data collection and frequent database updates. 

Smartwatches are equipped with an IMU (Inertial 
Measurement Unit) capable of continuously acquiring 3-axis 
accelerometer and 3-axis gyroscope data regardless of the 
surrounding environment. This enables continuously 
estimating a pedestrian's location using inertial sensor-based 
positioning algorithms [4]. However, the wrist is one of the 
most active parts of the body, which can cause sensor signals 
to become irregular due to unpredictable movements [5]. This 

means that the signal patterns of inertial data constantly 
change depending on the user's actions, leading to a decrease 
in the accuracy of inertial sensor-based positioning algorithms. 

PDR (Pedestrian Dead Reckoning) is a representative 
inertial sensor-based positioning technique that estimates 
relative position based on a pedestrian's step count, stride 
length, and heading information [6], [7], [8]. However, the 
positioning performance of PDR significantly declines when 
walking segments are not accurately identified. Applying 
inertial data from non-walking wrist movements to the PDR 
algorithm can result in false detections during the step 
detection phase or accumulated errors during the stride length 
estimation phase [9], [10]. Furthermore, irregular movements 
and arm swings make it difficult to reliably estimate the 
rotational direction [11]. To address this issue, this study 
designs a HAR (Human Activity Recognition)-based DNN 
(Deep Neural Network) classification model using 3-axis 
acceleration data to first determine whether a smartwatch 
wearer is walking. The HAR classification results directly 
prevent PDR algorithms from being affected by inertial 
signals originating from non-walking wrist movements. 

Once walking segments are identified by the deep learning 
model, PDR information is generated through step detection, 
stride length estimation, and turn event detection. In the step 
detection phase, the pedestrian’s steps are counted using a 
peak detection method. Stride length is estimated using a 
parameter-based model derived from gait characteristics. Turn 
event detection utilizes a modified Z-score technique [12] 
applied to 3-axis gyroscope data to determine the pedestrian’s 
turning state at each step, such as straight, right turn, or left 
turn. Through this process, one-dimensional PDR information 
representing the pedestrian’s movement distance and turning 
state is generated. 

In this study, we propose a PDR-based map matching 
method that integrates PDR information with a pedestrian 
road digital map to estimate the movement route of a 
smartwatch wearer. To achieve this, numerical data 
representing pedestrian roads are converted into a node–edge 
structure, and each node is connected bidirectionally to 
account for the various possible walking paths. Afterward, 
candidate starting points near the initial location are selected, 
and candidate paths are sequentially removed based on the 
movement distance and turning state derived from the PDR 
information. Finally, the movement trajectory of the 
smartwatch wearer is generated by selecting the route that 
satisfies all PDR conditions. 

The technique proposed in this paper was verified through 
field tests conducted in urban environment. In the experiment, 
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Fig. 1. Framework of the HAR-based deep learning model. 

we designed a predefined scenario that included various 
walking patterns and comprehensively evaluated the HAR 
classification performance, and map matching results. The 
experimental results show that the proposed technique 
successfully matches the true trajectories, demonstrating its 
feasibility and potential for smartwatch-based pedestrian 
navigation. 

II. METHODOLOGY 

This section describes the methodology used to estimate 
the movement trajectory of smartwatch wearers. The proposed 
approach identifies walking segments using a HAR-based 
deep learning model and then generates PDR information 
from the walking segments. The estimated PDR data are 
subsequently matched with a pedestrian road digital map to 
determine the final movement route. For clarity, key terms 
used in this section are defined as follows. A pedestrian road 
digital map is a numerical representation of walkable 
pedestrian paths. The node-edge structure models this map as 
a graph, where nodes represent intersections or discretized 
path points and edges represent walkable segments with 
associated distance and directional information. PDR 
information refers to pedestrian movement data, including 
distance and turning state, which are used as constraints in the 
map-matching process. 

A. HAR-based Classification Model 

Fig. 1 shows the framework of the HAR-based deep 
learning model. This model is used to identify walking 
segments from the inertial sensor data of a smartwatch. First, 
3-axis accelerometer data are collected for various activities, 
including walking and non-walking. The walking types are 
defined as Swing (walking with arms swinging), Handheld 
(walking while using a smartphone), and Pocket (walking 
with hands in pockets). Non-walking data are obtained by 
maintaining a static state for each walking type. 

The collected inertial sensor data undergo a series of 
preprocessing procedures prior to model training. First, a low-
pass filter is applied to the raw accelerometer signals to reduce 
noise caused by continuous and irregular wrist movements. 
This filtering process removes unexpected outliers and 
smooths the signal, improving the accuracy of the learning 
model. Next, a sliding window technique with overlapping 
windows is used to segment the time-series data, which  

Fig. 2. PDR information generation process using smartwatch IMU data. 

increases the flexibility of the training samples [13]. From 
each segmented window, representative statistical features are 
extracted to characterize motion patterns. Considering the 
variability and asymmetry of activity data, features such as 
mean, variance, standard deviation, and median can be 
calculated. Finally, min-max normalization is applied to scale 
all features into a range between 0 and 1, to reduce 
dependence on a specific scale in the learning model. 

The preprocessed data are used to train an FCL (Fully 
Connected Layer)-based deep learning classification model. 
The network consists of three hidden layers with 128, 64, and 
32 nodes, respectively, and uses the ReLU activation function. 
Batch normalization is applied to improve training stability 
and convergence. The output layer consists of six nodes 
corresponding to three walking activities and three non-
walking activities. The model is trained using the Adam 
optimization algorithm [14]. The dataset is divided into 
training and validation sets at a ratio of 9:1, with early 
stopping applied based on validation performance. After 
training, the model outputs an activity class for each input 
window, and only the segments identified as walking are 
passed to the subsequent PDR information generation process. 

B. PDR Information Generation 

Once walking segments are identified through the HAR-
based classification model, PDR information is generated 
using the IMU data corresponding to those segments. Fig. 2 
shows the overall process of generating PDR information 
from the inertial sensors embedded in the smartwatch. The 
PDR process consists of step detection, stride estimation, and 
turn event detection. In the step detection stage, the 
acceleration power is calculated to convert the 3-axis 
accelerometer signals into a single magnitude value, as 
follows: 

 2 2 2

, , , ,P t x t y t z tAcc Acc Acc Acc G= + + −      (1) 

where Accp,t is the acceleration power, Acci,t is the acceleration 
output in the i -axis acquired at time t, and G is gravity, which 

is equal to 9.81 m/s2. A Butterworth low-pass filter with a 
cutoff frequency of 2 Hz is applied to transform the 
acceleration power into a sinusoidal form. The filtered power 
signal is then used to count the pedestrian's steps through peak 
detection. 

Stride length represents the distance traveled per step. To 
estimate stride length, a parameter-based approach is used, 
which is related to the correlation between walking speed and 
step frequency, as follows [15]: 
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where Fk and Vk are the step frequency and variance of 
acceleration power at the k-th step, respectively, and α, β, γ 
are model parameters. The model parameters can be estimated 

 

 



Fig. 3. Flowchart of the proposed PDR-based map matching algorithm. 

using the least squares method based on pre-experimental data. 

Due to various walking patterns and irregular wrist 
movements, it is difficult to accurately estimate heading. 
Therefore, this study utilizes a 3-axis gyroscope to determine 
the pedestrian’s turning state. To do this, gyroscope signal 
power is calculated using Eq. (1), excluding the gravity 
component. The calculated power signal is then applied to the 
modified Z-score technique, as follows: 

 
,

0.6745
P t

t

Gyro Median
Z

MAD

−
= ⋅      (3) 

where gyroP,t is the gyroscope signal power at time t, and 
Median and MAD are the median and median absolute 
deviation, respectively. A score is extracted for each step, and 
a threshold is applied to determine turn events. A positive 
value exceeding the threshold indicates a right turn, whereas a 
negative value exceeding the threshold indicates a left turn. 
This turn event detection technique is applicable to all walking 
patterns. Finally, PDR information is generated by combining 
the turning state according to the movement distance. 

C. Map Matching 

In the map matching stage, the PDR information is 
combined with a pedestrian road digital map to estimate the 
movement trajectory of the smartwatch wearer. Fig. 3 shows 
the overall flow of the proposed map matching algorithm, 
which consists of four steps: pedestrian map construction, 
initial candidate point selection, candidate path removal, and 
final trajectory determination. 

First, pedestrian road network data are constructed using 
the QGIS tool. Pedestrian road layers are created on walkable 
paths, and node points are generated at intersections where 
turning can occur. Subsequently, vertex points are extracted at 
intervals of approximately 10 m between adjacent nodes to 
construct detailed numerical data along walkable paths. The 
constructed map is then converted into a bidirectional node-
edge structure. Each point is assigned a unique ID, 
FromNodeID, ToNodeID, angle, distance, and geographic 
coordinates. This node-edge map structure provides the 
geometric constraints used for comparison with the PDR 
information. 

Based on the edited map, a cost matrix is generated, 
containing movement distance and turning information 
between adjacent nodes. This matrix represents the distance 
and directional transitions required to move from one node to  

Fig. 4. Confusion matrix of the HAR-based classification model. 

another and is used to determine whether each candidate path 
is consistent with the movement distance and turn events of 
the PDR information. In the initial step, all points located 
within a certain radius of the GNSS-based initial position are 
selected as candidate starting points. These candidates 
represent all possible locations where the pedestrian may have 
actually started. 

The matching procedure is performed by comparing the 
PDR movement distance and turning state with the candidate 
paths on the map. If the distance or turning direction between 
two nodes does not match the PDR information, the path is 
immediately removed from the candidate set. This candidate 
path removal process is performed sequentially according to 
the PDR sequence, and the number of possible paths is 
gradually reduced as turns progress. Ultimately, the route that 
satisfies all PDR conditions is selected as the final trajectory 
of the smartwatch wearer. 

III. RESULTS 

To evaluate the performance of the proposed method, field 
experiments were conducted. The smartwatch used was a 
Galaxy Watch 5 Pro, and inertial data were acquired at a 
sampling rate of approximately 8 Hz. The experiments were 
conducted based on a predefined scenario in a field 
environment, and both the HAR classification accuracy and 
the PDR-based map matching performance were analyzed. 
The results validate the effectiveness of the proposed method. 

Fig. 5. True route defined for the experiment. 

 

 

 



Fig. 6. PDR information represented by movement distance and turning 
states. 

A. Classification Results 

We evaluated the performance of a HAR classification 
model designed to identify walking signals from the inertial 
sensors of the smartwatch. The entire dataset was divided into 
training and validation sets to prevent overfitting. During the 
training process, early stopping was applied when no 
improvement in the validation accuracy was observed for a set 
period. The test data, collected individually over 
approximately 7 minutes for each activity type, were used to 
verify the generalization performance of the model. Fig. 4 
shows the confusion matrix representing the classification 
results for six activity classes. All walking classes (Swing, 
Handheld, Pocket) were accurately classified, and the non-
walking classes Standing (stop) and Handheld (stop) were also 
identified without misclassifications. While a small number of 
misclassifications occurred in the Pocket (stop) class, the 
overall classification accuracy remained above 99%. Overall, 
the experimental results confirm that the HAR classification 
model can distinguish between walking and non-walking 
activities with high accuracy. This capability plays a crucial 
role in the subsequent PDR information generation process by 
effectively filtering out non-walking signals. 

B. PDR-based Map Matching Results 

To validate the performance of the PDR-based map 
matching method, experiments were conducted based on a 
predefined scenario. The experiments were conducted in an 
urban area in Jung-gu, Daegu, South Korea. Fig. 5 shows the 
true walking trajectory of the participant, which includes 
multiple turns. At each stop point, marked by yellow circles, 
the participant remained stationary for approximately 2 
minutes while including slight micro-movements. This 
complex walking pattern provides crucial testing conditions 
for evaluating the robustness of PDR-based turn detection and 

TABLE I.  GENERATED PDR RESULTS 

Distance (m) Turning state 

156.9581 Left 

89.5077 Right 

43.8353 Left 

91.5947 Left 

45.4585 Right 

56.6730 Right 

32.2713 Left 

130.0506 Left 

39.9334 Left 

70.4294 Right 

77.8786 Right 

68.7104 Left 

129.8740 Left 

7.0823 Straight 

Fig. 7. Constructed pedestrian road digital map with nodes and vertices. 

map matching. 

Fig. 6 shows the PDR information generated from the 
smartwatch IMU data, expressed in terms of movement 
distance and turning state. Each spike represents a left or right 
turn occurring during walking, while segments without peaks 
correspond to "Straight." The results confirm that the PDR 
algorithm successfully detects all turning events that occurred 
along the true route. The detected turning states function as 
key criteria for eliminating candidate paths during the map 
matching process, and the distance information is used to 
compare the true distance between adjacent nodes. Table I 
sequentially organizes the PDR information generated in Fig. 
6 and is used as quantitative input data for the map matching 
procedure. 

The pedestrian road map used in the experiment was 
constructed using the QGIS tool, as shown in Fig. 7. Vertex 
points were extracted at approximately 10 m intervals along 
the centerline of walkable paths, while node points, marked by 
orange circles, were placed at locations where turning could 
occur. This structure was then converted into a bidirectional 
node-edge graph, enabling direct comparison with the PDR 
information. The combination of vertices and nodes provides 
a map representation capable of modeling both directionality 
and connectivity, making it suitable for the candidate path 
elimination process based on turn events and distance 
constraints. 

Fig. 8 shows the result of applying the map matching 
algorithm using the generated PDR information. In the initial  

Fig. 8. Final route estimated through PDR-based map matching. 

 

 

 



stage, a certain radius, shown as a blue circle, is set around the 
GNSS-based initial position, and all points within this radius 
are selected as candidate starting points. Subsequently, the 
movement distances and turning events listed in Table I were 
applied sequentially to remove inconsistent candidate paths. 
This iterative candidate path elimination process becomes 
even more decisive when a turn event occurs. In fact, because 
the experimental route contained multiple turns, the number 
of feasible candidate paths decreased rapidly as matching 
progressed. Once matching is complete, only a single route 
satisfying all PDR conditions remains. The final route 
estimated is shown as a purple trajectory in Fig. 8, and it can 
be confirmed that the route matches the true route in Fig. 5. 

IV. CONCLUSION 

In this study, we proposed a PDR-based map matching 
method that estimates the movement route of a pedestrian 
using the inertial sensors of a smartwatch. First, we distinguish 
between walking and non-walking activities using a HAR 
classification model, filtering out non-walking signals that 
could affect PDR performance. The classification results 
achieved an accuracy of over 99%. In the identified walking 
segments, PDR data including movement distance and turning 
information were generated through step detection, stride 
estimation, and turn event detection. In addition, a pedestrian 
road digital map was constructed using a combined structure 
of nodes and vertices to enable comparison with PDR 
information. The proposed map matching algorithm 
successfully estimated the walking trajectory in the urban field 
tests, showing full consistency with the predefined true route. 
Even in scenarios involving multiple turns, turn events were 
accurately reflected, and the candidate paths were consistently 
reduced until a single correct route remained. 

In the future, we plan to conduct additional experiments 
across various walking environments to further enhance the 
generalization capability of the algorithm. We also intend to 
expand the coverage of the pedestrian road map and involve a 
larger number of participants to strengthen the robustness and 
applicability of the proposed method. 
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