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Abstract— Pre-trained language models (PLMs) achieve high
accuracy on standard benchmarks for sentiment analysis.
However, this performance can hide systematic weaknesses in
determining the sentiment of negated sentences, for example when
the phrase “not good” is still classified as positive.

In this study, we use sentiment classification of English movie
reviews in the Stanford Sentiment Treebank 2 (SST-2) as a case
study to specifically examine and improve how BERT handles
negated sentences.

We perform a brief additional fine-tuning of the existing BERT
model on a small, automatically constructed set of lexicon-based
counterfactual examples that target simple lexical negation.
Experimental results on carefully paired original-negated
sentences show that this procedure substantially reduces
prediction errors on negated inputs while leaving overall
performance on SST-2 almost unchanged.
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L INTRODUCTION

Pre-trained language models (PLMs) such as BERT have
achieved strong results on natural language understanding
benchmarks. For example, they perform very well on the
General Language Understanding Evaluation (GLUE)
benchmark and on sentiment classification in the Stanford
Sentiment Treebank 2 (SST-2). Building on this progress, many
large language models (LLMs) have recently been released.
However, evaluations on out-of-distribution (OOD) tasks reveal
a different picture. In these tests, high accuracy on standard test
sets does not guarantee reliable behavior on out-of-distribution
examples. Among these phenomena, negation is one of the most
frequent and impactful factors [1][2]. In sentiment analysis, for
example, the sentences “This movie is good.” and “This movie
is not good.” differ by only one word, but they express opposite
sentiment polarity. If a model fails to take the word “not” into
account, it will make incorrect decisions in applications such as
review filtering.

A series of studies [3] have shown that BERT models often
rely on surface keywords, and as a result, they may fail to
understand the full meaning of a sentence when they encounter
negation relations. Ettinger et al. [4] report that BERT is notably
insensitive to the contextual effect of negation cues. Ribeiro et
al. [5] propose a testing framework that makes minimal edits to
original instances in tasks such as sentiment analysis. Their
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results show that error rates on negation-specific test templates
are much higher than their performance on standard validation
sets would suggest.

To address such issues, one important approach is to
construct counterfactually augmented data (CAD) [6]. In a
standard setup, human annotators make minimal edits to an
original sentence so that the true label flips, while keeping the
rest of the sentence unchanged. Kaushik et al. show that such
human-written counterfactuals can improve robustness on
intentionally constructed test sets that reverse the original
semantics [6]. In addition, recent studies [7] have proposed
methods that specifically target negation, such as unsupervised
negation modules based on more sophisticated mathematical
modeling, which aim to improve overall sentiment-analysis
performance. However, these methods usually require additional
model components and relatively heavy feature engineering [8].

In this study, we use the SST-2 English movie-review
sentiment classification dataset [9] as our experimental setting.
We examine how BERT behaves when encountering sentiment
expressions that include negation cues such as “not.” Our
analysis centers on the following two questions.

1. First, if we select sentences from SST-2 that are short,
structurally simple, and exhibit clear sentiment
polarity, and then construct a negated counterpart for
each sentence, does a fine-tuned BERT model
correctly adjust its predicted sentiment under
negation?

il. Second, if it does not, can we more effectively improve
this behavior by adding only a small set of negated
examples generated through simple text-replacement
rules, without greatly costing additional training time
or altering the model architecture?

To answer these questions, we evaluate BERT on carefully
constructed pairs of original and negated sentences. In addition
to reporting accuracy on original and negated inputs separately
(OrigAcc and NegAcc), we use two pairwise consistency
metrics “BothCorrect” and “PredOpposite” to quantify whether
the model (i) predicts both members of a pair correctly and (ii)
assigns opposite sentiment polarity to each pair.

Overall, this study makes three contributions. First, we
design a simple lexicon-based procedure for selecting naturally
occurring SST-2 sentences whose overall polarity is largely



determined by a single sentiment adjective and for automatically
constructing their negated counterparts, which exposes a
substantial gap between a standard BERT model’s performance
on original and negated inputs. Second, we apply a pairwise
evaluation protocol with OrigAcc, NegAcc, BothCorrect, and
PredOpposite to explicitly measure not only accuracy but also
polarity-reversal consistency across original-negated sentence
pairs. Third, we show that adding only about 3% automatically
generated negated examples and fine-tuning for one additional
epoch is sufficient to almost completely close this gap in
negation robustness, while leaving overall validation accuracy
on SST-2 largely unchanged.

II. METHODOLOGY

1) Baseline Model
We use the BERT-base-uncased checkpoint from the
HuggingFace Transformers library as our baseline model [10].
The architecture is as follows.

B Encoder: A 12-layer Transformer with hidden size
768, identical to the standard BERT-base
configuration.

B The standard cross-entropy loss using sentence-level
labels.

We use the Stanford Sentiment Treebank 2 (SST-2)
dataset as our training data. SST-2 is part of the General
Language Understanding Evaluation (GLUE) [11]
benchmark. We fine-tune BERT for 2 epochs on the SST-2
training set with the following hyperparameters:

B Batch size: 16.
B Maximum sequence length: 128 tokens.

B Optimizer: AdamW with learning rate 2x10”° and
weight decay 0.01.

B [ earning-rate schedule: linear decay with the first 10%
of training steps used for warmup.

B After training, the baseline model reaches about
92.89% accuracy on the development set. We call this
model BERT-baseline.

2) Selection Rules
In order to analyze the effect of negation on sentiment, we
generate negated sentences on a subset of SST-2. We select
simple sentences from the training set that include only one
sentiment word, which determines the overall sentiment.
Specifically, we select only sentences that satisfy the following
conditions.
a) Length constraint:
We tokenize each sentence into English words and retain
only those with no more than 12 tokens. This is because
short sentences are easier to negate.
b) Simple surface structure:
We discard sentences that contain words such as “but”,
“although”, “however”, or “though”. This is to avoid
errors caused by complex discourse or contrastive cues.
¢) Sentiment-word constraint:
We manually construct a sentiment lexicon.
®  The positive lexicon (POS) is:

{good, great, excellent, amazing,
awesome, wonderful, fantastic, nice,
enjoyable, love, loved, lovely}
®  The negative lexicon (NEG) is:
{bad, terrible, awful, horrible, disappointing,
boring, worse, worst, hate, hated}
For each sentence, we check whether it contains words
from POS or NEG. A sentence is selected only if it
satisfies:
® if the sentence label is positive (y = 1), it contains
exactly one POS word and no NEG word.
® if the sentence label is negative (y = 0), it contains
exactly one NEG word and no POS word.
As a result, the selected sentences only take forms such
as “It was good”, “a wonderful film”, or “a bad movie”.
d) No existing negation
Because we will later insert “not” before the sentiment
word, we exclude sentences that already contain “no?” or
“isn't”, such as “not not good” to avoid double negation.

Following these rules, we extract a set of “simple sentences”
from the SST-2 training set. We split them into simple positive
and simple negative subsets according to the original labels, and
denote their index sets by L;o5 and Lyeg, respectively. These
explicit selection rules are designed to yield a controlled subset
of sentences in which the overall sentiment is largely anchored
by a single lexical item, making them particularly suitable for
isolating the effect of lexical negation.

3) Construction Rules

After selecting the set of simple sentiment sentences, we
generate a negated version corresponding to each sentence.
These negated sentences are later used for testing and fine-
tuning the model. For each selected sentence, we first identify
the unique sentiment word from either the POS or the NEG
lexicon and then locate it in the sentence. We then construct its
negated version x " using the following rules:

i. Replace w with “nof”+ w

(for example, “good” — “not good”, “enjoyable” —
“not enjoyable”)

il. Flip the label so that positive examples become negative
and negative examples become positive.

This rule has certain limitations. For instance, “not good” is
often closer to neutral than to strongly negative in real usage.
However, under the binary sentiment classification setup of
SST-2, this serves as a useful heuristic. Moreover, our selection
step has removed long sentences and cases with multiple
sentiment words. This increases the probability that the single
sentiment word determines the overall sentence polarity. Taken
together, the selection and construction rules define a highly
controlled instantiation of CAD for lexical negation on
naturally occurring SST-2 sentences.

4) Negation Test Set and Consistency Metrics
For evaluation, we generate a dedicated negation test set. To
construct this set, we sample from the simple sentiment
sentences obtained in the previous step as follows:



® 200 positive sentences and their 200 negated versions
(rewritten from positive to negative)

® 200 negative sentences and their 200 negated versions
(rewritten from negative to positive)
In total, we obtain N = 400 sentence pairs
{(x;, vi x/, ¥}, where x; is the original sentence and x| is
the negated sentence, with labels y; and y;, respectively.

When building the test set, we store the indices of all 400
sampled sentences in the original training data. In the later
augmentation-based training, we exclude these indices to
ensure that none of the test-set sentences are used as training
examples. On this test set, we adopt a simple pairwise
evaluation protocol with the following metrics:

a)  Original accuracy (OrigAcc):

The accuracy when the model is evaluated on all
original sentences in the test set.

b) Negated accuracy (NegAcc):

The accuracy when the model is evaluated only on the
negated sentences.

¢) Both-correct rate (BothCorrect):

A sentence pair (x;, x;) is counted as correct only if the
model predicts both the original sentence x; and its
negated counterpart x; correctly.

d) Opposite-prediction rate (PredOpposite):

The proportion of sentence pairs (x;, x;) for which the
model’s predicted labels for x; and x; are different.
Even if both predictions are wrong with respect to
the true labels, we still count the pair as successful
under this metric as long as the two predicted labels
differ. In practice, we focus more on BothCorrect,
because opposite predictions alone do not guarantee that
the predictions are correct. This test set, together with
the pairwise protocol, provides a convenient diagnostic
probe for negation robustness that can be reused with
other sentiment models trained on SST-2.

5) Constructing Negation-Augmented Training Examples

In the previous section, we constructed a negation test set
used solely for evaluation. Here, we apply the same negation
construction to the training dataset to obtain additional
training examples.

We start from the previously selected simple positive and
negative sentences. Formally, let L5 and £, denote their
indices in the training data. We remove all indices that have
been used for the negation test set and obtain the remaining
index sets [Ipos and f,neg.

From these sets, we select sentences for augmentation as
follows:
® from ﬁpos , we select at most 1000 simple positive

sentences;
® from ﬁneg , we select at most 1000 simple negative
sentences.

For these selected sentences, we first apply exactly the
same negation rule as before by inserting “nos” before the
sentiment word and flipping the label. We then discard the
original sentences and use only the negated sentences as
training examples.

In total, we generate 1,765 negation-augmented training
instances, which corresponds to roughly 3% of the original
training set (67,349 instances). We denote this augmented
dataset by Dyeg_aug- We then combine it with the original
training set Dyp4ipn to obtain the augmented training data

D:rl;?n = Dirain U Dneg—aug
After augmentation, the training set size is about 69,114
instances.

6) Incremental Fine-tuning Based on Baseline Weights
We do not retrain BERT from scratch. Instead, we adopt a

two-stage procedure.

a) Training the baseline model (BERT-baseline)

We train BERT for 2 epochs on the original training
set Dirain » following the same training setup as in the
baseline model.

b) Fine-tuning with augmented data

We fine-tune the baseline model for one additional
epoch on the augmented training set D;‘;?n . We then
train for one additional epoch, while keeping the same
optimizer and hyperparameters as in the baseline
stage—AdamW with a learning rate of 2x10-, weight
decay 0.01, and a linear warmup-and-decay learning-
rate schedule. This second stage requires only about
4320 additional training steps, and its training time is
comparable to that of a single baseline epoch.

After this fine-tuning stage on top of the baseline model, we
refer to the resulting model as BERT-aug-neg. In the following
experiments, we compare BERT-baseline and BERT-aug-neg
on both the SST-2 development set and our negation test set.

III. EXPERIMENTAL RESULTS

Table I shows the validation accuracies of the baseline model
(BERT-baseline) and the negation-augmented model (BERT-
aug-neg) on the SST-2 development set.

TABLE L ACCURACY ON THE FULL DEVELOPMENT SET
Model Training data Training Accuracy
epochs (val_acc)
. Original training set
BERT-baseline (67,349) 2 epochs 0.9289
baseline
Augmented training + 1 epoch
BERT-aug-neg set (69,114) with 0.9174
augmentation

When trained on the original SST-2 training set, BERT-
baseline achieves an accuracy of 92.89% on the development
set, which falls within the typical range of 91-93% reported for
BERT on SST-2 in public implementations.



After adding about 1,765 negation-augmented training
examples and fine-tuning the baseline model for one additional
epoch, the validation accuracy of the augmented model BERT-
aug-neg slightly decreases to 91.74%. This suggests that while
our negation-based augmentation introduces some perturbation,
it does not result in a noticeable drop in overall performance.

We previously constructed a negation test set containing 400
pairs of original sentences and their corresponding negated
versions. Table Il reports the detailed results of BERT-baseline
and BERT-aug-neg.

TABLE II. PERFORMANCE COMPARISON ON THE NEGATED-
SENTENCE TEST SET
Model OrigAcc | NegAcc BothCorrect PredOpposite
BER,T_ 0.9975 0.7600 0.7575 0.7575
baseline
BERT- 0.9975 0.9975 0.9950 0.9950
aug-neg

From the table we observe:

Performance on original sentences(OrigAcc):

€ Both models achieve an accuracy of 0.9975 on
original sentences. This indicates that negation-
focused augmentation does not degrade the model’s
ability on the original inputs.

Performance on negated sentences(NegAcc):

€ On negated sentences, the baseline model achieves
an accuracy of 0.7600.

€@ The augmented model improves negated-sentence
accuracy to 0.9975. This shows that BERT-baseline
exhibits substantial bias when handling structures
such as “not good”, “not enjoyable”, and “not love”.
After fine-tuning with our generated negated samples,
the model corrects almost all of these errors, with 399
out of 400 negated sentences classified correctly.

Original-negated pairwise correctness(BothCorrect):

€  The baseline model’s BothCorrect is 0.7575.

€  The augmented model’s BothCorrect rises to 0.9950.
This demonstrates that our augmentation improves
the model’s understanding of polarity reversal.

Proportion of opposite predictions(PredOpposite):

€  The baseline model’s PredOpposite is 0.7575.

€ The augmented model’s PredOpposite reaches
0.9950, which is numerically identical to its
BothCorrect score. The augmented model not only
produces opposite predictions for each pair, but also
yields predictions that are almost always correct.

Overall, BERT-aug-neg substantially enhances robustness
to negation. This requires only one additional epoch of fine-
tuning on top of the baseline and uses approximately 3%
augmented samples.

IV. ANALYSIS OF RESULTS

To further understand how the augmented model’s behavior
changes under negation, we analyze the classification results and
focus on three types of errors:

a) CASE _FIXED: for a given negated sentence, the
prediction is incorrect for the baseline model but correct
for the augmented model.

b) CASE_REGRESSED: for a given negated sentence,
the prediction is correct for the baseline model but
incorrect for the augmented model.

c) CASE_BOTH_WRONG: for a given negated sentence,
the prediction is incorrect for both models.

On the negation test set comprising 400 negated sentences,
the baseline model attains 304 correct predictions whereas the
augmented model attains 399; the counts for CASE_FIXED,
CASE_REGRESSED, and CASE_BOTH_WRONG are 95, 0,
and 1, respectively, indicating that the augmentation training
stage introduces virtually no new errors on the negated sentences.
Below are representative examples (true labels in parentheses: 1
= positive, 0 = negative).

i Original sentence:
“if good-hearted ” (true = 1)
Negated sentence:
“if not good-hearted ” (true = 0)
Baseline prediction results:
original sentence = 1; negated sentence = 1
Augmented model prediction results:

original sentence = 1; negated sentence = 0

il. Original sentence:
“occasionally enjoyable” (true = 1)
Negated sentence:
“occasionally not enjoyable” (true = 0)
Baseline prediction results:
original sentence = 1; negated sentence = 1
Augmented model prediction results:

original sentence = 1; negated sentence = 0.

The following example belongs to CASE_BOTH_WRONG,
where both models predict the negated sentence incorrectly:

ii. Original sentence:

“the people who loved the 1989 paradiso will prefer this
new version” (true = 1)

Negated sentence:



“the people who not loved the 1989 paradiso will prefer
this new version” (true = 0)

Baseline prediction results:
original sentence = 1; negated sentence = 1
Augmented model prediction results:
original sentence = 1; negated sentence = 1
This case reveals two types of difficulty:

(1) Grammatical aspect: the rule-based rewrite “the people
who not loved ...” is unnatural in English; more idiomatic
forms would be “who did not love” or “who do not love”, and
this grammatical awkwardness may affect the model’s
prediction.

(2) Semantic aspect: even if we use “did not love”, the
sentence still emphasizes “will prefer this new version” so the
overall sentiment is still likely to be interpreted as positive.
Therefore, simply flipping the label when generating such
counterfactual examples is not always appropriate.

This example indicates that counterfactual data augmentation
(CAD), although simple and time-efficient, can introduce
semantic noise, and in such cases the label should not be flipped
in a purely mechanical way. More generally, it illustrates that
even carefully designed rule-based CAD remains vulnerable to
cases where the overall discourse sentiment is not fully
controlled by the locally negated word.

V. CONCLUSION AND FUTURE WORK

In this work, we investigated the robustness of a BERT
model to negation in the SST-2 sentiment classification task.
Our experiments show that, although a standard fine-tuned
BERT model achieves an accuracy of 0.9975 on the original
sentences, its accuracy on the corresponding negated sentences
is only 0.7600. To address this issue, we proposed a data
augmentation method that is entirely based on simple text-
replacement rules and requires no additional human annotation.
After one epoch of fine-tuning on top of the baseline model with
the augmented data, the proportion of sentence pairs for which
both the original and the negated sentence are predicted
correctly increases from 0.7575 to 0.9950. These results
indicate that the robustness of the model to negation can be
substantially improved without modifying the model
architecture. This suggests that the observed weakness is not
due to an inherent inability of BERT to represent negation, but
rather to a lack of appropriate contrastive supervision for simple
lexical negation patterns during fine-tuning.

Although our method significantly improves robustness to
negation, it still has limitations. Even with strict filtering,

inserting “not” before a single sentiment word can produce
grammatically awkward sentences. Therefore, it remains an
open question whether this approach is equally effective for
more complex forms of negation, which requires further
experimentation and discussion; extending our framework to
such cases is part of our planned future work. A natural next
step is to combine our lightweight, task-specific augmentation
strategy with more sophisticated syntactic or semantic negation
handling methods, in order to cover a broader range of negation
phenomena while explicitly controlling label noise.
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