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Abstract— Pre-trained language models (PLMs) achieve high 

accuracy on standard benchmarks for sentiment analysis. 

However, this performance can hide systematic weaknesses in 

determining the sentiment of negated sentences, for example when 

the phrase “not good” is still classified as positive.  

In this study, we use sentiment classification of English movie 

reviews in the Stanford Sentiment Treebank 2 (SST-2) as a case 

study to specifically examine and improve how BERT handles 

negated sentences. 

We perform a brief additional fine-tuning of the existing BERT 

model on a small, automatically constructed set of lexicon-based 

counterfactual examples that target simple lexical negation. 

Experimental results on carefully paired original–negated 

sentences show that this procedure substantially reduces 

prediction errors on negated inputs while leaving overall 

performance on SST-2 almost unchanged. 
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I.  INTRODUCTION 

Pre-trained language models (PLMs) such as BERT have 
achieved strong results on natural language understanding 
benchmarks. For example, they perform very well on the 
General Language Understanding Evaluation (GLUE) 
benchmark and on sentiment classification in the Stanford 
Sentiment Treebank 2 (SST-2). Building on this progress, many 
large language models (LLMs) have recently been released. 
However, evaluations on out-of-distribution (OOD) tasks reveal 
a different picture. In these tests, high accuracy on standard test 
sets does not guarantee reliable behavior on out-of-distribution 
examples. Among these phenomena, negation is one of the most 
frequent and impactful factors [1][2]. In sentiment analysis, for 
example, the sentences “This movie is good.” and “This movie 
is not good.” differ by only one word, but they express opposite 
sentiment polarity. If a model fails to take the word “not” into 
account, it will make incorrect decisions in applications such as 
review filtering. 

A series of studies [3] have shown that BERT models often 
rely on surface keywords, and as a result, they may fail to 
understand the full meaning of a sentence when they encounter 
negation relations. Ettinger et al. [4] report that BERT is notably 
insensitive to the contextual effect of negation cues. Ribeiro et 
al. [5] propose a testing framework that makes minimal edits to 
original instances in tasks such as sentiment analysis. Their 

results show that error rates on negation-specific test templates 
are much higher than their performance on standard validation 
sets would suggest. 

To address such issues, one important approach is to 
construct counterfactually augmented data (CAD) [6]. In a 
standard setup, human annotators make minimal edits to an 
original sentence so that the true label flips, while keeping the 
rest of the sentence unchanged. Kaushik et al. show that such 
human-written counterfactuals can improve robustness on 
intentionally constructed test sets that reverse the original 
semantics [6]. In addition, recent studies [7] have proposed 
methods that specifically target negation, such as unsupervised 
negation modules based on more sophisticated mathematical 
modeling, which aim to improve overall sentiment-analysis 
performance. However, these methods usually require additional 
model components and relatively heavy feature engineering [8]. 

In this study, we use the SST-2 English movie-review 
sentiment classification dataset [9] as our experimental setting. 
We examine how BERT behaves when encountering sentiment 
expressions that include negation cues such as “not.” Our 
analysis centers on the following two questions.  

i. First, if we select sentences from SST-2 that are short, 

structurally simple, and exhibit clear sentiment 

polarity, and then construct a negated counterpart for 

each sentence, does a fine-tuned BERT model 

correctly adjust its predicted sentiment under 

negation?  
ii. Second, if it does not, can we more effectively improve 

this behavior by adding only a small set of negated 
examples generated through simple text-replacement 
rules, without greatly costing additional training time 
or altering the model architecture? 

To answer these questions, we evaluate BERT on carefully 
constructed pairs of original and negated sentences. In addition 
to reporting accuracy on original and negated inputs separately 
(OrigAcc and NegAcc), we use two pairwise consistency 
metrics “BothCorrect” and “PredOpposite” to quantify whether 
the model (i) predicts both members of a pair correctly and (ii) 
assigns opposite sentiment polarity to each pair. 

Overall, this study makes three contributions. First, we 
design a simple lexicon-based procedure for selecting naturally 
occurring SST-2 sentences whose overall polarity is largely 



determined by a single sentiment adjective and for automatically 
constructing their negated counterparts, which exposes a 
substantial gap between a standard BERT model’s performance 
on original and negated inputs. Second, we apply a pairwise 
evaluation protocol with OrigAcc, NegAcc, BothCorrect, and 
PredOpposite to explicitly measure not only accuracy but also 
polarity-reversal consistency across original–negated sentence 
pairs. Third, we show that adding only about 3% automatically 
generated negated examples and fine-tuning for one additional 
epoch is sufficient to almost completely close this gap in 
negation robustness, while leaving overall validation accuracy 
on SST-2 largely unchanged. 

II. METHODOLOGY 

1) Baseline Model 
We use the BERT-base-uncased checkpoint from the 

HuggingFace Transformers library as our baseline model [10]. 
The architecture is as follows. 

 Encoder: A 12-layer Transformer with hidden size 

768, identical to the standard BERT-base 

configuration. 
 The standard cross-entropy loss using sentence-level 

labels. 

We use the Stanford Sentiment Treebank 2 (SST-2) 
dataset as our training data. SST-2 is part of the General 
Language Understanding Evaluation (GLUE) [11] 
benchmark. We fine-tune BERT for 2 epochs on the SST-2 
training set with the following hyperparameters: 

 Batch size: 16. 

 Maximum sequence length: 128 tokens. 

 Optimizer: AdamW with learning rate 2×10-5 and 
weight decay 0.01. 

 Learning-rate schedule: linear decay with the first 10% 

of training steps used for warmup. 
 After training, the baseline model reaches about 

92.89% accuracy on the development set. We call this 
model BERT-baseline. 

2) Selection Rules 

In order to analyze the effect of negation on sentiment, we 

generate negated sentences on a subset of SST-2. We select 

simple sentences from the training set that include only one 

sentiment word, which determines the overall sentiment. 

Specifically, we select only sentences that satisfy the following 

conditions. 

a) Length constraint: 

We tokenize each sentence into English words and retain 

only those with no more than 12 tokens. This is because 

short sentences are easier to negate. 

b) Simple surface structure: 

We discard sentences that contain words such as “but”, 

“although”, “however”, or “though”. This is to avoid 

errors caused by complex discourse or contrastive cues. 

c) Sentiment-word constraint: 

We manually construct a sentiment lexicon.  

 The positive lexicon (POS) is: 

{good, great, excellent, amazing,  

awesome, wonderful, fantastic, nice,  

enjoyable, love, loved, lovely} 

 The negative lexicon (NEG) is: 

{bad, terrible, awful, horrible, disappointing, 

 boring, worse, worst, hate, hated} 

For each sentence, we check whether it contains words 

from POS or NEG. A sentence is selected only if it 

satisfies: 

 if the sentence label is positive (y = 1), it contains 

exactly one POS word and no NEG word. 
 if the sentence label is negative (y = 0), it contains 

exactly one NEG word and no POS word. 
As a result, the selected sentences only take forms such 

as “It was good”, “a wonderful film”, or “a bad movie”. 

d) No existing negation 

Because we will later insert “not” before the sentiment 

word, we exclude sentences that already contain “not” or 

“isn't”, such as “not not good” to avoid double negation. 

 

Following these rules, we extract a set of “simple sentences” 

from the SST-2 training set. We split them into simple positive 

and simple negative subsets according to the original labels, and 

denote their index sets by ℒ��� and ℒ���, respectively. These 

explicit selection rules are designed to yield a controlled subset 

of sentences in which the overall sentiment is largely anchored 

by a single lexical item, making them particularly suitable for 

isolating the effect of lexical negation. 

 

3) Construction Rules 
After selecting the set of simple sentiment sentences, we 

generate a negated version corresponding to each sentence. 
These negated sentences are later used for testing and fine-
tuning the model. For each selected sentence, we first identify 
the unique sentiment word from either the POS or the NEG 
lexicon and then locate it in the sentence. We then construct its 
negated version x’ using the following rules: 

i. Replace w with “not”+ w  

(for example, “good” → “not good”, “enjoyable” → 
“not enjoyable”) 

ii. Flip the label so that positive examples become negative 
and negative examples become positive. 

This rule has certain limitations. For instance, “not good” is 
often closer to neutral than to strongly negative in real usage. 
However, under the binary sentiment classification setup of 
SST-2, this serves as a useful heuristic. Moreover, our selection 
step has removed long sentences and cases with multiple 
sentiment words. This increases the probability that the single 
sentiment word determines the overall sentence polarity. Taken 
together, the selection and construction rules define a highly 
controlled instantiation of CAD for lexical negation on 
naturally occurring SST-2 sentences. 

4) Negation Test Set and Consistency Metrics 
For evaluation, we generate a dedicated negation test set. To 

construct this set, we sample from the simple sentiment 
sentences obtained in the previous step as follows: 



 200 positive sentences and their 200 negated versions 
(rewritten from positive to negative) 

 200 negative sentences and their 200 negated versions 

(rewritten from negative to positive) 
In total, we obtain N = 400 sentence pairs 

�	
� , 
�  
�
�, 
�

������
� , where 
� is the original sentence and 
�

� is 
the negated sentence, with labels 
� and 
�

�, respectively.  

When building the test set, we store the indices of all 400 
sampled sentences in the original training data. In the later 
augmentation-based training, we exclude these indices to 
ensure that none of the test-set sentences are used as training 
examples. On this test set, we adopt a simple pairwise 
evaluation protocol with the following metrics: 

a) Original accuracy (OrigAcc): 

The accuracy when the model is evaluated on all 
original sentences in the test set. 

b) Negated accuracy (NegAcc): 

The accuracy when the model is evaluated only on the 
negated sentences. 

c) Both-correct rate (BothCorrect): 

A sentence pair 	
� , 
�
�� is counted as correct only if the 

model predicts both the original sentence 
�  and its 

negated counterpart 
�
� correctly. 

d) Opposite-prediction rate (PredOpposite): 

The proportion of sentence pairs 	
� , 
�
�� for which the 

model’s predicted labels for 
�  and 
�
�  are different. 

Even if both predictions are wrong with respect to 
the true labels, we still count the pair as successful 
under this metric as long as the two predicted labels 
differ. In practice, we focus more on BothCorrect, 
because opposite predictions alone do not guarantee that 
the predictions are correct. This test set, together with 
the pairwise protocol, provides a convenient diagnostic 
probe for negation robustness that can be reused with 
other sentiment models trained on SST-2. 

5) Constructing Negation-Augmented Training Examples 

In the previous section, we constructed a negation test set 

used solely for evaluation. Here, we apply the same negation 

construction to the training dataset to obtain additional 

training examples. 

We start from the previously selected simple positive and 

negative sentences.  Formally, let ℒ��� and ℒ��� denote their 

indices in the training data. We remove all indices that have 

been used for the negation test set and obtain the remaining 

index sets ℒ���� and ℒ����. 

From these sets, we select sentences for augmentation as 

follows: 

 from ℒ����  , we select at most 1000 simple positive 

sentences; 

 from ℒ����  , we select at most 1000 simple negative 

sentences. 

For these selected sentences, we first apply exactly the 

same negation rule as before by inserting “not” before the 

sentiment word and flipping the label. We then discard the 

original sentences and use only the negated sentences as 

training examples.  

In total, we generate 1,765 negation-augmented training 

instances, which corresponds to roughly 3% of the original 

training set (67,349 instances). We denote this augmented 

dataset by ��������. We then combine it with the original 

training set ������ to obtain the augmented training data 

������

���
= ������ ∪ �������� 

After augmentation, the training set size is about 69,114 

instances. 

 

6) Incremental Fine-tuning Based on Baseline Weights 

We do not retrain BERT from scratch. Instead, we adopt a 

two-stage procedure. 

a) Training the baseline model (BERT-baseline) 

We train BERT for 2 epochs on the original training 

set ������ , following the same training setup as in the 

baseline model.  

b) Fine-tuning with augmented data 

We fine-tune the baseline model for one additional 

epoch on the augmented training set ������

���
 . We then 

train for one additional epoch, while keeping the same 

optimizer and hyperparameters as in the baseline 

stage—AdamW with a learning rate of 2×10-5, weight 

decay 0.01, and a linear warmup-and-decay learning-

rate schedule. This second stage requires only about 

4320 additional training steps, and its training time is 

comparable to that of a single baseline epoch.  

 

After this fine-tuning stage on top of the baseline model, we 

refer to the resulting model as BERT-aug-neg. In the following 

experiments, we compare BERT-baseline and BERT-aug-neg 

on both the SST-2 development set and our negation test set. 

 

III. EXPERIMENTAL RESULTS 

   Table I shows the validation accuracies of the baseline model 

(BERT-baseline) and the negation-augmented model (BERT-

aug-neg) on the SST-2 development set. 

TABLE I.  ACCURACY ON THE FULL DEVELOPMENT SET 

Model 
Training data 

Training 

epochs 

 Accuracy 

(val_acc) 

BERT-baseline 

Original training set 

(67,349) 
2 epochs 0.9289 

BERT-aug-neg 
Augmented training 

set (69,114) 

baseline  
+ 1 epoch 

with 

augmentation 

0.9174 

 

When trained on the original SST-2 training set, BERT-

baseline achieves an accuracy of 92.89% on the development 

set, which falls within the typical range of 91–93% reported for 

BERT on SST-2 in public implementations.  



After adding about 1,765 negation-augmented training 

examples and fine-tuning the baseline model for one additional 

epoch, the validation accuracy of the augmented model BERT-

aug-neg slightly decreases to 91.74%. This suggests that while 

our negation-based augmentation introduces some perturbation, 

it does not result in a noticeable drop in overall performance. 

We previously constructed a negation test set containing 400 

pairs of original sentences and their corresponding negated 

versions. Table II reports the detailed results of BERT-baseline 

and BERT-aug-neg. 

TABLE II.  PERFORMANCE COMPARISON ON THE NEGATED-
SENTENCE TEST SET 

Model OrigAcc NegAcc BothCorrect PredOpposite 

BERT-

baseline 
0.9975 0.7600 0.7575 0.7575 

BERT-
aug-neg 

0.9975 0.9975 0.9950 0.9950 

 

From the table we observe: 

Performance on original sentences(OrigAcc): 

 Both models achieve an accuracy of 0.9975 on 

original sentences. This indicates that negation-

focused augmentation does not degrade the model’s 

ability on the original inputs. 

Performance on negated sentences(NegAcc): 

 On negated sentences, the baseline model achieves 

an accuracy of 0.7600. 

 The augmented model improves negated-sentence 

accuracy to 0.9975. This shows that BERT-baseline 

exhibits substantial bias when handling structures 

such as “not good”, “not enjoyable”, and “not love”. 

After fine-tuning with our generated negated samples, 

the model corrects almost all of these errors, with 399 

out of 400 negated sentences classified correctly. 

Original–negated pairwise correctness(BothCorrect): 

 The baseline model’s BothCorrect is 0.7575. 

 The augmented model’s BothCorrect rises to 0.9950. 

This demonstrates that our augmentation improves 

the model’s understanding of polarity reversal. 

Proportion of opposite predictions(PredOpposite): 

 The baseline model’s PredOpposite is 0.7575. 

 The augmented model’s PredOpposite reaches 

0.9950, which is numerically identical to its 

BothCorrect score.  The augmented model not only 

produces opposite predictions for each pair, but also 

yields predictions that are almost always correct. 

 

Overall, BERT-aug-neg substantially enhances robustness 

to negation. This requires only one additional epoch of fine-

tuning on top of the baseline and uses approximately 3% 

augmented samples. 

 

IV. ANALYSIS OF RESULTS 

To further understand how the augmented model’s behavior 
changes under negation, we analyze the classification results and 
focus on three types of errors:  

a) CASE_FIXED: for a given negated sentence, the 
prediction is incorrect for the baseline model but correct 
for the augmented model. 

b) CASE_REGRESSED: for a given negated sentence, 
the prediction is correct for the baseline model but 
incorrect for the augmented model. 

c) CASE_BOTH_WRONG: for a given negated sentence, 
the prediction is incorrect for both models. 

On the negation test set comprising 400 negated sentences, 
the baseline model attains 304 correct predictions whereas the 
augmented model attains 399; the counts for CASE_FIXED, 
CASE_REGRESSED, and CASE_BOTH_WRONG are 95, 0, 
and 1, respectively, indicating that the augmentation training 
stage introduces virtually no new errors on the negated sentences. 
Below are representative examples (true labels in parentheses: 1 
= positive, 0 = negative). 

i. Original sentence:  

“ if good-hearted ” (true = 1) 

Negated sentence:  

“ if not good-hearted ” (true = 0) 

Baseline prediction results:  

original sentence = 1; negated sentence = 1 

Augmented model prediction results:  

original sentence = 1; negated sentence = 0 

 

ii. Original sentence:  

“occasionally enjoyable” (true = 1) 

Negated sentence:  

“occasionally not enjoyable” (true = 0) 

Baseline prediction results:  

original sentence = 1; negated sentence = 1 

Augmented model prediction results:  

original sentence = 1; negated sentence = 0. 

 

The following example belongs to CASE_BOTH_WRONG, 
where both models predict the negated sentence incorrectly: 

iii. Original sentence:  

“the people who loved the 1989 paradiso will prefer this 
new version” (true = 1) 

Negated sentence:  



“the people who not loved the 1989 paradiso will prefer 
this new version” (true = 0) 

Baseline prediction results:  

original sentence = 1; negated sentence = 1 

Augmented model prediction results:  

original sentence = 1; negated sentence = 1 

This case reveals two types of difficulty: 

(1)  Grammatical aspect: the rule-based rewrite “the people 
who not loved ...” is unnatural in English; more idiomatic 
forms would be “who did not love” or “who do not love”, and 
this grammatical awkwardness may affect the model’s 
prediction. 

(2)  Semantic aspect: even if we use “did not love”, the 
sentence still emphasizes “will prefer this new version” so the 
overall sentiment is still likely to be interpreted as positive. 
Therefore, simply flipping the label when generating such 
counterfactual examples is not always appropriate. 

This example indicates that counterfactual data augmentation 
(CAD), although simple and time-efficient, can introduce 
semantic noise, and in such cases the label should not be flipped 
in a purely mechanical way. More generally, it illustrates that 
even carefully designed rule-based CAD remains vulnerable to 
cases where the overall discourse sentiment is not fully 
controlled by the locally negated word. 

 

 

V. CONCLUSION AND FUTURE WORK 

    In this work, we investigated the robustness of a BERT 

model to negation in the SST-2 sentiment classification task. 

Our experiments show that, although a standard fine-tuned 

BERT model achieves an accuracy of 0.9975 on the original 

sentences, its accuracy on the corresponding negated sentences 

is only 0.7600. To address this issue, we proposed a data 

augmentation method that is entirely based on simple text-

replacement rules and requires no additional human annotation. 

After one epoch of fine-tuning on top of the baseline model with 

the augmented data, the proportion of sentence pairs for which 

both the original and the negated sentence are predicted 

correctly increases from 0.7575 to 0.9950. These results 

indicate that the robustness of the model to negation can be 

substantially improved without modifying the model 

architecture. This suggests that the observed weakness is not 

due to an inherent inability of BERT to represent negation, but 

rather to a lack of appropriate contrastive supervision for simple 

lexical negation patterns during fine-tuning. 

   Although our method significantly improves robustness to 

negation, it still has limitations. Even with strict filtering, 

inserting “not” before a single sentiment word can produce 

grammatically awkward sentences. Therefore, it remains an 

open question whether this approach is equally effective for 

more complex forms of negation, which requires further 

experimentation and discussion; extending our framework to 

such cases is part of our planned future work. A natural next 

step is to combine our lightweight, task-specific augmentation 

strategy with more sophisticated syntactic or semantic negation 

handling methods, in order to cover a broader range of negation 

phenomena while explicitly controlling label noise. 
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