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Abstract—Multi-Output Deep Learning based Side Channel
Analysis (MO-DLSCA) with its variants have demonstrated their
efficacy in non-profiled scenarios. However, current MO ap-
proaches remain limited to sequential single-byte recovery, failing
to exploit shared leakage characteristics across the cryptographic
key and resulting in redundant training overhead. This letter
introduces a Multitask Multi-Output (MT-MO) deep learning
architecture to mitigate this issue. By leveraging a shared feature
extraction backbone with vectorized output heads, our model
simultaneously recovers multiple key bytes in a single training
session. Both Multitask Classification (MT-MOC) and Regression
(MT-MOR) variants are introduced to target masking, noise
injection, and desynchronization countermeasures. Experimental
results obtained from three randomly selected target bytes
indicate that the proposed models reduce the execution time by
approximately 11 times compared to the sequential single-task
model, while maintaining success rates of at least 73.33%.

Index Terms—side channel attack, multi output, multitask

I. INTRODUCTION

The increasing prevalence of embedded and IoT systems
that process sensitive information has intensified the demand
for strong hardware-assisted security. Although modern cryp-
tographic algorithms are mathematically robust, their physi-
cal execution inevitably leaks unintended information—e.g.,
power consumption, electromagnetic emanations, or timing
variations—that can be exploited through Side-Channel Analy-
sis (SCA). These physical leakages have thus become a critical
attack vector capable of revealing secret keys even when the
underlying cryptographic design remains secure. In our ongo-
ing project “AIPOSH” funded by the ASEAN IVO program,
we are developing a comprehensive cybersecurity platform
that integrates artificial intelligence powered hardware and
software solutions for IoT based smart healthcare systems.

SCA techniques are broadly classified into profiled and non-
profiled attacks. Profiled attacks rely on access to a reference
device identical to the target, enabling the construction of
highly accurate leakage models via extensive data collection
and statistical [1] or machine-learning-based profiling [2].
While extremely powerful, their practicality is limited by the
availability of such reference devices and the computational
cost of the profiling phase, especially for closed commercial
systems. In contrast, non-profiled attacks eliminate the profil-
ing requirement and directly operate on traces from the target
device. Classical methods, such as Differential Power Analysis

(DPA) and Correlation Power Analysis (CPA), evaluate statis-
tical relationships between hypothesized intermediate compu-
tations and observed leakages. More recently, deep learning
has emerged as a promising direction in non-profiled SCA,
with approaches such as Differential Deep Learning Analysis
(DDLA) [3] demonstrating improved key-discrimination capa-
bilities. However, DDLA imposes a computational burden by
requiring the training process to be performed repeatedly to
generate the metrics used for key recovery.

To address the computational bottleneck of DDLA, recent
advancements have introduced Multi-Output Classification
(MOC) [4] and Multi-Output Regression (MOR) [5]. These
architectures integrate all 256 key hypotheses for a target
byte into a single neural network with 256 corresponding
output branches. MOC enables the simultaneous evaluation of
all key candidates using categorical cross-entropy, achieving
speedups of up to 30 times compared to DDLA. Similarly,
MOR further improves this by using regression with Identity
Labeling, allowing the model to directly estimate leakage
values. This approach has exhibited speedups of 40 times
faster than DDLAcnN in de-synchronized scenarios. Despite
their efficiency, current MOC and MOR implementations
operate on a single-byte basis. In a realistic full-key recovery
scenario (e.g., attacking all 16 bytes of AES-128), an attacker
must replicate the attack procedure 16 times sequentially. This
sequential approach presents two major limitations:

- Operational inefficiency: Training 16 independent models
incurs significant overhead in terms of framework initializa-
tion, data management, and optimization steps.

- Lack of shared knowledge: Although the input traces
for different bytes correspond to different time windows,
they originate from the same hardware device performing the
same cryptographic operation (e.g., SubBytes). The physical
leakage characteristics, such as the power profile of an S-
Box substitution, are fundamentally similar across all bytes.
Treating each byte as an isolated learning task ignores this
structural similarity, forcing the network to independently
learn the same leakage patterns multiple times.

To overcome these limitations, this paper proposes a Mul-
titask Multi-Output (MT-MO) architecture designed to attack
multiple key bytes simultaneously in a single training session.
Our approach leverages Hard Parameter Sharing [6], where
a single CNN backbone is shared across multiple inputs.



The shared features are then fed into byte-specific output
heads (MOC or MOR) to recover the respective sub-keys. By
unifying the attack into a multitask framework, we not only
eliminate the overhead of sequential training but also improve
the model’s generalization by exposing the shared backbone to
leakage variations across multiple bytes. Experimental results
will demonstrate that this architecture significantly reduces the
total attack time while maintaining high success rates against
countermeasures like masking and hiding.

II. DATA PREPARATION
A. Experimental Platforms

To evaluate the robustness of the proposed Multitask ar-
chitecture against various side-channel countermeasures, three
distinct datasets derived from the ChipWhisperer (CW) and
ASCAD databases were utilized.

1) Desynchronized CW Dataset: A collection of 5,000
power traces from an ATMEL XMEGA microcontroller exe-
cuting AES-128 using the ChipWhisperer platform. Each trace
consists of 500 samples. To simulate a hiding countermeasure,
a random temporal shift within the range of [0, 20] samples is
applied to each trace relative to the trigger.

2) Masked ASCAD Dataset: To evaluate performance
against first-order Boolean masking, we utilize the standard
ASCAD database [7] This dataset contains traces captured
from an 8-bit ATMega8515 executing a masked AES imple-
mentation. We utilized a subset of 20,000 traces corresponding
to the processing of the third S-Box.

3) Noisy ASCAD Dataset: To investigate the impact of
noise-based hiding, a modified version of the ASCAD dataset
was generated. In this configuration, the mask protection
is computationally removed using the known mask values,
and the traces are augmented with synthetic Additive White
Gaussian Noise (AWGN) with a mean p = 0 and a standard
deviation o = 1.0.

B. Dataset Reconstruction

To optimize the data for Multitask Learning, specific re-
construction and labeling strategies were applied. For the
ASCAD datasets (both masked and noisy), Point of Interest
(POI) selection based on Signal-to-Noise Ratio (SNR) was
performed, reducing each trace to 700 relevant samples [7].
For the CW dataset, the trace length was maintained at 500
samples to preserve the desynchronization effects.

The labeling strategy is adapted to the specific objective of
each model variant. For the MOC model, the Least Significant
Bit (LSB) of the S-Box output is used as the label. Conversely,
for the MOR model, the Hamming Weight (HW) of the S-
Box output is employed, as it linearly correlates with power
consumption in software implementations. Consequently, the
final datasets consist of input traces (500 samples for CW, 700
for ASCAD) paired with a label vector corresponding to the
256 key hypotheses for each target byte. The overall structure
of the datasets utilized in our experiments is visually presented
in Figure 1.
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Fig. 1. Structure of the new datasets: There are 16 folders (blue) correspond-
ing to 16 bytes of the secret key, each folder contains a csv file (red) which
stores values of power traces and labels corresponding to 256 hypothesis keys.

III. PROPOSED MULTITASK MULTI-OUTPUT DEEP
LEARNING ARCHITECTURE

This section details the proposed Multitask Multi-Output
(MT-MO) architecture, designed to overcome the sequential
training bottleneck of previous non-profiled SCA methods.
By leveraging Hard Parameter Sharing and Vectorized Output
Heads, the proposed model simultaneously recovers multiple
key bytes in a single training session while maintaining the
efficiency of the Multi-Output approach.

- 1 CONV
>0 Block

e O
| O 1 CONVID_1 CONVID_2

| = NORM NORM

VU

QO :

! .

! .

20 CONV

tt
Block Flatten

POOL I [+ POOL 2
Dropout_1 Dropout_2
ReLU ReLU

! Byte2
/
I

Input layer Shared Layer Output Layer

Fig. 2. Detailed structure of the proposed MT-MO model.

As illustrated in Fig. 2, the proposed architecture is com-
posed of three main stages: the Multitask Input Layer, the
Shared Feature Extraction Backbone, and the Task-Specific
Output Heads.

Multitask Input Layer: The left side of the diagram depicts
the input stage, which accepts n (where 1 < n < 16) distinct
trace segments simultaneously. Each input branch (labeled
Byte 1 to Byte n) corresponds to the specific time window
of a target byte’s leakage in the AES-128 algorithm.

Shared Layer (Backbone): The core of the architecture is
the Shared Layer, which utilizes a Hard Parameter Sharing
mechanism. All input branches are processed by the same set
of weights to extract generalized leakage features. This back-
bone consists of two sequential Convolutional Blocks. Each
block commences with a 1D Convolutional layer (CONV1D)
to capture temporal dependencies. This is followed by Batch
Normalization (NORM) to stabilize learning and Average Pool-
ing (POOL) to reduce dimensionality. Crucially, a Dropout
layer is inserted after pooling to prevent overfitting, ensuring
the model learns robust features rather than memorizing noise.



Finally, a Rectified Linear Unit (ReLU) activation function is
applied.

Output Layer: The output from the shared backbone is
flattened into a single feature vector. This vector is then
bifurcated into n independent task-specific heads (Task 1 to
Task n). Consistent with the vectorized output strategy, each
head consists of a fully connected layer with exactly 256
nodes, corresponding to the 256 possible sub-key values.

A. Multitask Multi-Output Classification (MT-MOC)

The MT-MOC architecture is designed to perform simulta-
neous Non-Profiled attacks on multiple target bytes by clas-
sifying the Least Significant Bit (LSB) of the S-Box output.
Unlike the original MOC, which employs a single-input single-
task structure, our proposed architecture accepts a set of inputs
corresponding to different target bytes and processes them
through a unified pipeline.

1) Shared Feature Extraction Backbone: The core of the
architecture is a shared Convolutional Neural Network (CNN)
backbone, denoted as Fp_,.. .. Let T = {t() t2) ... t(B)}
represent the input set, where t() is the trace segment as-
sociated with the b-th target byte and B is the number of
simultaneous tasks. These inputs are processed by the same set
of convolutional filters, batch normalization, and pooling lay-
ers. This Hard Parameter Sharing strategy forces the network
to learn a generalized, translation-invariant representation of
the power leakage that is consistent across different byte
operations. The shared feature vector f(®) for the b-th byte
is computed as f(*) = F t().

2) Vectorized Output Heads: A key contribution in this
work is the vectorization of the output heads to optimize
the training pipeline. In traditional implementations, the 256
key hypotheses might be handled by separate branches or
sequential evaluations, which fragments the computational
graph and underutilizes GPU parallelism. Conversely, our
approach fuses the 256 hypotheses into a single dense layer,
allowing the gradients for all candidates to be computed via
optimized matrix multiplication.

For the MT-MOC variant, the output head H z(»g)oc for the b-
th byte projects the feature vector f(*) into a probability space
for 256 key candidates:
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where W) ¢ R256xd jg the weight matrix, ¢ is the
bias, and o(-) is the Sigmoid activation function. The use
of Sigmoid is imperative because the LSB classification for
each key hypothesis is treated as an independent Bernoulli
trial. Unlike Softmax, which enforces a probability distribution
summing to one, Sigmoid allows the network to independently
estimate the probability P(LSB = 1|t k) for every key
candidate k, without mutual suppression.

3) Loss Function: The model minimizes the Binary Cross-
Entropy (BCE) loss, averaged across all 256 key hypotheses.

The loss for the b-th task is defined as:
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1
LStoc = —525 2 |9 1086 + (1 = ) log(1 — 5]
k=0

2
where y,(cb) is the ground truth LSB label derived from the k-th
key guess. This vectorized loss calculation allows the network
to converge by identifying the key hypothesis that consistently
minimizes the entropy between the predicted probability and
the actual leakage behavior.

To enable the simultaneous recovery of multiple key bytes,
the global objective function L, is computed as the
weighted summation of losses from all B target bytes:

B
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where B is the number of target bytes and wy, represents the
weight assigned to the b-th task. This joint optimization strat-
egy forces the shared backbone to learn generalized features
that are robust across all simultaneous tasks.

B. Multitask Multi-Output Regression (MT-MOR)

The MT-MOR architecture shares the same feature extrac-
tion backbone Fy_,  as the MT-MOC model but fundamen-
tally differs in its prediction objective and labeling strategy.
While the MOC approach classifies discrete bits, the MOR
approach directly estimates the scalar leakage value associated
with the cryptographic operation.

1) Hamming Weight Labeling vs. Identity: A significant
deviation from the original MOR proposal is the adoption
of Hamming Weight (HW) labeling instead of Identity (ID)
labeling. The original MOR attempts to regress the S-Box
output value (0-255) directly. However, the physical power
consumption of CMOS devices is linearly correlated with
the HW of the data being processed, not its integer value.
The relationship between the ID and power consumption is
highly non-linear and complex for a regression model to
capture accurately. By mapping the labels to the HW domain
(y € [0,8]), we align the learning objective with the physical
leakage model L ~ - HW (S(z®k))+ 3, thereby simplifying
the regression task and accelerating convergence.

2) Linear Activation and MSE Loss: To support this re-
gression task, the task-specific heads in MT-MOR employ a
Linear activation function instead of Sigmoid. The output is
computed as:

gy = wOg®) 4 ®) 4)

This allows the network to predict continuous values repre-
senting the estimated leakage. Consequently, the optimization
objective is to minimize the Euclidean distance between the
predicted leakage and the actual Hamming Weight. The Mean
Squared Error (MSE) loss function is utilized::

(v) 1 2255 ® 1))
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Fig. 3. Attack results on masking dataset. First row: CNNyoc model, second row: proposed MT-MOC model, third row: rank evolution of the correct key.

The use of MSE is appropriate here as it heavily penalizes
large deviations, forcing the network to align its predictions
with the linear leakage model of the correct key. Incorrect key
hypotheses, which produce uncorrelated labels, will inherently
result in a high irreducible error (high MSE), while the correct
key will converge to a minimal MSE, allowing efficient key
recovery.

3) Joint Optimization: To simultaneously recover B target
bytes, the total loss L.t is computed as the summation of
losses from all task-specific branches: Liorq; = Zle L0,
This joint optimization strategy ensures that the shared back-
bone learns features that are robust and universally appli-
cable to the cryptographic algorithm’s operation, leading to
improved generalization and significantly reduced attack time
compared to training B isolated models.

IV. EXPERIMENTAL EVALUATION

The efficacy of the proposed architecture is demonstrated
through a series of experiments on datasets employing differ-
ent counter-measurements. All experimental procedures were
implemented using the Keras framework on a laptop with
an Apple M1 processor and 8GB of unified memory. The
assessment metrics include the average Success Rate (SR)
and total computational time (74). Notably, the multitask
architecture increases memory consumption linearly with the
number of output heads. Therefore, due to the hardware
constraints, the simultaneous recovery analysis was restricted

to a subset of three randomly selected bytes of the secret
key. Given the independent nature of byte-wise operations
in the AES algorithm (specifically the S-Box substitution),
these findings can be extrapolated to the remaining key bytes.
Consequently, this setup serves as a representative proof-of-
concept for the proposed method’s scalability.

A. Masking

To evaluate the efficiency of the proposed model on masked
data, we conducted experiments comparing the MOC model
from [6] (denoted as CNNpyoc) and the proposed MT-MOC
model using the ASCAD dataset with 15,000 power traces.
The experiments were repeated 30 times to compute the
Success Rate (SR) and average attack time (7'4). The graphical
results are depicted in Fig. 3, and the quantitative metrics are
summarized in Table I.

Observing the loss graphs in Fig. 3, a distinct difference
in key discrimination capability is evident. For the baseline
CNNyoc (a-c), this model failed to retrieve the correct key
for Byte 3 but succeeded in recovering for Byte 4 and
Byte 6. However, the separation between the loss curves of
the correct key guess (red) and incorrect guesses (cyan) is
relatively narrow. Conversely, for the MT-MOC model (d-f),
this margin is significantly wider and manifests earlier during
the training phase, indicating superior leakage extraction even
under masking countermeasures. This rapid convergence is



TABLE I
ATTACK RESULTS (TIME AND SUCCESS RATE) OF BASELINE AND PROPOSED MODEL ON DIFFERENT DATASETS.

Dataset
Model Metrics ASCAD Unmasked ASCAD + noise CW desync
Byte 3 | Byte4 | Byte 6 | Byte5 | Byte 6 | Byte 7 | Byte 1 | Byte 5 | Byte 7
Ta (5) | 1792 | 1795 | 1799 - - - - - -
CNNwoc —sr@y T30 | 967 | 100 - - - . - -
Ta (s) 116.1 - - - B N N
MT-MOC gy T 733 7 100 | 100 - - - - - -
CNN Ta (5) - - - 1042 | 1058 | 107.2 | 5958 | 596.7 | 598.1
MOR ™SR (%) - - - 100 100 100 86.7 56.7 533
] Ta (5) - - - 28.2 97.6
MEMOR —p o T - - 100 | 100 | 100 | 933 | 867 | 80
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Fig. 4. Attack results on noisy dataset. First row: CNNyor model, second row: proposed MT-MOR model.

further corroborated by the rank evolution plots (g-i), where
the rank of the correct key swiftly descends to 0.

The quantitative data in Table I reinforces these visual
observations. Regarding accuracy, while CNNyoc achieved
an SR of only 50% for Byte 3, MT-MOC significantly
improved this to 73.3%. For Bytes 4 and 6, the proposed
model attained absolute accuracy (100%), outperforming the
96.7% and 100% of the baseline, respectively. Notably, in
terms of computational efficiency, MT-MOC demonstrated a
substantial advantage by reducing the total attack time for
all three bytes to 116 seconds, which is approximately 4.6
times faster than the 538 seconds required by CNNyoc. These
results substantiate that MT-MOC not only enhances the attack
capability but also significantly optimizes computational costs.

B. Noise generation

To evaluate the robustness against noise-based hiding coun-
termeasures, we employed the CNNyor and MT-MOR models
to attack the unmasked ASCAD dataset augmented with
Gaussian Noise (u = 0,0 = 1.0). This dataset comprises

5,000 power traces. The convergence behavior of the attacks
is illustrated in Fig. 4. The experiments were also repeated 30
times to validate the reliability of the proposed models, and the
performance metrics are summarized in Table I. As depicted
in Fig. 4, the original CNNyor model exhibits a relatively
slow convergence with a negligible margin between the loss
of the correct key and incorrect hypotheses. Conversely, the
proposed MT-MOR model demonstrates superior discrimina-
tion capabilities; the loss metric for the correct key drops
significantly and maintains a distinct gap from the incorrect
guesses, thereby facilitating key recovery.

Regarding computational efficiency, Table I highlights a
substantial improvement. While both models achieved a 100%
Success Rate (SR) across target bytes 5, 6, and 7, the execution
time (7'4) differs significantly. The CNNyor required an
average of roughly 105 seconds per byte (totaling ~ 317
seconds for sequential execution). In contrast, the MT-MOR
architecture recovered all three bytes simultaneously in just
28.2 seconds, representing a speedup factor of approximately
11x.



Incorrect key guess
Correct key guess

L\

L\

Incorrect key guess
Correct key guess

Incorrect key guess
Correct key guess

{\

0 20 40 60
Number of epochs

a) CNNy,or: Byte 1

80 100 0 20 40

Number of epochs
b) CNNy,or: Byte 5

60 80 100 0 20 40 60

Number of epochs
¢) CNNyop: Byte 7

80 100

3.0 3.0 3.0
Incorrect key guess 28 Incorrect key guess Incorrect key guess
28 Correct key guess . Correct key guess 28 Correct key guess
2.6 26 26
2.4 24 24
: @
S22 522 S22
= 2.0 =
2.0 18 2.0
18 1.6 1.8 M
1.6 1.4 1.6
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Number of epochs
d) MT-MOR: Byte 1

Number of epochs
¢) MT-MOR: Byte 5

Number of epochs
f) MT-MOR: Byte 7

Fig. 5. Attack results on desynchronization dataset. First row: CNNyor model, second row: proposed MT-MOR model

C. De-synchronization

In this experiment, we adopted the MOR-based models due
to their superior performance observed in the previous ones.
The dataset employed in this experiment is derived from the
ChipWhisperer platform, comprising 5,000 power traces. To
simulate desynchronization, samples were randomly shifted
by a maximum of 20 samples relative to the original trigger
position. The experimental procedure was conducted similarly
to the previous benchmarks. The attack results are illustrated in
Fig. 5 in which the temporal misalignment poses a significant
challenge to the regression models. The CNNyor exhibits
poor convergence characteristics, the loss trajectory of the
correct key is barely distinguishable from the incorrect hy-
potheses, particularly for Bytes 1 and 5. This visual ambiguity
is reflected in the sub-optimal Success Rates (SR) recorded in
Table I, where the CNNyor achieves only 56.7% and 53.3%
for Bytes 5 and 7, respectively. In contrast, the proposed MT-
MOR demonstrates remarkable robustness against jitter. By
leveraging the shared feature extraction backbone, the model
effectively learns translation-invariant features. Although the
loss curves exhibit high variance, a clear separation between
the correct key and the incorrect guesses is maintained across
all target bytes. This improved discrimination is quantified by
a substantial increase in success rates, reaching up to 93.3%.
Furthermore, the multitask architecture retains its computa-
tional efficiency, completing the attack on all three bytes in
97.6 seconds.

V. CONCLUSION

This article proposes a multitask multi-output deep learning
framework designed to enhance the efficiency and robustness
of non-profiled side-channel analysis. By implementing a
hard parameter sharing strategy, the proposed architecture
effectively mitigates the computational redundancy inherent
in sequential single-task attacks. Experimental evaluations
across diverse countermeasures yield distinct advantages for

the multitask approach. In the context of masking, the MT-
MOC model improved the Success Rate on difficult targets up
to 73.3%, achieving a speedup factor of approximately 4.6x.
Furthermore, against hiding countermeasures, the MT-MOR
variant exhibited remarkable resilience. Under noise injection
scenarios, the model reduced the attack time by approximately
11x while maintaining a 100% success rate. These results
collectively validate that utilizing shared feature extraction
facilitates better generalization and operational efficiency.
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