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Lima, Peru

syabar@pucp.edu.pe

Carlos Paragua-Macuri
Engineering Department – Electricity

and Electronics Section
Pontificia Universidad Católica del Perú

Lima, Peru
carlos.paragua@pucp.edu.pe

https://orcid.org/0009-0005-1695-0857

Abstract—Renewable energy, particularly solar photovoltaics,
presents a growing, sustainable alternative to meet the rising
global energy demand. In order to achieve higher efficiency,
intelligent Maximum Power Point Tracking algorithms must
be implemented. Extensive research has been done on Neural
Network-based solutions; however, their deployment on low-
cost hardware is yet to be explored. This paper presents a
methodology for implementing and validating such algorithms
in low-cost microcontrollers, achieving an average tracking effi-
ciency of 99.2% in Hardware-in-the-Loop testing under varying
environmental conditions by interfacing the ESP32 MCU with a
Simulink simulation. The ported model has low memory usage
and fast inference time (200 µs), ensuring its feasibility for real-
time applications.

Index Terms—MPPT, Neural Networks, Edge AI, Low-cost
microcontroller, PV systems

I. INTRODUCTION

As global energy demand increases, the need for sustain-
able and affordable solutions becomes urgent. Renewable
energy sources have experienced exponential growth in the
last decade, with solar photovoltaic (PV) expansion occurring
at the fastest pace [1]. However, renewable sources, and solar
energy in particular, are heavily dependent on environmental
variables. In order to achieve energy security, these systems
must seek optimal performance for a given set of conditions.
PV cells have characteristic I-V and P-V curves, inherent to the
non-linear behavior of the p-n junction. These curves shift with
changes in environmental variables, largely due to variations
in temperature and irradiance. The operating point of the
PV module changes with the curves, potentially achieving
states of lower power than expected. Maximum Power Point
Tracking (MPPT) algorithms aim to force the operating point
of a PV module or array to converge to the Maximum Power
Point (MPP), thereby ensuring the optimal performance of the
PV system. Recent research has highlighted Neural Networks
(NN) [2]–[4] and soft computing techniques [5] as promising
approaches for these algorithms. The carbon footprint of PV
systems has been a subject of significant concern and rigorous
assessment in recent literature [6]–[9]. To mitigate this, new

solutions must maximize energy extraction over the system’s
operational lifetime, thereby reducing the energy payback time
(EPBT) [10]. Consequently, the deployment of low-cost MPPT
algorithms is a critical strategy to ensure the cost-effective
and energy-efficient expansion of solar usage. This paper is
structured as follows: First, an overview of MPPT algorithms
is presented in Section II. Section III presents the proposed
system, algorithm, and microcontroller setup. Section IV out-
lines the process to deploy the pre-trained Neural Network into
a compatible format for microcontrollers. Section V presents
the results of embedded deployment and Controller Hardware-
in-the-loop (HIL) testing. Section VI provides a discussion
of the obtained results. Finally, Section VII summarizes the
presented work and findings.

II. OVERVIEW OF MPPT CONTROL STRATEGIES

A. Classic Algorithms

Perturb and Observe (P&O) is an MPPT algorithm based
on adjusting the operating voltage by applying a small pertur-
bation and observing the change in power. If the perturbation
results in an increment of power, the algorithm follows the
same sign of perturbation, and vice versa. The sign of the
change in power denotes whether the operating point is to the
left or right of the MPP; the duty cycle is updated accordingly
with a fixed step.
Incremental Conductance (INC) has a similar behavior, mod-
ifying duty cycle step-wise, but determines the direction by
computing the instantaneous (I/V ) and incremental conduc-
tance (dI/dV ). At the MPP, the derivative of power with
respect to voltage is zero, which leads to the condition shown
in (1),

dP

dV
= 0 =⇒ I + V × dI

dV
= 0 =⇒ dI

dV
= − I

V
(1)

Both algorithms are simple to implement on any controller.
Their main limitations are long settling times and poor robust-
ness over fast variations of environmental conditions [11]. The
settling time depends on step size; small steps result in low



oscillations but slow convergence, while large steps converge
quickly but oscillate around the MPP.

B. Neural Network-based MPPT

The application of Deep Learning techniques to solar energy
encompasses a wide variety of areas. Applications range from
degradation classification through computer vision [12], to
fault mitigation and PV modeling [13]. Particularly, they have
been applied to MPPT algorithms, exclusively or in combina-
tion with soft computing techniques and classic algorithms
[11]. Intelligent MPPT methods such as NN are complex
control systems, with higher implementation costs [14]. In
[15], a very simple NN architecture of one hidden layer and
two neurons is implemented in a PIC microcontroller. With
the current advancements of Deep Learning, new NN-based
solutions have tens [16] to thousands of neurons [3]. A popular
option is the use of Raspberry PI or similar devices [4],
although their price and power consumption are not negligible.

III. SYSTEM ARCHITECTURE

A. Proposed Control Strategy

MPPT algorithms drive the operating point of a PV Array
to the corresponding MPP by modifying the Duty Cycle of
a DC/DC converter. The proposed system integrates envi-
ronmental sensors (a pyranometer and temperature sensor),
electrical characteristics of the panel from its datasheet, and
voltage and current measurements at the PV array output to
compute the corresponding Duty Cycle for a given set of
environmental conditions. A simplified connection diagram is
shown in Fig. 1.

Fig. 1. Diagram of the proposed NN-based control strategy

B. Proposed Neural Network

The Neural Network used in this paper was pre-trained
using a real-world dataset [17], [18]. The specifics regarding
training and optimization are described in a separate ongoing
work. The network (Fig. 2) consists of 4 inputs and 1 output.
The inputs are: 1) Irradiance at Plane of Array (G) [W/m2],
2) Module Temperature (T ) [◦C], 3) Open Circuit Voltage
(VOC) [V ], and 4) Short Circuit Current (ISC) [A]. G and T
are measured continuously, while VOC and ISC are constants

characterizing the PV module. The single output is the Ref-
erence Voltage (Vref ), corresponding to the MPP voltage for
the given conditions.

Fig. 2. Diagram of proposed Neural Network

C. Proposed Algorithm
The proposed MPPT algorithm is shown in Fig. 3. First,

measurements of Irradiance and Module Temperature are
taken. Then, measured values are compared to previous ones to
check for a significant change. To reduce computational cost,
inference is triggered by significant changes in G or T. Vref

is then updated by running the Neural Network inference. The
operating current of the PV array is then measured to compute
the desired Duty Cycle using (2).

D = 1−
√

Rmp

Ro
(2)

where Rmp is the equivalent resistance at MPP defined by (3)
while Ro represents to the load resistance.

Rmp =
Vmpp

Impp
≃ Vref

IPV
(3)

Equation (2) can be derived from the Boost Converter
transfer function:

Vo

Vi
=

1

1−D
(4)

D. ESP32 Microcontroller
The Espressif ESP32 is a widely available and popular

microcontroller for IoT applications. Its specifications [19],
[20] are shown in Table I.

TABLE I
ESP32 SPECIFICATIONS

Specification Value
Operating Voltage 3.3 V
Clock Frequency 240 MHz
Flash Memory 4 MB
SRAM 520 KB
Number of GPIO Pins 30
Integrated Peripherals Wi-Fi and Bluetooth BLE
Price (USD) $8.94

This specific microcontroller is listed in the supported plat-
forms for TensorFlow Lite Micro. which enables deployment
of Neural Networks for embedded applications.



Fig. 3. Flow Diagram of Proposed Algorithm

E. Hardware-in-the-Loop Setup

Hardware-in-the-Loop (HIL) testing was performed to val-
idate the proposed system. The HIL setup consists of a
Simulink model of a PV module and a DC-DC Boost con-
verter, which communicates with the ESP32 microcontroller
via UART protocol. The electrical system in Simulink is shown
in Fig. 4. The ESP32 reads the environmental conditions (G
and T) and PV Operating Point from the simulated model, and
sends back the computed Duty Cycle to shift the operating
point towards the MPP. Simulink’s Pulse Width Modulation
(PWM) Generator block handles the generation of the PWM
signal based on the received Duty Cycle. Zero Order Hold
(ZOH) is used to send data at fixed intervals (10 ms) to the
ESP32. (Fig. 5)

The flow of data during HIL testing is depicted in the
diagram in Fig. 6, where processing of data is performed inside
the ESP32 microcontroller.

The UART interface utilizes a custom protocol with
fixed packet sizes. The 18-byte packet sent from Simulink
consists of a start byte, four 32-bit floating-point values
(G,T, VPV , IPV ), and an end byte. The response from the
ESP32 is an 8-byte packet containing a start byte, the com-
puted Duty Cycle (4 bytes), and an end byte.

IV. NEURAL NETWORK DEPLOYMENT

A. Exporting to Tensorflow Lite

The pre-trained Neural Network was developed using
TensorFlow Keras. In order to deploy it on the ESP32,
it must be converted to TensorFlow Lite format. The
process is described in the TensorFlow documentation
[21]. The model was converted using the function
tf.lite.TFLiteConverter.from_keras_model,

which generates a .tflite file with reduced size that can
be deployed to the target microcontroller.

A size reduction of 79% was achieved without any dis-
cernible loss of accuracy. No further quantization was per-
formed, since the .tflite model size was already small
enough to fit into the ESP32’s memory. Table II shows a
comparison of the MAE, RMSE, and R2 metrics for the Keras
and TFLite models.

TABLE II
PERFORMANCE COMPARISON OF CONVERTED MODEL

Model Size (KB) MAE (V) RMSE (V) R2

Keras 70.83 0.232189 0.328457 0.999052
TFLite 14.57 0.232190 0.328457 0.999052

B. ESP32 Inference

After performance validation, the TFLite model was
converted to a C array using the command xxd -i
converted_model.tflite > model_data.cc [22].
This C array was then included in a library for the ESP32
project.

The Arduino_TensorFlowLite_ESP32 library [23]
was utilized to instantiate the TensorFlow Lite interpreter and
execute inference operations, facilitating the loading of the
model from the generated C array.

V. RESULTS

A. MCU Performance

To evaluate the performance of the deployed model on the
ESP32, inference was run on the test set, consisting of 36220
samples across 10 different PV modules with varying environ-
mental conditions. The results are summarized in Table III.

TABLE III
PERFORMANCE OF MODEL RUNNING ON ESP32

Parameter Value
Inference Time (µs) 200.89± 4.5

MAE (V) 0.232189
RMSE (V) 0.328457

R2 0.999052
RAM (KB) 56.93
Flash (KB) 335.49

As shown in Table III, the inference time is approximately
201 µs, which is suitable for real-time MPPT applications.
The accuracy metrics (MAE, RMSE, and R2) remain consis-
tent with those obtained during model validation (Table II),
indicating that the deployment process did not compromise
model performance. Additionally, the memory usage remains
within acceptable limits for the ESP32 microcontroller, with
only 17.4% of RAM and 25.6% of Flash memory utilized.

B. HIL Performance

To evaluate the performance of the deployed MPPT algo-
rithm, HIL testing was performed under varying environmental
conditions. These tests guarantee the system’s robustness and



Fig. 4. PV module and DC-DC Boost converter in Simulink environment

Fig. 5. Serial Communication with ESP32 and PWM generator

Fig. 6. HIL Data Flow Diagram

reliability, specifically under unstable conditions, such as solar-
energy vehicles [24]. The power curves obtained at the PV
module output and their respective environmental conditions
are shown in Fig. 7. The power at the converter output (Pout)
and at the PV module (Pin) were recorded and are shown in
Table IV. Tracking Efficiency (TE) was computed using (5).

TE =
Pin

Pref
× 100% (5)

where Pref is the reference power at MPP obtained from the
corresponding P-V curve of each environmental condition.

Fig. 7. Power curves obtained from HIL under varying environmental
conditions

To validate the dynamic performance of the controller, a
stress-test profile combining step changes and linear ramps
was applied to the system. The irradiance profile G(t) transi-
tions through abrupt steps (200, 400, 800 W/m2) to evaluate
transient response, followed by continuous linear ramps be-
tween 200 W/m2 and 1000 W/m2 to test tracking stability.



TABLE IV
ACHIEVED POWER AND TRACKING EFFICIENCY UNDER DIFFERENT

CONDITIONS

Condition Pout (W) Pin (W) TE (%)
1000 W/m2, 10◦C 269.815 275.537 96.942
1000 W/m2, 25◦C 263.047 268.629 99.985
1000 W/m2, 30◦C 257.452 262.937 99.805
1000 W/m2, 50◦C 236.323 241.440 99.608
200 W/m2, 25◦C 51.858 53.337 99.770
600 W/m2, 25◦C 158.059 161.949 99.367

Fig. 8 illustrates the system’s power output in response to these
variations.

Fig. 8. Dynamic response of PV Power under step and ramp changes in
irradiance

A fast settling time was observed during step changes,
with no significant overshoot. Furthermore, the controller
successfully updated the duty cycle during the ramp phases,
allowing the system to maintain the MPP with minimal steady-
state error.

VI. DISCUSSION

A. Feasibility of NN-MPPT on low-cost MCUs

The results demonstrate that deploying the Neural Network
model on an ESP32 Microcontroller did not result in any
significant loss in accuracy. The model’s memory usage and
inference time are both low. These are significant constraints
in embedded systems applications, successfully overcome by
the proposed algorithm.
The system was tested using HIL under different conditions
of irradiance and temperature, obtaining favorable results,
with high Tracking Efficiency. The lower efficiency observed
at 10 ◦C is due to the training set containing fewer samples
at low temperatures. The difference between Pin and Pout is
attributed to switching and conduction losses in the converter
stage. The results suggest great adaptability to different sets
of environmental conditions. This is an important factor to
consider for real-world deployment of the proposed system.
Considering the performance of the MPPT algorithm, with
practically no drawbacks from deployment on a low-cost

microcontroller, it is deemed a feasible and recommended
platform, given its low cost and energy consumption,
especially compared to systems using more powerful and
resourceful alternatives like NVIDIA Jetson and Raspberry Pi.

B. Limitations

The proposed system’s performance depends heavily on
the quality and diversity of the training data, which may limit
its generalization to unseen conditions or PV modules with
characteristics that differ from those in the training set. To
overcome this, future research should expand on the dataset
with other PV modules and geographic locations.
The current implementation does not account for changes in
load conditions. A constant value is assumed for Ro in (2),
which may not reflect real-world scenarios.
The Simulink model used for HIL testing is an ideal
representation of a PV module and does not reflect the
real environmental factors that may affect the system’s
performance, such as ambient temperature and wind speed.
While the reliance on external sensors (pyranometers
and temperature probes) is often cited as a drawback
compared to sensorless algorithms, these instruments are
standard in commercial-scale PV plants for performance
monitoring. Therefore, the proposed system leverages existing
infrastructure without incurring additional hardware costs in
such scenarios.

Effective Tracking depends on the Neural Network’s ability
to accurately predict Vref , which is fixed for a given set of
environmental conditions. A significant error in prediction may
lead to operating further from the MPP.

C. Future steps

The proposed algorithm can be improved by incorporating
adaptive mechanisms to adjust the Duty Cycle after the initial
inference by the Neural Network. Combination with classic
MPPT algorithms, such as P&O or INC, could improve
tracking efficiency.

Testing with real hardware must be performed to validate
the system’s performance under real-world conditions. Sensor
noise, measurement inaccuracies, and sensing delays should
be taken into account for a physical implementation of the
system.

VII. CONCLUSION

This paper presented the pipeline for the deployment and
evaluation of a Neural Network-based MPPT algorithm.
Model conversion from the pre-trained Keras model to the
microcontroller-compatible TensorFlow Lite was performed
successfully, without any discernible loss in accuracy. The
converted model uses low memory resources and has fast
inference time, making it suitable for deployment.
HIL tests under varying environmental conditions were carried
out to evaluate the integration of the ESP32 with the PV



module and DC-DC control loop. High tracking efficiency was
achieved, with quick settling times and low ripple.
Low-cost microcontrollers are therefore feasible and recom-
mended as a platform for deployment of Neural Network-
based MPPT algorithms, providing a more cost-effective and
efficient alternative.
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