
FESL-YOLO: Improved YOLOv11 Small Object 
Detection Algorithm for Aerial Images

Abstract—To address the challenges posed by UAV flight 

conditions such as long distances from targets, significant 

variations in object sizes, and occlusions this paper introduces 

FESL-YOLO (Feature Enhancement and Small-object 

detection Layer YOLO), a YOLO-based algorithm built upon 

YOLOv11s and augmented with feature enrichment and a small 

object detection layer, aiming to advance small object detection 

efficacy from a UAV perspective. A novel Feature Enhancement 

Convolution module (FEConv) is designed to replace the 

original convolutional structures in the backbone network, 

strengthening feature acquisition and representation 

capabilities with minimal increase in parameters. Given the 

typical characteristics of small objects such as small size, sparse 

information, and dense distribution and the structural 

limitation of YOLOv11 due to its aggressive down sampling, a 

dedicated small object detection branch is further introduced. 

This branch extracts fine-grained target information from 

shallow feature maps and fuses it with deep features, hence 

enhancing the model’s ability to perceive small objects and 

considerably improving detection precision. Experimental 

results on the VisDrone2019 dataset demonstrate that our 

algorithm achieves 44.6% in mAP@0.5 and 27.1% in 

mAP@0.5:0.95, representing gains of 6.1%p and 4.3%p, 

respectively, over the original YOLOv11s model. These results 

verify the effectiveness and superior performance of our method 

for small object detection tasks in UAV-based scenarios. 

Keywords—UAV, Small Object Detection, YOLOV11, Feature 

Extraction, Lightweight Object Detection 

I. INTRODUCTION 

In recent years, unmanned aerial vehicles (UAVs) have 
been widely applied across various fields such as military 
reconnaissance, commercial inspection, and everyday life due 
to their advantages of small size, low cost, and flexible 
deployment. With continuous advancements in UAV 
technology, their application value in scenarios such as remote 
sensing image detection [1], urban traffic monitoring [2], and 
aerial patrol [3] has become increasingly prominent. At the 
same time, deep learning has made breakthrough progress in 
the field of image processing, exhibiting stronger robustness 
and accuracy compared to traditional methods, especially in 
handling complex remote sensing tasks, hence providing new 
technical support for UAV platforms. The integration of 
UAVs and deep learning offers efficient and automated 
solutions for information acquisition and intelligent analysis 
across multiple domains. 

Driven by deep learning, object detection technology has 
developed rapidly. The introduction of deep convolutional 
neural network (CNN) has greatly elevated detection efficacy. 

Current mainstream object detection approaches can be 
broadly categorized into two-stage and one-stage methods. 
Two-stage algorithms (e.g., Faster R-CNN [4], Cascade R-
CNN [5], and Mask R-CNN [6]) typically generate region 
proposals followed by classification and regression, achieving 
high detection precision but often at the cost of heavy 
computation, making them less suitable for real-time 
applications. To address this, researchers have introduced 
more efficient one-stage detection methods such as SSD [7], 
RetinaNet [8], and the YOLO series [9]. These approaches 
eliminate the proposal generation step and perform end-to-end 
prediction directly, substantially boosting inference speed and 
making them more suitable for deployment on UAV platforms 
with limited computational resources. 

Among them, the YOLO series has gained widespread 
attention for its simple architecture, high speed, and 
deployment-friendly characteristics. It reformulates the object 
detection task as a regression problem, relying on a single 
neural network for both object localization and classification, 
which considerably reduces dependence on hardware and 
computational resources. However, when dealing with small 
object detection tasks in aerial imagery captured from high 
altitudes, YOLO still encounters performance bottlenecks. 
Due to the small size of objects, weak feature representation, 
and frequent occlusion by challenging backgrounds, 
traditional detection models tend to miss or misidentify 
targets, thus reducing overall detection precision. 

Compared with conventional image processing tasks, 
image analysis in UAV aerial scenarios presents greater 
complexity and challenges. On one hand, variations in flight 
altitude and viewing angles introduce significant scale 
inconsistencies, leading to a higher proportion of small objects 
in the images. On the other hand, small objects inherently 
carry limited information, often exhibit blurred boundaries, 
and tend to be closely packed, making them easily confused 
with the background and difficult to segment and recognize 
accurately. In addition, the presence of substantial noise and 
interference in the background further increases the modeling 
difficulty for small objects. Therefore, designing more robust 
detection algorithms with strengthened small object 
perception capability is a critical research direction for 
refining the intelligent perception of UAV systems. 

In summary, small object detection in aerial imagery 
remains challenging due to limited feature extraction 
capability and frequent loss of fine object details during 
processing. To address these challenges, this paper suggests 
FESL-YOLO, a YOLO-based framework that has enhanced 
feature extraction and a specific small-object detection layer. 
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 To address the shortcomings of standard convolutions 
in effectively capturing fine-grained local features, we 
have introduced the FEConv module to compensate for 
this. Spatial feature extraction and channel-wise 
feature recalibration within the backbone can be 
improved by FEConv by combining max-pooling with 
Squeeze-and-Excitation (SE) attention. 

To prevent the loss of information caused by YOLOv11's 
aggressive downsampling, we introduce a specific small 
object detection layer. Cross-scale fusion allows for the cross-
resolution spatial details essential for detecting densely 
distributed small objects to be preserved while bridging 
shallow and deep features. 

II. RELATED WORKS 

A. Small Object Detection in UAV 

Small target detection poses significant challenges in the 
field of object detection due to the small size, weak semantic 
information, and easy confusion with the background, 
especially in applications such as remote sensing monitoring 
and security surveillance. Currently, small objects are mainly 
defined in two ways: one is absolute small objects, referring 
to targets with dimensions less than 32×32 the other is relative 
small objects, referring to targets whose area occupies less 
than 10% of the total image area. According to the 
International Society for Optics and Photonics (SPIE), a target 
is considered small if its area is less than 0.12% of the total 
image area in a 256×256 image. The main difficulties in small 
object detection lie in feature loss, insufficient localization 
accuracy, and lack of contextual information. 

To address these issues, researchers propose 
improvements from multiple perspectives. Yang et al. [9] 
propose QueryDet, which fully leverages the advantages of 
high-resolution feature maps while avoiding redundant 
computation over background regions, thus improving 
detection capability for small objects. Koyun et al. [10] design 
a two-stage detection framework called Focus and Detect, 
specifically optimized for small object detection, markedly 
improving localization accuracy. To further advance small 
object detection capability, an increasing number of studies 
explore integrating attention mechanisms into detection 
networks. Wang et al. [11] introduce the Convolutional Block 
Attention Module (CBAM) [13] based on YOLOX [12], 
enabling the model to focus on key features and suppress 
irrelevant information; however, there remains room for 
performance improvement in complex backgrounds. Li et al. 
[14] further augment the network’s sensitivity to targets by 
incorporating a global scheduling and the GAM attention[15]. 

In the domain of UAV target detection, Yuan et al. [16] 
propose an Infrared Small Target Detection Module 
(IRSTDM) specially designed for small UAV targets, 
effectively retaining target detail information and improving 
small target detection capability. Meng et al. [17] develop a 
thermal infrared moving target detection method called 
LAGSwin (Locally focused Attention-based Swin-
transformer), which encodes spatial transformations and 
directional information of moving targets to strengthen 
interaction and fusion of features across different resolutions. 
However, the computational complexity of this method may 
exceed the processing capabilities of UAV devices. Sun et al. 
[18] propose the Multi-YOLOv8 model for infrared moving 
target detection, which takes the current frame, background 
difference image, and optical flow image as inputs to fuse 

original features, target information, and motion information, 
thus capably improving detection capability. 

B. YOLO model 

YOLOv11 is the most recent version of the YOLO series 
of real-time object detectors, with its architecture depicted in 
Figure 1. Although the YOLO series has been developed by 
various teams since YOLOv4, we selected YOLOv11 as our 
baseline for several reasons: (1) it represents the latest 
architectural advances from the Ultralytics team who also 
developed YOLOv5 and YOLOv8, ensuring continuity in 
optimization strategies; (2) YOLOv11 demonstrates improved 
small object detection capability compared to YOLOv10, 
which has been reported to exhibit misclassification issues in 
dense scenarios; and (3) its C3K2 and C2PSA modules 
provide a more suitable foundation for our feature 
enhancement modifications than YOLOv9's GELAN 
architecture, which is optimized for different use cases. The 
refined backbone and neck structure in YOLOv11 [18] 
improves feature extraction capacity and detection accuracy 
on complex tasks. Compared with YOLOv8, YOLOv11 
replaces the CF2 module with C3K2, introduces a new C2PSA 
module following the SPPF block, and incorporates the head 
design concept from YOLOv10 by using depthwise separable 
convolutions to reduce redundant computation and increase 
computational efficiency. 

In UAV aerial imagery with densely distributed small 
objects that take up a relatively large portion of the scene, the 
YOLOv11 architecture is still struggling to meet higher 
detection requirements. To address these limitations, this 
paper presents the FESL-YOLO algorithm, designed to 
address common issues like missed and false detections in 
UAV imaging and significantly improve detection 
performance, especially for small targets. 

III. METHODOLOGY 

A. Overall model 

The YOLOv11 architecture is not capable of capturing 
fine-grained features in UAV aerial imagery, as demonstrated 
in Figure 1, as small targets are prone to being affected by 
background complexity and occlusion, as well as extremely 
limited pixel representation. The result of these limitations is 
missed detections and false positives, which can affect overall 
detection performance. 

The propose of this paper is to propose FESL-YOLO, a 
YOLO-based framework that incorporates feature 
enhancement and a small-object detection layer to address 
these limitations.  As shown in Figure 2, the proposed 
architecture effectively addresses these challenges and greatly 
improves the accuracy of detecting small objects. 

To enhance the network's perception capability for small 
objects while maintaining model lightweight design and 
improving detection precision and practicality in complex 
scenarios, we designed a FEConv module to replace standard 
convolutional structures in the original backbone network. 
The module combines max-pooling with SE attention. It not 
only reduces the size of the feature map and emphasizes 
relevant areas, but also adjusts feature weights based on the 
importance of channels.  

As a result, it enhances the representation of crucial details 
like textures and edges. Furthermore, this work enhances the 
Neck structure of the original model by adding a separate 



branch that is specifically designed to detect small objects. 
This branch allows for the use of both shallow and deep-level 
features to fuse detection, leading to significant improvements 
in detection of multi-scale objects, especially small targets. 
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Figure 1. Overall Architecture of YOLOv11 
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Figure 2. Overall Architecture of the FESL-YOLO 

B. Feature Enhancement Convolution Module 

This paper presents a convolutional module that enhances 
the backbone network's ability to perceive and model small-
object features, which can be seen in Figure 3, to enhance its 
ability to perceive and model small-object features. The 
FEConv module consists of two parallel branches: the main 
branch sequentially applies a convolutional layer, max 
pooling, and a Squeeze-and-Excitation (SE) attention module, 
while the residual branch provides a shortcut path to preserve 
the original feature information. The dual-branch structure can 
be seen in the second and third stages of Figure 3. Batch 
normalization (BN), an activation function (SiLU), and a 
residual path are all included in the module. 
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Figure 3. Structure of FEConv 

Let the input feature map of the module be denoted as � ∈
ℝ�×�×� .First, a standard convolutional layer is applied to 
extract local spatial features, and the output is given as 
follows: 

�	 = ��×���
�(�) (1) 
In Equation (1), X denotes the input feature map 

(C×H×W: channels × height × width), ��×���
�  denotes the 3×3 
standard convolution operation, and �	 represents the output 
feature map after convolution. Subsequently, a max pooling 
operation is applied to strengthen local response capability 
and compress spatially redundant information, as formulated 
in Equation (2): 

�� = ��������	��������	 � (� × � + �, � × � +  ) (2) 

Here, ���denotes the maximum operation. In Equation 
(2), �� represents the output feature map after max pooling, f 
denotes the pooling window size, s represents the stride, and 
� and   are indices ranging within [0, # − 1], used to iterate 
over each element within the pooling window. � �(� × � +
�, � × � +  ) refers to the element in the input feature map 
�	that corresponds to the local window associated with the 
output feature map. 

The current pooling window represents the receptive field, 
where max pooling preserves the most prominent features 
within the local region. This helps highlight object edges and 
texture information, while also providing a shortcut path for 
residual connections. To strengthen semantic modeling across 
channels, the FEConv module incorporates an SE attention 
mechanism, as illustrated in Figure 4. Here, F_tr denotes the 
transformation function for initial feature mapping. 
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Figure 4. Structure of SE Attention 

This module performs adaptive channel-wise weighting 
through a three-stage modeling process. It first applies global 
average pooling to compress the spatial dimensions, as shown 
in the following equation: 

'( = �)*(�() =
1

+ ×,--�((�, �)
�

.�	

�

/�	
 

 
(3) 

� = �01(',,) = 2(3(',,)) = 2(,�4(,	')) (4) 
 

Here, ,  denotes the convolutional kernel used for 
learning weights, 2 represents the Sigmoid activation function 
(for the output gating), and 4  denotes the ReLU activation 
function (for the hidden layer). In Equation (3), the symbol '( 
represents the channel descriptor for the c-th channel, �)* 
denotes the squeeze function (global average pooling), �( is 
the c-th channel of the input feature map, H and W are the 
spatial height and width of the feature map, and �((�, �) 
indicates the feature value at spatial position (i,j) of the c-th 
channel. In Equation (4), the symbol s represents the channel 
attention weight vector, �01 denotes the excitation function, z 
is the vector of all channel descriptors, W represents the 
learnable weight parameters, ,	  is the weight matrix for 



dimensionality reduction, ,�  is the weight matrix for 
dimensionality restoration. ,	  performs dimensionality 

reduction with ,	 ∈ 56
7×� , and ,�  performs restoration, 

where r is the reduction ratio. Matrix ,� ∈ 56
7×�. 

Finally, the Scale operation applies the learned attention 
weights to each channel of the feature map, as expressed in the 
following formula:  

�8( = �)(9:0(�(, �() = � �( ( (5) 
In Equation (5), �(;  is the recalibrated output for channel c, 

computed by scaling �(  with attention weight �( . �)(9:0 
denotes the channel-wise scaling function, �( is the original 
feature map of the c-th channel before attention weighting, 
and �(  represents the learned attention weight for the c-th 
channel computed from Equation (4). The SE attention 
mechanism successfully enhances the network’s focus on key 
object regions, making it especially suitable for complex 
scenarios with sparse small object information. After the 
attention modulation, the feature maps are further normalized 
and non-linearly transformed by a BN layer and the SiLU 
activation function, which strengthens training stability and 
generalization capability. Finally, FEConv employs a residual 
connection to perform element-wise addition between the 
pooling branch output and the main branch, effectively 
mitigating the vanishing gradient problem and promoting 
feature fusion between shallow structures and deep semantic 
information. Without substantially increasing the number of 
parameters, this approach substantially enhances the 
network’s receptive field, feature representation capability, 
and local responsiveness, and especially elevating detection 
precision and robustness in low-resolution, densely packed 
small object scenarios from a UAV perspective. 

C. Small Object Detection Layer 

In UAV applications, target objects in images often appear 
significantly scaled down, with blurred edges and densely 
packed distributions. Deep feature maps constructed through 
large-scale downsampling can only represent a limited 
amount of data, especially in architectures such as YOLOv11. 
The degradation or loss of texture, contour, and boundary 
information of small targets during propagation is caused by 
feature maps being repeatedly downsampled, resulting in a 
drastic reduction in their spatial resolution. To overcome this 
structural bottleneck, we introduce a dedicated small-object-
aware detection branch based on the original backbone 
network, creating a high-resolution detail restoration path for 
improved detection of small objects. 

This branch operates primarily in the early to mid-stages 
of the network, directly extracting spatial structural 
information from shallow feature maps where such details 
have remained intact. To address the lack of semantic richness 
in shallow layers, we incorporate a progressive upsampling 
strategy combined with the fusion of supplementary features 
from higher semantic layers in the backbone. 

We develop a mutually advantageous relationship 
between superficial spatial representations and deep semantic 
features within the feature map through alignment 
mechanisms. The fusion method takes into consideration 
hierarchical differences in features and inter-channel 
dependencies, enabling the model to maintain an extensive 
receptive field while also being more sensitive to micro-scale 
target regions. In order to enhance fusion accuracy and 
contextual consistency, we utilize feature alignment, channel 

balancing, and non-linear transformation to features at various 
levels. By doing this, the detection process can achieve more 
robust fine-grained modeling. 

This approach, unlike conventional pyramid structures or 
simple skip connections, emphasizes structural guidance and 
semantic reconstruction, which enhances the model's ability to 
locate and recognize low-saliency targets in complex 
viewpoints. 

IV. EXPERIMENTS AND ENVIRONMENT 

The experiments are conducted on a Windows 11 host 
system, with model training and evaluation performed in an 
Ubuntu 20.04 environment. Computations are accelerated 
using an NVIDIA RTX 3090 GPU with CUDA 11.8, and the 
implementation on PyTorch 2.0.0. 

Training is performed for 200 epochs with an input 
resolution of 640 by 640 and a batch size of 16. Stochastic 
Gradient Descent (SGD) is adopted with an initial learning 
rate of 0.01, momentum of 0.937, and weight decay of 0.0005. 
A fixed learning rate is maintained throughout training to 
ensure stable convergence. For fair comparison, all models are 
trained and evaluated under identical experimental settings. 

A. Dataset and Evaluation Metrics 
To validate the effectiveness and advancement of our 

method, experiments are conducted on the publicly available 
VisDrone2019 [19] dataset. This dataset contains a total of 
10,209 static images, including 6,471 for training, 548 for 
validation, and 3,190 for testing. The images are captured by 
various UAV mounted cameras, covered a wide range of 
scenarios, and are annotated with 10 different object 
categories. We adopted Precision (P), Recall (R), mAP@0.5, 
and mAP@0.5:0.95 as evaluation metrics. Specifically, 
mAP@0.5 refers to the mean Average Precision calculated 
across all classes at an Intersection over Union (IoU) threshold 
of 0.5, while mAP@0.5:0.95 denotes the average precision 
computed over multiple IoU thresholds ranging from 0.5 to 
0.95 with a step size of 0.05. 

The calculation formulas are as follows: 

< = =<
=< + �< 
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TABLE Ⅰ. RESULT OF COMPARE EXPERIMENT 

Method P R mAP50 
mAP 
50:95 

Params GFLOPs FPS 

Faster 
RCNN 

 33.8 33.2 - 136.75 369.8 31.6 

SSD 21 35.5 23.9 - 24.01 61.06 167.4 

YOLO 
v3-tiny 

27.8 18.5 15.8 6.9 8.67 13.0 429.5 

YOLO 
v5s 

43.2 32.8 32.0 17.1 7.82 18.7 168.8 

YOLO 
v7-tiny 

47.1 35.4 33.9 17.5 6.02 13.2 126.6 

YOLO 
v8s 

49.1 37.5 38.3 22.8 11.13 28.4 178.8 

YOLO 
v11s 

49.3 37.6 38.5 22.8 9.42 21.3 141.7 

Our 54.9 42.8 44.6 27.1 9.66 47.4 96.9 

 

In Equations 6 to 8, TP, FP, and FN represent true 
positives, false positives, and false negatives, respectively. P 



and R denote precision and recall, n is the number of classes, 
and AP for each class is averaged to compute mAP. 

B. Comparative Experimental Results and Analysis 
To validate the effectiveness of the proposed approach for 

small object detection, representative detectors including 
Faster R-CNN, SSD, YOLOv3-tiny, YOLOv5s, YOLOv7-
tiny, YOLOv8s, and the baseline YOLOv11s are selected for 
comparison. All models are evaluated using a unified training 
strategy with an input resolution of 640 by 640. The 
quantitative results are summarized in Table 1. 

Traditional detectors exhibit limited performance in small 
object scenarios. Faster R-CNN and SSD achieve mAP at IoU 
0.50 values of 33.2% and 23.9%, respectively. Owing to its 
shallow architecture, YOLOv3-tiny records precision of 
27.8%, recall of 18.5%, mAP at IoU 0.50 of 15.8%, and mAP 
at IoU 0.50 to 0.95 of only 6.9%. With the evolution of 
detection architectures, YOLOv5s, YOLOv7-tiny, YOLOv8s, 
and YOLOv11s demonstrate progressively improved 
performance. Among them, YOLOv11s achieves 49.3% 
precision, 37.6% recall, 38.5% mAP at IoU 0.50, and 22.8% 
mAP at IoU 0.50 to 0.95, representing one of the strongest 
lightweight baselines. 

In contrast, the proposed method delivers consistent 
improvements across all evaluation metrics. Precision and 
recall reach 54.9% and 42.8%, improving by 5.6%p and 
5.2%p over YOLOv11s. The mAP at IoU 0.50 and mAP at 
IoU 0.50 to 0.95 increase to 44.6% and 27.1%, corresponding 
to gains of 6.1%p and 4.3%p. Compared with other 
lightweight models, the proposed approach improves mAP at 
IoU 0.50 to 0.95 by 10.0%p over YOLOv5s and by 9.6%p 
over YOLOv7-tiny. 

In terms of model complexity, FESL-YOLO contains 9.66 
million parameters, which is only a 2.5% increase over the 
9.42 million parameters of YOLOv11s. Despite this marginal 
increase, the proposed model achieves performance gains of 
6.1%p in mAP at IoU 0.50 and 4.3%p in mAP at IoU 0.50 to 
0.95. These results demonstrate that FESL-YOLO 
significantly enhances small object detection performance 
while maintaining computational efficiency suitable for 
resource constrained UAV platforms. 

C. Ablation study 

To verify the effectiveness of the proposed modifications 
for UAV aerial image object detection, ablation experiments 
are conducted on the VisDrone2019 dataset using YOLOv11s 
as the baseline. The proposed components are introduced 
incrementally: FEConv is first integrated into the baseline 
model, followed by the addition of the small object detection 
layer. The corresponding experimental results are presented in 
Table 2. 

TABLE Ⅱ. ABLATION EXPERIMENT RESULT 

 P R mAP50 
mAP50

:95 
Param

s 
GFLO

Ps 
FPS 

YOLO 
v11s 

49.3 37.6 38.5 22.8 9.42 21.3 141.7 

+FEConv 51.0 38.5 39.6 23.7 9.46 38.9 116.9 

+FEConv
+layer 

54.9 42.8 44.6 27.1 9.66 47.4 96.9 

 

The experimental results show that integrating the 
FEConv module into YOLOv11s leads to consistent 
performance improvements. Precision increases by 1.7%p 

from 49.3% to 51.0%, recall improves by 0.9%p from 37.6% 
to 38.5%, mAP at IoU 0.50 rises by 1.1%p from 38.5% to 
39.6%, and mAP at IoU 0.50 to 0.95 increases by 0.9%p to 
23.7%. These gains indicate that FEConv effectively enhances 
feature representation by strengthening attention to key object 
regions, particularly improving local structure modeling for 
small objects while suppressing redundant information. 

When a dedicated small object detection layer based on 
shallow features is further introduced, the performance 
improvement becomes more pronounced. Precision increases 
by 3.9%p from 51.0% to 54.9%, recall improves by 4.3%p 
from 38.5% to 42.8%, mAP at IoU 0.50 rises by 5.0%p from 
39.6% to 44.6%, and mAP at IoU 0.50 to 0.95 increases by 
3.4%p from 23.7% to 27.1%. This result demonstrates that the 
integration of shallow and deep features effectively 
compensates for the loss of small object information in deeper 
layers, significantly enhancing the detection of small and low 
contrast objects. 

Overall, the proposed lightweight modifications 
substantially improve small object detection performance, 
confirming the robustness and practical applicability of the 
proposed architecture in dense and complex background 
scenarios. 

D. Qualitative result 
To demonstrate the effectiveness of our method in 

complex real-world scenarios with ease and convenience, we 
select representative UAV images from the VisDrone2019 
dataset for visualization-based comparative experiments. In 
Figure 5, we present the original images (a), detection results 
of YOLOv11 (b), and detection results of our method (c). In 
the red rectangular regions, the main areas of comparison are 
visually highlighted and demonstrate the practical benefits of 
our method for small-object recognition, occlusion handling, 
and dense-region detection. 

Figure 5. Detection performance comparison result on VisDrone2019 
dataset. (a) Original image, (b) YOLOv11s, (c) FESL-YOLO. 

Under poor lighting conditions, the first sample contains 
targets that are extremely small. The proposed method is 
robust to low-resolution inputs and successfully detects these 
micro objects despite noise interference, demonstrating its 
robustness to low-resolution inputs. YOLOv11 is unable to 
reliably detect these micro objects. 

(a) (b) (c) 



Partially obscured targets are present in a cluttered 
background in the second sample. Uncertain predictions cause 
YOLOv11 to produce false positives and miss detections. On 
the other hand, the proposed method effectively eliminates 
background interference, separates overlapping objects, and 
produces more precise bounding boxes for occluded or blurred 
targets. 

The third sample displays multiple small vehicles and 
pedestrians densely distributed throughout the scene. Missed 
detections and localization errors are common in YOLOv11, 
with many objects being either undetectable or poorly aligned. 
By detecting small objects with tighter and more precise 
bounding boxes, the proposed approach shows stronger 
perception in dense small-object scenarios. 

Targets with similar visual appearances are heavily 
occluded and densely packed in the fourth sample. YOLOv11 
has a problem with missed detections and class confusion, 
especially when it comes to motorcycles and vehicles. 
Improved stability is demonstrated by the proposed method's 
ability to accurately distinguish object categories and produce 
bounding boxes that closely match object boundaries, even in 
low-contrast conditions. 

The proposed method consistently enhances the detection 
accuracy of small objects that are obscured or distributed in a 
dense way while also maintaining reliable performance in 
low-light and complex background scenarios. 

V. CONCLUSION 

In this paper, we proposed FESL-YOLO, a lightweight 
small object detection framework for UAV aerial imagery. 
Comparative experiments show that the proposed method 
achieves the highest overall detection performance, with a 
mAP@50 of 44.6 and a mAP@50:95 of 27.1, clearly 
outperforming recent YOLO-based detectors. In particular, 
the improved precision of 54.9 and recall of 42.8 indicate a 
substantial reduction in both false and missed detections, 
which are critical issues in small object recognition. 

Despite the accuracy improvement, FESL-YOLO 
maintains a compact model size with 9.66 million parameters 
and achieves real-time inference at 96.9 frames per second. 
Although the computational cost is higher than some 
lightweight baselines, the accuracy gain demonstrates an 
effective trade-off for practical UAV deployment.  

Future work will focus on reducing computational 
complexity through network optimization and lightweight 
design strategies, while extending the proposed approach to 
broader aerial surveillance scenarios. 
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