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Abstract—To address the challenges posed by UAV flight
conditions such as long distances from targets, significant
variations in object sizes, and occlusions this paper introduces
FESL-YOLO (Feature Enhancement and Small-object
detection Layer YOLO), a YOLO-based algorithm built upon
YOLOv11s and augmented with feature enrichment and a small
object detection layer, aiming to advance small object detection
efficacy from a UAYV perspective. A novel Feature Enhancement
Convolution module (FEConv) is designed to replace the
original convolutional structures in the backbone network,
strengthening feature acquisition and representation
capabilities with minimal increase in parameters. Given the
typical characteristics of small objects such as small size, sparse
information, and dense distribution and the structural
limitation of YOLOV11 due to its aggressive down sampling, a
dedicated small object detection branch is further introduced.
This branch extracts fine-grained target information from
shallow feature maps and fuses it with deep features, hence
enhancing the model’s ability to perceive small objects and
considerably improving detection precision. Experimental
results on the VisDrone2019 dataset demonstrate that our
algorithm achieves 44.6% in mAP@0.5 and 27.1% in
mAP@0.5:0.95, representing gains of 6.1%p and 4.3%p,
respectively, over the original YOLOv11s model. These results
verify the effectiveness and superior performance of our method
for small object detection tasks in UAV-based scenarios.

Keywords—UAV, Small Object Detection, YOLOV11, Feature
Extraction, Lightweight Object Detection

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have
been widely applied across various fields such as military
reconnaissance, commercial inspection, and everyday life due
to their advantages of small size, low cost, and flexible
deployment. With continuous advancements in UAV
technology, their application value in scenarios such as remote
sensing image detection [1], urban traffic monitoring [2], and
aerial patrol [3] has become increasingly prominent. At the
same time, deep learning has made breakthrough progress in
the field of image processing, exhibiting stronger robustness
and accuracy compared to traditional methods, especially in
handling complex remote sensing tasks, hence providing new
technical support for UAV platforms. The integration of
UAVs and deep learning offers efficient and automated
solutions for information acquisition and intelligent analysis
across multiple domains.

Driven by deep learning, object detection technology has
developed rapidly. The introduction of deep convolutional
neural network (CNN) has greatly elevated detection efficacy.
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Current mainstream object detection approaches can be
broadly categorized into two-stage and one-stage methods.
Two-stage algorithms (e.g., Faster R-CNN [4], Cascade R-
CNN [5], and Mask R-CNN [6]) typically generate region
proposals followed by classification and regression, achieving
high detection precision but often at the cost of heavy
computation, making them less suitable for real-time
applications. To address this, researchers have introduced
more efficient one-stage detection methods such as SSD [7],
RetinaNet [8], and the YOLO series [9]. These approaches
eliminate the proposal generation step and perform end-to-end
prediction directly, substantially boosting inference speed and
making them more suitable for deployment on UAV platforms
with limited computational resources.

Among them, the YOLO series has gained widespread
attention for its simple architecture, high speed, and
deployment-friendly characteristics. It reformulates the object
detection task as a regression problem, relying on a single
neural network for both object localization and classification,
which considerably reduces dependence on hardware and
computational resources. However, when dealing with small
object detection tasks in aerial imagery captured from high
altitudes, YOLO still encounters performance bottlenecks.
Due to the small size of objects, weak feature representation,
and frequent occlusion by challenging backgrounds,
traditional detection models tend to miss or misidentify
targets, thus reducing overall detection precision.

Compared with conventional image processing tasks,
image analysis in UAV aerial scenarios presents greater
complexity and challenges. On one hand, variations in flight
altitude and viewing angles introduce significant scale
inconsistencies, leading to a higher proportion of small objects
in the images. On the other hand, small objects inherently
carry limited information, often exhibit blurred boundaries,
and tend to be closely packed, making them easily confused
with the background and difficult to segment and recognize
accurately. In addition, the presence of substantial noise and
interference in the background further increases the modeling
difficulty for small objects. Therefore, designing more robust
detection algorithms with strengthened small object
perception capability is a critical research direction for
refining the intelligent perception of UAV systems.

In summary, small object detection in aerial imagery
remains challenging due to limited feature extraction
capability and frequent loss of fine object details during
processing. To address these challenges, this paper suggests
FESL-YOLO, a YOLO-based framework that has enhanced
feature extraction and a specific small-object detection layer.
The main contributions of this work are as follows:



® To address the shortcomings of standard convolutions
in effectively capturing fine-grained local features, we
have introduced the FEConv module to compensate for
this. Spatial feature extraction and channel-wise
feature recalibration within the backbone can be
improved by FEConv by combining max-pooling with
Squeeze-and-Excitation (SE) attention.

To prevent the loss of information caused by YOLOv11's
aggressive downsampling, we introduce a specific small
object detection layer. Cross-scale fusion allows for the cross-
resolution spatial details essential for detecting densely
distributed small objects to be preserved while bridging
shallow and deep features.

II. RELATED WORKS

A. Small Object Detection in UAV

Small target detection poses significant challenges in the
field of object detection due to the small size, weak semantic
information, and easy confusion with the background,
especially in applications such as remote sensing monitoring
and security surveillance. Currently, small objects are mainly
defined in two ways: one is absolute small objects, referring
to targets with dimensions less than 32x32 the other is relative
small objects, referring to targets whose area occupies less
than 10% of the total image area. According to the
International Society for Optics and Photonics (SPIE), a target
is considered small if its area is less than 0.12% of the total
image area in a 256x256 image. The main difficulties in small
object detection lie in feature loss, insufficient localization
accuracy, and lack of contextual information.

To address these issues, researchers propose
improvements from multiple perspectives. Yang et al. [9]
propose QueryDet, which fully leverages the advantages of
high-resolution feature maps while avoiding redundant
computation over background regions, thus improving
detection capability for small objects. Koyun et al. [10] design
a two-stage detection framework called Focus and Detect,
specifically optimized for small object detection, markedly
improving localization accuracy. To further advance small
object detection capability, an increasing number of studies
explore integrating attention mechanisms into detection
networks. Wang et al. [11] introduce the Convolutional Block
Attention Module (CBAM) [13] based on YOLOX [12],
enabling the model to focus on key features and suppress
irrelevant information; however, there remains room for
performance improvement in complex backgrounds. Li et al.
[14] further augment the network’s sensitivity to targets by
incorporating a global scheduling and the GAM attention[15].

In the domain of UAV target detection, Yuan et al. [16]
propose an Infrared Small Target Detection Module
(IRSTDM) specially designed for small UAV targets,
effectively retaining target detail information and improving
small target detection capability. Meng et al. [17] develop a
thermal infrared moving target detection method called
LAGSwin (Locally focused Attention-based Swin-
transformer), which encodes spatial transformations and
directional information of moving targets to strengthen
interaction and fusion of features across different resolutions.
However, the computational complexity of this method may
exceed the processing capabilities of UAV devices. Sun et al.
[18] propose the Multi-YOLOvVS model for infrared moving
target detection, which takes the current frame, background
difference image, and optical flow image as inputs to fuse

original features, target information, and motion information,
thus capably improving detection capability.

B. YOLO model

YOLOv11 is the most recent version of the YOLO series
of real-time object detectors, with its architecture depicted in
Figure 1. Although the YOLO series has been developed by
various teams since YOLOv4, we selected YOLOv11 as our
baseline for several reasons: (1) it represents the latest
architectural advances from the Ultralytics team who also
developed YOLOvS and YOLOVS, ensuring continuity in
optimization strategies; (2) YOLOv11 demonstrates improved
small object detection capability compared to YOLOv10,
which has been reported to exhibit misclassification issues in
dense scenarios; and (3) its C3K2 and C2PSA modules
provide a more suitable foundation for our feature
enhancement modifications than YOLOvV9's GELAN
architecture, which is optimized for different use cases. The
refined backbone and neck structure in YOLOv1l [18]
improves feature extraction capacity and detection accuracy
on complex tasks. Compared with YOLOv8, YOLOv1I
replaces the CF2 module with C3K2, introduces a new C2PSA
module following the SPPF block, and incorporates the head
design concept from YOLOV10 by using depthwise separable
convolutions to reduce redundant computation and increase
computational efficiency.

In UAV aerial imagery with densely distributed small
objects that take up a relatively large portion of the scene, the
YOLOvV11 architecture is still struggling to meet higher
detection requirements. To address these limitations, this
paper presents the FESL-YOLO algorithm, designed to
address common issues like missed and false detections in
UAV imaging and significantly improve detection
performance, especially for small targets.

III. METHODOLOGY

A. Overall model

The YOLOvVI11 architecture is not capable of capturing
fine-grained features in UAV aerial imagery, as demonstrated
in Figure 1, as small targets are prone to being affected by
background complexity and occlusion, as well as extremely
limited pixel representation. The result of these limitations is
missed detections and false positives, which can affect overall
detection performance.

The propose of this paper is to propose FESL-YOLO, a
YOLO-based framework that incorporates feature
enhancement and a small-object detection layer to address
these limitations. As shown in Figure 2, the proposed
architecture effectively addresses these challenges and greatly
improves the accuracy of detecting small objects.

To enhance the network's perception capability for small
objects while maintaining model lightweight design and
improving detection precision and practicality in complex
scenarios, we designed a FEConv module to replace standard
convolutional structures in the original backbone network.
The module combines max-pooling with SE attention. It not
only reduces the size of the feature map and emphasizes
relevant areas, but also adjusts feature weights based on the
importance of channels.

As aresult, it enhances the representation of crucial details
like textures and edges. Furthermore, this work enhances the
Neck structure of the original model by adding a separate



branch that is specifically designed to detect small objects.
This branch allows for the use of both shallow and deep-level
features to fuse detection, leading to significant improvements
in detection of multi-scale objects, especially small targets.
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Figure 2. Overall Architecture of the FESL-YOLO

B. Feature Enhancement Convolution Module

This paper presents a convolutional module that enhances
the backbone network's ability to perceive and model small-
object features, which can be seen in Figure 3, to enhance its
ability to perceive and model small-object features. The
FEConv module consists of two parallel branches: the main
branch sequentially applies a convolutional layer, max
pooling, and a Squeeze-and-Excitation (SE) attention module,
while the residual branch provides a shortcut path to preserve
the original feature information. The dual-branch structure can
be seen in the second and third stages of Figure 3. Batch
normalization (BN), an activation function (SiLU), and a
residual path are all included in the module.
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Figure 3. Structure of FEConv

Let the input feature map of the module be denoted as X €
RE*HXW First, a standard convolutional layer is applied to
extract local spatial features, and the output is given as
follows:

Fy = F523 (X) 1)

In Equation (1), X denotes the input feature map
(CxHxW: channels x height x width), F£2% denotes the 3x3
standard convolution operation, and F; represents the output
feature map after convolution. Subsequently, a max pooling
operation is applied to strengthen local response capability
and compress spatially redundant information, as formulated
in Equation (2):

F, =max!_smax/_} X (ixs+u,j x s +v) 2

Here, maxdenotes the maximum operation. In Equation
(2), F, represents the output feature map after max pooling, f
denotes the pooling window size, s represents the stride, and
u and v are indices ranging within [0, f — 1], used to iterate
over each element within the pooling window. s X(i X s +
u,j X s + v) refers to the element in the input feature map
F;that corresponds to the local window associated with the
output feature map.

The current pooling window represents the receptive field,
where max pooling preserves the most prominent features
within the local region. This helps highlight object edges and
texture information, while also providing a shortcut path for
residual connections. To strengthen semantic modeling across
channels, the FEConv module incorporates an SE attention
mechanism, as illustrated in Figure 4. Here, F_tr denotes the
transformation function for initial feature mapping.
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Figure 4. Structure of SE Attention

This module performs adaptive channel-wise weighting
through a three-stage modeling process. It first applies global
average pooling to compress the spatial dimensions, as shown
in the following equation:

1 H W
Ze = sq(uc) = mzz uc(i, ) (3)
i=1 =1
S = Fex(z,W) = a(g(z, W)) = a(W,6(W,2)) (4)

Here, W denotes the convolutional kernel used for
learning weights, o represents the Sigmoid activation function
(for the output gating), and & denotes the ReLU activation
function (for the hidden layer). In Equation (3), the symbol z,
represents the channel descriptor for the c-th channel, Fy,
denotes the squeeze function (global average pooling), u, is
the c-th channel of the input feature map, H and W are the
spatial height and width of the feature map, and u.(i,j)
indicates the feature value at spatial position (i,j) of the c-th
channel. In Equation (4), the symbol s represents the channel
attention weight vector, F,, denotes the excitation function, z
is the vector of all channel descriptors, W represents the
learnable weight parameters, W; is the weight matrix for



dimensionality reduction, W, is the weight matrix for
dimensionality restoration. W, performs dimensionality

C
reduction with W, € R7*¢ | and W, performs restoration,
c
where r is the reduction ratio. Matrix W, € R+€.

Finally, the Scale operation applies the learned attention
weights to each channel of the feature map, as expressed in the
following formula:

X = Fscate(Uer Sc) = S cUc )

In Equation (5), X, is the recalibrated output for channel c,
computed by scaling u, with attention weight s, . Fy.qe
denotes the channel-wise scaling function, u, is the original
feature map of the c-th channel before attention weighting,
and s, represents the learned attention weight for the c-th
channel computed from Equation (4). The SE attention
mechanism successfully enhances the network’s focus on key
object regions, making it especially suitable for complex
scenarios with sparse small object information. After the
attention modulation, the feature maps are further normalized
and non-linearly transformed by a BN layer and the SiLU
activation function, which strengthens training stability and
generalization capability. Finally, FEConv employs a residual
connection to perform element-wise addition between the
pooling branch output and the main branch, effectively
mitigating the vanishing gradient problem and promoting
feature fusion between shallow structures and deep semantic
information. Without substantially increasing the number of
parameters, this approach substantially enhances the
network’s receptive field, feature representation capability,
and local responsiveness, and especially elevating detection
precision and robustness in low-resolution, densely packed
small object scenarios from a UAV perspective.

C. Small Object Detection Layer

In UAV applications, target objects in images often appear
significantly scaled down, with blurred edges and densely
packed distributions. Deep feature maps constructed through
large-scale downsampling can only represent a limited
amount of data, especially in architectures such as YOLOVI1.
The degradation or loss of texture, contour, and boundary
information of small targets during propagation is caused by
feature maps being repeatedly downsampled, resulting in a
drastic reduction in their spatial resolution. To overcome this
structural bottleneck, we introduce a dedicated small-object-
aware detection branch based on the original backbone
network, creating a high-resolution detail restoration path for
improved detection of small objects.

This branch operates primarily in the early to mid-stages
of the network, directly extracting spatial structural
information from shallow feature maps where such details
have remained intact. To address the lack of semantic richness
in shallow layers, we incorporate a progressive upsampling
strategy combined with the fusion of supplementary features
from higher semantic layers in the backbone.

We develop a mutually advantageous relationship
between superficial spatial representations and deep semantic
features within the feature map through alignment
mechanisms. The fusion method takes into consideration
hierarchical differences in features and inter-channel
dependencies, enabling the model to maintain an extensive
receptive field while also being more sensitive to micro-scale
target regions. In order to enhance fusion accuracy and
contextual consistency, we utilize feature alignment, channel

balancing, and non-linear transformation to features at various
levels. By doing this, the detection process can achieve more
robust fine-grained modeling.

This approach, unlike conventional pyramid structures or
simple skip connections, emphasizes structural guidance and
semantic reconstruction, which enhances the model's ability to
locate and recognize low-saliency targets in complex
viewpoints.

IV. EXPERIMENTS AND ENVIRONMENT

The experiments are conducted on a Windows 11 host
system, with model training and evaluation performed in an
Ubuntu 20.04 environment. Computations are accelerated
using an NVIDIA RTX 3090 GPU with CUDA 11.8, and the
implementation on PyTorch 2.0.0.

Training is performed for 200 epochs with an input
resolution of 640 by 640 and a batch size of 16. Stochastic
Gradient Descent (SGD) is adopted with an initial learning
rate of 0.01, momentum of 0.937, and weight decay of 0.0005.
A fixed learning rate is maintained throughout training to
ensure stable convergence. For fair comparison, all models are
trained and evaluated under identical experimental settings.

A. Dataset and Evaluation Metrics

To validate the effectiveness and advancement of our
method, experiments are conducted on the publicly available
VisDrone2019 [19] dataset. This dataset contains a total of
10,209 static images, including 6,471 for training, 548 for
validation, and 3,190 for testing. The images are captured by
various UAV mounted cameras, covered a wide range of
scenarios, and are annotated with 10 different object
categories. We adopted Precision (P), Recall (R), mAP@0.5,
and mAP@0.5:0.95 as evaluation metrics. Specifically,
mAP@0.5 refers to the mean Average Precision calculated
across all classes at an Intersection over Union (IoU) threshold
of 0.5, while mAP@0.5:0.95 denotes the average precision
computed over multiple IoU thresholds ranging from 0.5 to
0.95 with a step size of 0.05.

The calculation formulas are as follows:

o TP
" TP +FP (6)
R = TP
" TP +FN @)
1 n
AP = — AP;
A = L (8)

TABLE 1. RESULT OF COMPARE EXPERIMENT

Method P R mAPS50 5"(1]A9l; Params GFLOPs FPS
Faster
RCNN 33.8 332 - 136.75 369.8 31.6
SSD 21 355 239 - 24.01 61.06 167.4
YOI.‘O 27.8 185 15.8 6.9 8.67 13.0 4295
v3-tiny
Y?SI:O 432 32.8 32.0 17.1 7.82 18.7 168.8
YOI.‘O 47.1 354 339 17.5 6.02 13.2 126.6
v7-tiny
Y\?glgo 49.1 37.5 383 22.8 11.13 284 178.8
YOLO 493 37.6 385 22.8 9.42 21.3 141.7
vlls
Our 54.9 42.8 44.6 271 9.66 47.4 96.9

In Equations 6 to 8, TP, FP, and FN represent true
positives, false positives, and false negatives, respectively. P



and R denote precision and recall, n is the number of classes,
and AP for each class is averaged to compute mAP.

B. Comparative Experimental Results and Analysis

To validate the effectiveness of the proposed approach for
small object detection, representative detectors including
Faster R-CNN, SSD, YOLOv3-tiny, YOLOvSs, YOLOv7-
tiny, YOLOVSs, and the baseline YOLOv1 1s are selected for
comparison. All models are evaluated using a unified training
strategy with an input resolution of 640 by 640. The
quantitative results are summarized in Table 1.

Traditional detectors exhibit limited performance in small
object scenarios. Faster R-CNN and SSD achieve mAP at loU
0.50 values of 33.2% and 23.9%, respectively. Owing to its
shallow architecture, YOLOv3-tiny records precision of
27.8%, recall of 18.5%, mAP at IoU 0.50 of 15.8%, and mAP
at IoU 0.50 to 0.95 of only 6.9%. With the evolution of
detection architectures, YOLOv5s, YOLOv7-tiny, YOLOVSs,
and YOLOvlls demonstrate progressively improved
performance. Among them, YOLOvIls achieves 49.3%
precision, 37.6% recall, 38.5% mAP at IoU 0.50, and 22.8%
mAP at IoU 0.50 to 0.95, representing one of the strongest
lightweight baselines.

In contrast, the proposed method delivers consistent
improvements across all evaluation metrics. Precision and
recall reach 54.9% and 42.8%, improving by 5.6%p and
5.2%p over YOLOv1l1s. The mAP at IoU 0.50 and mAP at
IoU 0.50 to 0.95 increase to 44.6% and 27.1%, corresponding
to gains of 6.1%p and 4.3%p. Compared with other
lightweight models, the proposed approach improves mAP at
IoU 0.50 to 0.95 by 10.0%p over YOLOVSs and by 9.6%p
over YOLOV7-tiny.

In terms of model complexity, FESL-YOLO contains 9.66
million parameters, which is only a 2.5% increase over the
9.42 million parameters of YOLOv1 1s. Despite this marginal
increase, the proposed model achieves performance gains of
6.1%p in mAP at IoU 0.50 and 4.3%p in mAP at IoU 0.50 to
0.95. These results demonstrate that FESL-YOLO
significantly enhances small object detection performance
while maintaining computational efficiency suitable for
resource constrained UAV platforms.

C. Ablation study

To verify the effectiveness of the proposed modifications
for UAV aerial image object detection, ablation experiments
are conducted on the VisDrone2019 dataset using YOLOv11s
as the baseline. The proposed components are introduced
incrementally: FEConv is first integrated into the baseline
model, followed by the addition of the small object detection
layer. The corresponding experimental results are presented in
Table 2.

TABLE II. ABLATION EXPERIMENT RESULT

P R mAP50 mAP50 Param GFLO FPS

:95 s Ps
Yoo 493 376 385 2.8 9.42 213 141.7
+FEConv 510 385 39.6 237 9.46 389 1169
FFEConv 549 4238 44.6 27.1 9.66 474 96.9

+ayer

The experimental results show that integrating the
FEConv module into YOLOvlls leads to consistent
performance improvements. Precision increases by 1.7%p

from 49.3% to 51.0%, recall improves by 0.9%p from 37.6%
to 38.5%, mAP at IoU 0.50 rises by 1.1%p from 38.5% to
39.6%, and mAP at IoU 0.50 to 0.95 increases by 0.9%p to
23.7%. These gains indicate that FEConv effectively enhances
feature representation by strengthening attention to key object
regions, particularly improving local structure modeling for
small objects while suppressing redundant information.

When a dedicated small object detection layer based on
shallow features is further introduced, the performance
improvement becomes more pronounced. Precision increases
by 3.9%p from 51.0% to 54.9%, recall improves by 4.3%p
from 38.5% to 42.8%, mAP at IoU 0.50 rises by 5.0%p from
39.6% to 44.6%, and mAP at IoU 0.50 to 0.95 increases by
3.4%p from 23.7% to 27.1%. This result demonstrates that the
integration of shallow and deep features -effectively
compensates for the loss of small object information in deeper
layers, significantly enhancing the detection of small and low
contrast objects.

Overall, the proposed lightweight modifications
substantially improve small object detection performance,
confirming the robustness and practical applicability of the
proposed architecture in dense and complex background
scenarios.

D. Qualitative result

To demonstrate the effectiveness of our method in
complex real-world scenarios with ease and convenience, we
select representative UAV images from the VisDrone2019
dataset for visualization-based comparative experiments. In
Figure 5, we present the original images (a), detection results
of YOLOVI11 (b), and detection results of our method (c). In
the red rectangular regions, the main areas of comparison are
visually highlighted and demonstrate the practical benefits of
our method for small-object recognition, occlusion handling,
and dense-region detection.

() (b) (©)

Figure S. Detection performance comparison result on VisDrone2019
dataset. (a) Original image, (b) YOLOvV11s, (¢) FESL-YOLO.

Under poor lighting conditions, the first sample contains
targets that are extremely small. The proposed method is
robust to low-resolution inputs and successfully detects these
micro objects despite noise interference, demonstrating its
robustness to low-resolution inputs. YOLOv11 is unable to
reliably detect these micro objects.



Partially obscured targets are present in a cluttered
background in the second sample. Uncertain predictions cause
YOLOV11 to produce false positives and miss detections. On
the other hand, the proposed method effectively eliminates
background interference, separates overlapping objects, and
produces more precise bounding boxes for occluded or blurred
targets.

The third sample displays multiple small vehicles and
pedestrians densely distributed throughout the scene. Missed
detections and localization errors are common in YOLOvI11,
with many objects being either undetectable or poorly aligned.
By detecting small objects with tighter and more precise
bounding boxes, the proposed approach shows stronger
perception in dense small-object scenarios.

Targets with similar visual appearances are heavily
occluded and densely packed in the fourth sample. YOLOv11
has a problem with missed detections and class confusion,
especially when it comes to motorcycles and vehicles.
Improved stability is demonstrated by the proposed method's
ability to accurately distinguish object categories and produce
bounding boxes that closely match object boundaries, even in
low-contrast conditions.

The proposed method consistently enhances the detection
accuracy of small objects that are obscured or distributed in a
dense way while also maintaining reliable performance in
low-light and complex background scenarios.

V. CONCLUSION

In this paper, we proposed FESL-YOLO, a lightweight
small object detection framework for UAV aerial imagery.
Comparative experiments show that the proposed method
achieves the highest overall detection performance, with a
mAP@50 of 44.6 and a mAP@50:95 of 27.1, clearly
outperforming recent YOLO-based detectors. In particular,
the improved precision of 54.9 and recall of 42.8 indicate a
substantial reduction in both false and missed detections,
which are critical issues in small object recognition.

Despite the accuracy improvement, FESL-YOLO
maintains a compact model size with 9.66 million parameters
and achieves real-time inference at 96.9 frames per second.
Although the computational cost is higher than some
lightweight baselines, the accuracy gain demonstrates an
effective trade-off for practical UAV deployment.

Future work will focus on reducing computational
complexity through network optimization and lightweight
design strategies, while extending the proposed approach to
broader aerial surveillance scenarios.
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