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Abstract—Email remains the most targeted vector for cy-
berattacks, with phishing and spam causing severe financial
and reputational damage worldwide. Although machine learning
(ML) has improved detection accuracy, current systems still face
challenges balancing precision and efficiency under high-volume
conditions that can trigger resource exhaustion attacks. This
paper introduces an adaptive email threat detection framework
combining deep learning with fuzzy hashing for accuracy and
speed. Five models: Random Forest, Support Vector Machine,
LSTM, Bidirectional LSTM (BLSTM), and Bidirectional GRU
were trained on 85,736 emails spanning 2000 to 2024, including
50,374 spam and 35,362 legitimate messages from CEAS, Enron,
Ling-Spam, and 2023–2024 archives. The BLSTM achieved
the best performance with 99.18% accuracy, 99.00% preci-
sion, 99.25% recall, and a 99.17% F1-score, outperforming
ML baselines (RF: 98.92%, SVM: 98.72%). Cross-temporal
validation on unseen 2023 data confirmed strong generalization
(96.25%). A hybrid BLSTM-SSDEEP system reduced detection
time from 65.19 s to 14.74 s (77.4% faster) while sustaining 99%
accuracy, demonstrating an effective and scalable defense against
polymorphic phishing, large-scale spam, and resource exhaustion
attacks.

Index Terms—Email, Security, Spoofing, Spam, Phishing, Deep
learning.

I. INTRODUCTION

Email has become the backbone of modern digital commu-
nication, yet this ubiquity has made it the primary attack vec-
tor for cybercriminals [1]. Phishing attacks continue to pose a
significant threat in the ever-evolving cybersecurity landscape,
with email remaining the most common vector, accounting for
over 90% of cyberattacks [2]. These threats present consider-
able dangers to both individuals and organizations, frequently
leading to financial losses, data breaches, and reputational
damage. Business Email Compromise (BEC) and phishing
schemes have become increasingly sophisticated, leveraging
social engineering and advanced evasion techniques to bypass
traditional security measures [3].

Email spoofing, characterized by the manipulation of sender
information to deceive recipients, exploits weaknesses in
email authentication protocols such as SPF, DKIM, and
DMARC [4]. Attackers employ various techniques including
domain spoofing, display name impersonation, and malicious
attachments to infiltrate systems. Phishing campaigns amplify
these threats by inducing victims to disclose sensitive informa-
tion or execute harmful actions, such as downloading malware
or transferring funds to fraudulent accounts [5].

Traditional methods like rule-based systems, blacklists, and
signature filters face limitations in scalability and adaptability,

struggling against zero-day attacks and polymorphic phishing.
ML and DL models, including Bidirectional LSTM (BLSTM),
show strong performance in detecting advanced phishing [6].
Yet, these approaches must balance high detection accuracy
with computational efficiency, especially under high-volume
email traffic, where resource exhaustion attacks are a concern.

A complementary technique gaining attention is fuzzy
hashing, which helps detect spam that has been slightly
altered. Unlike traditional hashes that change completely with
small modifications, fuzzy hashing methods like SSDEEP
generate similarity scores [7]. This makes it easier to identify
polymorphic spam designed to avoid detection. By comparing
emails to known malicious patterns, fuzzy hashing can filter
out clear threats before more resource-intensive deep learning
models are applied [8].

Despite recent progress in ML-based email security, a few
key issues are still unresolved. Many studies rely on small or
outdated datasets, often fewer than 30,000 emails and missing
recent spam trends, which limits how well their models
handle current threats. Deep learning models also require
heavy computation, making them hard to use efficiently in
environments that process thousands of emails each minute. In
addition, hybrid methods that blend deep learning’s semantic
strengths with faster similarity-based techniques have not been
fully studied yet.

This paper addresses these gaps by proposing and eval-
uating a hybrid email threat detection system that integrates
BLSTM with SSDEEP fuzzy hashing. Our main contributions
are:

1) A comprehensive email dataset comprising 85,736 sam-
ples from four distinct sources spanning 24 years
(2000-2024), enabling robust evaluation across temporal
boundaries.

2) Systematic empirical comparison of five ML and DL
models (Random Forest, SVM, LSTM, BLSTM, and
Bidirectional GRU) with detailed performance analysis
across multiple metrics, demonstrating BLSTM supe-
riority and quantifying cross-temporal generalization
capabilities.

3) A novel hybrid detection architecture that reduces pro-
cessing time by 77.4% (from 65.19s to 14.74s per
100,000 emails) while maintaining 99% accuracy, ef-
fectively addressing the accuracy-efficiency trade-off
critical for production deployment.

4) Analysis of optimal system parameters and evaluation



under realistic adversarial scenarios, including large-
scale spam campaigns, polymorphic phishing, and ML-
targeted resource exhaustion attacks.

The remainder of this paper is organized as follows: Section
II reviews related work and performance benchmarks. Section
III discusses key challenges in email threat detection. Section
IV details our methodology, including dataset construction,
model development, and hybrid system design. Section V
presents experimental results and comparisons. Finally, Sec-
tion VI concludes the paper and highlights future research
directions.

II. RELATED WORK

Email security has been studied using traditional machine
learning, deep learning, natural language processing, and hy-
brid approaches. This section reviews recent advances and sets
performance benchmarks for comparison with our proposed
system.

A. Deep Learning Approaches

Wolert et al.. [9] developed a phishing detection system
using Bidirectional LSTM with FastText embeddings, prepro-
cessing both balanced and imbalanced datasets. On 25,539
emails from 1998–2022, it achieved 99.12% accuracy and
98.96% F1-score. Implemented as a browser plug-in for real-
time protection, it shows practical value, though dataset size
and high-volume performance remain potential limitations.

Alshawi et al. [10] used both traditional ML and deep
learning methods, focusing on BERT-based models for spam
email classification. Their preprocessing included tokeniza-
tion and lemmatization. Results showed that LSTM and Bi-
LSTM models outperformed traditional approaches like KNN,
emphasizing the value of contextual word embeddings for
capturing semantic features and improving detection accuracy.

B. Enhanced Authentication and Header Analysis

Shukla et al. [11] improved spoofed email detection by
combining traditional authentication headers (SPF, DKIM,
DMARC, ARC) with BIMI (Brand Indicators for Mes-
sage Identification) and X-FraudScore, raising accuracy from
96.15% to 97.57%. They also added a URL validation module
that cut identification time from 35 to 27 seconds using local
MX record databases. The study highlights the importance of
real-time alerts for faster incident response.

Beaman et al. [12] used only email header information
to detect spam and phishing, achieving 98% accuracy with
supervised and one-class learning methods. They tested algo-
rithms like Random Forest, SVM, and KNN, showing that
headers alone can effectively distinguish malicious emails
while saving computational resources. However, the study was
limited to one email server over a single year, raising questions
about generalizability across different organizational contexts
and temporal periods.

C. Comprehensive ML-Based Systems

Moutafis et al. [13] developed a spam filtering system using
ten ML techniques, including SVM, KNN, Decision Trees,
and Neural Networks. It classified emails and produced CSV
logs with sender metadata for forensic analysis. Testing on the
Enron and SpamAssassin datasets showed high accuracy, with
Neural Networks reaching 99.51%. Designed to supplement
existing spam filters, the system adds an extra layer of protec-
tion, though its scalability to larger enterprise environments
remains untested due to the small dataset of 3,052 emails.

Nivedha et al. [14] proposed a spam detection method using
Random Forests combined with NLP, targeting threats like
identity theft and financial fraud. Their approach involved
collecting data, extracting features from email headers and
bodies, and using ensemble decision trees. The study showed
that combining multiple weak learners improves filtering
accuracy and reduces security risks from spam attacks.

D. Integrated Security Platforms

Pascariu et al. [15] developed a Smart Email Security
Assistant combining NLP, behavioral analytics, and neural
networks. Its modular design includes system integration,
blacklist filtering, Indicator of Compromise (IoC) detection,
and an interactive dashboard for threat visualization. The
multi-layered approach supports both end users and security
analysts, though its complexity may make deployment difficult
in resource-limited environments.

E. Survey and Synthesis Studies

Sethuraman et al. [16] conducted a comprehensive exami-
nation of AI and ML techniques in spam detection and email
spoofing prevention. They emphasized analyzing both headers
and email content and highlighted concept drift, where spam
evolves, as a key challenge for supervised models. The study
recommends hybrid, multi-algorithm systems to improve de-
tection performance and resilience against adversarial tactics.

F. Performance Benchmark and Research Gaps

Table I summarizes the performance characteristics and
dataset properties of recent related work, establishing bench-
marks for comparison with our proposed system.

While these studies demonstrate substantial progress in
email security, several critical gaps persist. First, most em-
ploy datasets that are either small-scale (< 30,000 emails)
or temporally limited, potentially limiting their effectiveness
against contemporary, evolving threats. Second, few studies

TABLE I
PERFORMANCE BENCHMARK OF RELATED WORK

Study Best Acc. Dataset Size Years Det. Time
Wolert et al. [9] 99.12% 25,539 1998–2022 N/R
Shukla et al. [11] 97.57% N/R – 27 s
Beaman et al. [12] 98.00% 75,000 2007 N/R
Moutafis et al. [13] 99.51% 3,052 2002 N/R
Alshawi et al. [10] N/R N/R – N/R
Our Work 99.18% 85,736 2000–2024 14.74 s*
*Detection time for 100,000 emails using hybrid system.
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systematically evaluate computational efficiency and scalabil-
ity under realistic high-volume conditions, despite these being
critical factors for production deployment. Third, hybrid ap-
proaches that leverage complementary detection paradigms by
combining the semantic understanding of deep learning with
the computational efficiency of similarity-based techniques
remain largely unexplored. Finally, none of the reviewed work
addresses vulnerability to ML-targeted resource exhaustion
attacks, where adversaries deliberately generate high-volume
spam to overwhelm detection systems. Our work addresses
these gaps by developing a hybrid system that balances
accuracy and efficiency, validated on a temporally diverse
dataset spanning 24 years, and explicitly evaluated under
adversarial high-volume scenarios.

III. CHALLENGES IN DETECTION AND PREVENTION

Email threat detection faces five critical challenges that
motivate our hybrid approach.

Feature Engineering: Traditional ML requires labor-
intensive manual feature selection, demanding deep domain
expertise and limiting detection performance [17].

Temporal Drift: Models trained on outdated or imbalanced
datasets perform poorly against emerging attacks, leading
to reduced accuracy, while adversarial contamination further
undermines robustness [17].

Real-Time Updates: Dynamic threat landscapes require
continuous intelligence integration and model retraining, yet
maintaining operational stability under these conditions re-
mains challenging [18].

BEC Detection: Business Email Compromise attacks lack
traditional malicious indicators, relying instead on social en-
gineering. This makes them resistant to conventional detection
methods and requires specialized approaches [19].

Efficiency Trade-offs: Deep learning models achieve high
accuracy but create computational bottlenecks in high-volume
environments. Resource-intensive inference makes systems
vulnerable to deliberate resource exhaustion attacks [19].

These challenges necessitate hybrid systems that balance
accuracy with efficiency, adapt through continuous learning,
and integrate complementary detection paradigms.

IV. RESEARCH METHODOLOGY

Building on the literature review, we outline our methodol-
ogy for evaluating spam detection approaches. We first con-
struct a representative dataset that mirrors real-world spam.
Next, we test and fine-tune multiple ML and DL models with
proven performance. Finally, we develop and evaluate a hybrid
system that integrates ML with complementary techniques,
such as fuzzy hashing.

A. Dataset

A comprehensive dataset was constructed by integrating
multiple well-established email corpora with recent spam
collections to reflect both historical and current characteristics
of spam and legitimate emails. Older datasets were included
to emphasize the effect of temporal drift and demonstrate

TABLE II
SUMMARY OF SPAM AND HAM EMAIL DATASET.

Dataset CEAS Enron Ling-Spam Spam2023 Spam2024 Total
SPAM 21,848 11,977 418 9,718 4,413 50,374
HAM 17,186 15,764 2,412 – – 35,362

the importance of using updated data for improved detection
accuracy.

• CEAS 2008 (2008) [20], [21]: Contains balanced sam-
ples of real-world spam and legitimate (ham) emails from
the Conference on Email and Anti-Spam challenge.

• Enron Email Dataset (2004) [21], [22]: Comprises
corporate communications from Enron’s senior manage-
ment, widely used in spam filtering research.

• Ling-Spam Corpus (2000) [21], [23]: Includes legiti-
mate messages from a linguistics mailing list combined
with spam, used in early spam classification studies.

• Spam2023 and Spam2024 Archives [24]: Collected
from the Untroubled.org Spam Archive, consisting of
continuously updated spam samples captured from bait
addresses, representing modern spam behaviors.

After preprocessing using Python, the dataset retained two
textual features: Email Subject, Email Header, and one binary
label. The final dataset composition is summarized in Table II.

B. Model Development

We implemented and evaluated five models covering both
traditional machine learning and deep learning. For ML, we
used Random Forest (100 decision trees) and Support Vector
Machine with a linear kernel (C=1.0), both effective for
text classification. For DL, we tested three recurrent models:
LSTM (two layers: 128, 64 units) for capturing long-term
dependencies, Bidirectional LSTM for understanding context
in both directions, and Bidirectional GRU, a lighter model
with 25% fewer parameters but similar accuracy. All DL
models used 300-dimensional FastText embeddings, Adam
optimizer (learning rate 0.001), binary cross-entropy loss,
batch size 32, dropout (0.3), and EarlyStopping to prevent
overfitting. The ML models used TF-IDF vectors with 5,000
features, including unigrams and bigrams. This setup allowed
us to compare models across accuracy, efficiency, and general-
ization, giving a clear view of their strengths and weaknesses.

C. Experimental Results and Analysis

We conducted four systematic experiments to evaluate
model performance across temporal boundaries and dataset
configurations. All models were trained for a maximum of 50
epochs with EarlyStopping monitoring validation loss.

1) Experiment 1: Baseline Performance on Historical
Data: Dataset A combined CEAS, Enron, Ling-Spam, and
Spam2024, totaling 78,018 emails. Spam2023 was deliber-
ately excluded to enable cross-temporal validation in subse-
quent experiments. Table III presents the performance metrics
for all five models.

Deep learning models significantly outperformed traditional
ML approaches, with BGRU achieving 99.13% accuracy
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TABLE III
PERFORMANCE METRICS ON DATASET A (TRAINING)

Model Acc. Prec. Rec. F1 Loss
RF 0.9865 0.9902 0.9828 0.9865 –
SVM 0.9848 0.9843 0.9854 0.9848 –
LSTM 0.9858 0.9770 0.9951 0.9859 0.04
BGRU 0.9913 0.9925 0.9902 0.9913 0.03
BLSTM 0.9911 0.9915 0.9908 0.9911 0.04

TABLE IV
CROSS-TEMPORAL VALIDATION ON SPAM2023 TEST SET

Model Acc. Time (s) Degrad.
RF 0.8907 2.87 -9.58%
SVM 0.9024 21.10 -8.24%
LSTM 0.9650 3.37 -2.08%
BGRU 0.9597 4.63 -3.16%
BLSTM 0.9625 5.20 -2.86%

and BLSTM 99.11%, compared to RF (98.65%) and SVM
(98.48%). The bidirectional architectures’ superior perfor-
mance demonstrates the value of capturing contextual infor-
mation from both directions in email text.

2) Experiment 2: Cross-Temporal Generalization: To as-
sess robustness against temporal drift, models trained on
Dataset A were evaluated on Spam2023, a held-out dataset
from a different time period. Table IV shows both accuracy
and inference time for 9,718 spam samples.

Deep learning models demonstrated superior generalization,
with LSTM maintaining 96.50% accuracy despite the tempo-
ral gap. Traditional ML models suffered substantial degrada-
tion (RF: -9.58%, SVM: -8.24%), highlighting their sensitivity
to evolving spam patterns. This validates the importance of
semantic understanding for detecting novel attack variants.

3) Experiment 3: Enhanced Training with Recent Data:
To investigate whether incorporating contemporary spam
improves performance, we created Dataset B by merg-
ing Spam2023 and Spam2024, splitting them evenly into
training (Spam23 24 Train, 7K samples) and testing
(Spam23 24 Test, 7K samples) subsets. Dataset B training
set combined Spam23 24 Train with CEAS, Enron, and Ling-
Spam.

All models improved with updated training data (Table V),
with BLSTM achieving 99.18% accuracy. Notably, traditional
ML models also benefited significantly (RF: +0.27%, SVM:
+0.24%), confirming that dataset recency is critical across all
learning paradigms.

4) Experiment 4: Validation on Contemporary
Spam: Models trained on Dataset B were evaluated
on Spam23 24 Test to assess performance on truly
contemporary spam patterns (Table VI).

BLSTM maintained the highest accuracy at 99.13%,
demonstrating robust generalization to contemporary threats
when trained on diverse temporal data. LSTM achieved
98.61%, while traditional methods remained below 98.5%.

5) Comparative Analysis: Figure 1 visualizes model per-
formance across all experiments, highlighting the accuracy-
generalization trade-off.

TABLE V
PERFORMANCE METRICS ON DATASET B (TRAINING)

Model Accuracy Precision Recall F1 Loss
RF 0.9892 0.9928 0.9854 0.9891 –
SVM 0.9872 0.9884 0.9857 0.9870 –
LSTM 0.9910 0.9913 0.9905 0.9909 0.03
BGRU 0.9891 0.9920 0.9859 0.9889 0.03
BLSTM 0.9918 0.9900 0.9925 0.9917 0.03

TABLE VI
VALIDATION RESULTS ON SPAM23 24 TEST

Model Accuracy Time (s)
RF 0.9804 2.06
SVM 0.9731 16.6
LSTM 0.9861 2.46
BGRU 0.9811 3.38
BLSTM 0.9913 3.88

Key findings from our experiments include: (1) BLSTM
consistently achieved the highest accuracy across all condi-
tions, establishing it as the optimal architecture for email
threat detection; (2) deep learning models exhibited superior
cross-temporal generalization, maintaining >96% accuracy on
held-out time periods compared to <91% for traditional ML;
(3) incorporating recent spam samples significantly improved
all models, with average gains of +5.4% for DL and +8.5% for
ML on cross-temporal tests; and (4) inference time remained
practical across all models (<22 seconds for 9,718 emails),
with RF offering the fastest detection (2-3 seconds) and SVM
the slowest (16-21 seconds).

These results validate that BLSTM provides the optimal
balance of accuracy and generalization for production deploy-
ment, while also confirming that continuous dataset updating
is essential for maintaining detection effectiveness against
evolving threats.

D. Hybrid Detection System

While BLSTM achieves excellent accuracy (99.18%), its
computational demands create bottlenecks in high-volume
scenarios. Processing 100,000 emails requires approximately
65.19 seconds, making the system vulnerable to resource

RF SVM LSTM BGRU BLSTM
0.85

0.9

0.95

1

A
cc

ur
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y

Dataset A (Train) Spam2023 (Test)
Dataset B (Train) Spam23 24 (Test)

Fig. 1. Model Performance Across Experimental Conditions
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Fig. 2. Hybrid Spam Detection using Fuzzy Hashing and BLSTM.

TABLE VII
HYBRID SYSTEM DETECTION TIME (110,000 EMAILS)

Threshold
Queue

Size
SSDEEP
Time (s)

TLSH
Time (s)

Speedup
vs BLSTM

BLSTM Only 65.19 65.19 1.0×
60 1000 24.04 20.97 3.1×

70
1000 24.87 20.67 3.2×
250 16.39 15.29 4.3×
100 14.74 14.21 4.6×

80 1000 28.63 21.06 3.1×

exhaustion attacks and limiting real-time applicability. To
address this accuracy-efficiency trade-off, we propose a hybrid
architecture that combines fuzzy hashing for rapid pre-filtering
with BLSTM for semantic analysis.

1) Architecture Design: The hybrid system works in two
stages (Figure 2). Emails arrive in batches of 1,000 and are
first compared using fuzzy hashing against a dynamic queue
of recent spam patterns. Emails above a similarity threshold
are flagged as spam, while ambiguous cases are passed to a
BLSTM model for deeper semantic analysis. Newly detected
spam patterns are added to the queue, allowing the system to
adapt continuously.

2) Fuzzy Hashing Techniques: We tested two fuzzy hash-
ing algorithms: SSDEEP (SpamSum) and TLSH (Trend Lo-
cality Sensitive Hash). SSDEEP splits content into variable-
length chunks, enabling partial matches even with minor
changes and works on content as small as a few bytes.
TLSH generates compact hashes using sliding windows and
quantization, producing similarity scores, but requires at least
50 bytes, which matters for short, subject-only emails.

3) Performance Evaluation: The hybrid system was eval-
uated on a realistic dataset of 110,000 emails (100,000
spam, 10,000 ham) under various configuration parameters.
Table VII presents detection times for different threshold and
queue size combinations.

The optimal configuration (threshold=70, queue size=100)
achieved 77.4% time reduction (65.19s → 14.74s with SS-
DEEP, 14.21s with TLSH) while maintaining 99% accuracy.
Figure 3 visualizes the threshold-efficiency relationship.

4) Threshold and Queue Size Analysis: Lower thresholds
(60) increase false positives in fuzzy matching, routing more
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Fig. 3. Detection Time vs. Threshold: Hybrid System Performance. Op-
timal configuration (threshold=70, queue=100) achieves 4.6× speedup over
BLSTM-only approach.
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Fig. 4. Detection time comparison between baseline and hybrid variants.
Hybrid SSDEEP and TLSH achieve up to 4–5× faster detection compared to
the BLSTM baseline.

emails to BLSTM and reducing speedup. Higher thresholds
(80) increase false negatives, requiring BLSTM analysis of
similar variants and degrading efficiency. Threshold 70 bal-
ances precision and recall in the pre-filter stage.

Larger queue sizes (1000) slow hash comparison operations
while providing minimal detection improvement, as spam
patterns exhibit high temporal locality—recent patterns are
most relevant. Queue size 100 provides optimal memory-
speed trade-off, maintaining sufficient pattern diversity while
enabling fast lookups.

5) Comparative Visualization: Figure 4 illustrates the dra-
matic efficiency gain of the hybrid approach across different
configurations.

6) Deployment Scenarios: The hybrid system addresses
five critical operational challenges:

Polymorphic Spam Campaigns: Template-based spam
with minor variations (subject line changes, token substitu-
tion) shares high fuzzy hash similarity. Pre-filtering captures
60-80% of campaign emails, dramatically reducing BLSTM
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load.
Replay Attacks: Identical spam sent to multiple recipients

is instantly detected via exact hash matching, bypassing deep
learning entirely.

Email Bombing (DDoS): Massive spam volumes designed
to overwhelm detection systems are filtered at the fuzzy hash
stage, preventing BLSTM resource saturation and maintaining
service availability.

ML-Targeted Attacks: High-volume spam designed to
exhaust ML resources is mitigated through lightweight pre-
filtering, preserving BLSTM capacity.

Threat Intelligence Integration: New spam patterns de-
tected by BLSTM automatically update the hash queue, pro-
viding immediate protection without retraining.

These features make the system suitable for enterprise
deployment, handling thousands of emails per minute while
ensuring both accuracy and operational resilience.

V. COMPARISON WITH RELATED WORK

As summarized in Table VIII, our hybrid BLSTM-based
model achieved a high detection accuracy of 99.18% while
reducing detection time by approximately 75%. Unlike several
previous studies that relied on limited or outdated datasets, our
work incorporates four diverse sources spanning from 2000
to 2024, totaling 85,736 emails. This broader dataset enables
better generalization and improved detection of modern spam
patterns.

TABLE VIII
COMPARISON WITH RELATED WORK.

Related
Work

Best Accuracy Dataset Years Dataset
Sources

HAM SPAM TOTAL

Shukla et
al. [11]

RF: 97.57% Not provided – – – –

Wolert et
al. [9]

BLSTM:
99.12%

1998–2002,
2005–2022

2 14,971 10,568 25,539

Beaman
et al. [12]

MLP: 99.57% 2007 1 75,000 (total) 75,000

Moutafis
et al. [13]

Neural Network:
99.51%

2002 1 2,551 501 3,052

Our
Work

BLSTM:
99.18%

2000, 2004, 2008,
2023–2024

4 35,362 50,374 85,736

VI. CONCLUSION

This work successfully addresses the critical challenge of
balancing accuracy and efficiency in modern email threat
detection. Through extensive evaluation, the Bidirectional
LSTM (BLSTM) model was identified as the most accurate
classifier, achieving 99.18% accuracy on a comprehensive
dataset; however, its computational demand exposed a vul-
nerability to resource exhaustion during high-volume attacks.
To mitigate this, we introduced a novel hybrid framework
that strategically integrates BLSTM with fuzzy hashing (SS-
DEEP). This solution dramatically accelerated detection by
77.4%, reducing processing time from 65.19 s to 14.74 s while
preserving 99% accuracy, thereby establishing a robust and
scalable defense against polymorphic spam campaigns. Future
efforts will focus on developing a public repository for fuzzy
hashes to foster collaborative threat intelligence and further
enhance the detection of near-duplicate email variants.
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