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Abstract—Dashcams have become widely adopted and are
utilized as evidentiary data for traffic accident analysis and
collision reconstruction. In particular, ego-vehicle speed is a
critical variable in accident investigations, as it is directly related
to braking-distance analysis and speeding assessment. However,
estimating ego-vehicle speed from dashcam video requires con-
verting the motion observed in the image plane into the real-
world domain. This conversion process relies on accurate intrinsic
and extrinsic camera parameters. Such requirements are difficult
to satisfy for commercial dashcams, which typically exhibit
significant lens distortion, do not provide accessible calibration
parameters, and are installed with user-specific positions and
orientations. To address these limitations, this paper proposes
a spatiotemporal learning framework that estimates ego-vehicle
speed using only monocular dashcam video, without relying on
any geometric camera information. The proposed framework
integrates a ResNet-based feature extractor with a ConvLSTM
module to model temporal motion patterns. In addition, lane
segmentation is incorporated as an auxiliary task to provide
geometric priors associated with lane structure and road scale.
Experimental results on real-world driving datasets demonstrate
that the proposed method reduces RMSE by 22.1% compared
with state-of-the-art approaches, while requiring no camera
calibration parameters.

Index Terms—Dashcam, Ego-Vehicle Speed Estimation, Lane
Segmentation

I. INTRODUCTION

With the rapid increase in the diffusion of vehicular dash-
board cameras (dashcams), They have become utilized as key
evidence material to determine negligence and reconstruct
accident scenarios in the event of traffic collisions [1]. In
particular, ego-vehicle speed is an essential element in the acci-
dent analysis process for identifying causal relationships, such
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as calculating collision energy, analyzing braking distance, and
determining speeding violations.

Conventionally, vehicle speed is measured via Global Posi-
tioning System (GPS) signals. However, in GPS-denied envi-
ronments—such as tunnels, underpasses, and urban canyons
densely populated with skyscrapers signals are frequently
interrupted, or data becomes unreliable due to multipath error
[2]. Consequently, vision-based speed estimation technology,
which calculates vehicle speed by analyzing dashcam video
alone without reliance on GPS, has emerged as a critical
research topic.

To estimate accurate vehicle speed from video, a process
of converting the 2D pixel coordinate system to the 3D
world coordinate system is required. This necessitates precise
knowledge of intrinsic parameters and extrinsic parameters.
However, given the vast variety of dashcams on the market and
the idiosyncratic installation positions and angles chosen by
users, it is practically difficult or impossible to retrospectively
determine the exact parameters of a specific camera during
post-accident analysis.

To overcome these limitations, this paper proposes a deep
learning-based methodology capable of precisely estimating
ego-speed using only visual cues within the image, without
any camera calibration information. Specifically, we focus on
the fact that lanes on the road contain consistent standard-
ized specifications and geometric information. Lanes provide
powerful geometric priors for identifying vanishing points and
understanding road perspective, serving as crucial clues for
inferring scale even in the absence of camera parameters.

Therefore, we propose an end-to-end network that learns
spatiotemporal features of video sequences via a Convolutional
LSTM (ConvLSTM) [3]-based recurrent neural network, while



simultaneously using lane segmentation as an auxiliary task to
significantly improve speed estimation accuracy.

The main contributions of this paper are as follows:
• We present a methodology capable of precise ego-speed

estimation by leveraging the geometric context provided
by lanes, even in scenarios where intrinsic and extrinsic
camera parameters are entirely unknown.

• We proposed a multi-task framework that incorporates
lane segmentation as an auxiliary task to explicitly cap-
ture the spatiotemporal dynamics of the road.

• To the best of our knowledge, the proposed model
achieves a performance improvement of approximately
22.1% in RMSE and 27.3% in MAE compared to current
state-of-the-art (SOTA) models in the field of ego-speed
estimation.

The paper is organized as follows: Section 2 reviews ex-
isting methods for ego-vehicle speed estimation. Section 3
introduces the proposed architecture designed to learn spa-
tiotemporal information based on lanes. Section 4 presents
the experimental setup and evaluation results, and Section 5
concludes the paper.

II. RELATED WORKS

Research on vision-based ego-speed estimation has evolved
from geometric modeling to deep learning-based End-to-End
learning, keeping pace with advancements in computer vision
technology.

Initially, research primarily focused on utilizing geometric
principles. Representatively, Hayakawa et al. [4] proposed a
framework integrating deep neural networks to estimate 3D
Bounding Boxes, Depth, and Optical Flow, but this method
inherently necessitates the camera’s Projection and Calibration
Matrices to reconstruct 3D world coordinates. To mitigate
these parameter dependencies, recent studies have emerged
that regress speed directly from video using deep learning.
3DCMA [5] improved performance by incorporating a Lane
Segmentation Mask to focus on road regions, while FlexiNet
[6] introduced an adaptive feature synthesis network to capture
subtle spatiotemporal variations and adapt to diverse driving
environments.

However, these state-of-the-art studies rely on benchmark
datasets such as KITTI [7] or nuImages [8], which provide
precise parameters and geometrically rectified images. In con-
trast, commercial dashcams frequently exhibit radial distortion
due to wide-angle lenses, and obtaining calibration parameters
is often impossible. Since existing models are trained under
ideal pinhole camera conditions, their performance is not guar-
anteed on real-world sequences with distortion and unknown
parameters. Therefore, this paper proposes a novel methodol-
ogy capable of robustly estimating speed by leveraging road
context information, such as lanes, even in the absence of
calibration data and in the presence of image distortion.

III. PROPOSED METHOD

In this study, we propose an end-to-end deep learning
framework that estimates precise ego-speed by perceiving

Fig. 1. Overview of the proposed end-to-end network architecture. The model
takes an image sequence as input and extracts features via a shared ResNet
Backbone. The extracted features are then processed by two parallel branches:
the Lane Segmentation Branch (top), which serves as an auxiliary task to
learn geometric context, and the Speed Estimation Branch (bottom), which
utilizes ConvLSTM for spatiotemporal modeling and weighted average speed
regression.

lane information from monocular dashcam video. The overall
network architecture is illustrated in Fig. 1. The proposed
model comprises two primary streams: first, a Speed Es-
timation Branch that extracts spatiotemporal features from
the input video sequence and regresses speed; and second,
a Lane Segmentation Branch used as an auxiliary task to
encourage the model to explicitly learn the geometric structure
of the road. The input data consists of a video sequence
X = {x1, x2, . . . , xT } composed of T consecutive frames.
Each frame passes through a shared ResNet Backbone [9]
to be converted into high-dimensional feature maps FM =
{FM1, FM2, . . . , FMT }. The extracted feature maps FM
then branch into the two streams for speed estimation and
lane segmentation, respectively.

A. Lane Segmentation Branch

To ensure that the shared backbone network clearly learns
the Geometric Structure and Perspective information—which
are critical cues for speed estimation in monocular im-
ages—we utilize the Lane Segmentation Branch as an aux-
iliary path. This branch is involved in loss calculation only
during the training phase and can be optionally omitted during
the inference phase. To restore the spatiotemporal feature
maps FM , which have reduced spatial resolution after passing
through the ResNet backbone, into a precise pixel-level lane
mask, the segmentation head performs a series of feature-
decoding operations. Specifically, the input FM first passes
through a 3×3 convolution layer and a ReLU activation func-
tion to adjust channel dimensions and enhance local spatial
context. The subsequent 1 × 1 convolution layer calculates
class scores to determine whether each pixel belongs to a
Lane or Background. This is then up-sampled to the original
input resolution (H × W ) via bilinear interpolation to form



the final predicted mask Mpred ∈ RH×W . This process can
be mathematically expressed as follows:

Mpred = Upsampling(Conv1×1(ReLU(Conv3×3(FM))))

During training, this branch is optimized by calculating the
Pixel-wise Cross-Entropy Loss between the prediction and the
ground truth lane labels. Such Dense Supervision prevents
the speed estimation model from relying solely on the global
motion of the entire image. Instead, it provides a regularization
effect that forces the backbone to explicitly encode structural
features decisive for scale perception, such as vanishing points,
lane boundaries, and road surface regions.

B. Speed Estimation Branch

The Speed Estimation Branch is responsible for temporally
integrating the spatial features extracted from the backbone
to accurately estimate both the instantaneous speed per frame
vpredt and the weighted average speed of the entire sequence
vpredavg . This branch consists of spatiotemporal modeling, speed
regression, and the definition of the loss function for optimiza-
tion.

1) Spatiotemporal Modeling and Weighted Aggregation:
The backbone feature map sequence FM is input into a
ConvLSTM [3] network to effectively model the temporal
dynamics of the driving scenes. Unlike standard LSTM that
flattens inputs into 1D vectors—thereby losing spatial informa-
tion—ConvLSTM performs all internal gate operations using
convolution. This allows it to learn temporal correlations while
preserving the inherent spatial structure (H×W ) of the feature
maps. The hidden state Ht and cell state Ct at each time step
t are updated based on the states of the previous time step and
the current input as follows:

Ht, Ct = ConvLSTM(FMt, Ht−1, Ct−1), t ∈ {2, ..., T}

The hidden state Ht, updated via ConvLSTM, contains spa-
tiotemporal context information and is passed to the Speed
Head. The Speed Head vectorizes the feature map via Global
Average Pooling and then passes it through a Multi-Layer
Perceptron (MLP) to regress the scalar speed value vpredt for
every frame.

vpredt = SpeedHead(Ht)

After obtaining the speed for individual frames, we introduce a
Linear Weighted Average method instead of a simple average
to calculate the final sequence speed vpredavg . This assigns
linearly increasing weights to frames closer to the current time
step compared to past time steps, thereby sensitively reflecting
recent driving trends such as rapid acceleration or deceleration.

vpredavg =

∑T
t=2 wt · vpredt∑T

t=2 wt

, wt ∈ [1.0, 2.0]

2) Multi-task Objective Function: The proposed network
employs a Multi-task Loss as the objective function to si-
multaneously optimize speed estimation precision and lane
segmentation accuracy. The total loss function Ltotal is defined
as the weighted sum of the frame-wise speed error Lframe,

the average speed error Lavg , and the lane segmentation error
Lseg .

Ltotal = Lframe + Lavg + λsegLseg

Lframe is the Mean Squared Error between the predicted
speed per frame and the ground truth speed. A masking
technique is applied to exclude the first frame from the
loss calculation to account for prediction instability in the
initial state of the sequence. Lavg represents the MSE for the
weighted average speed of the entire sequence, while Lseg

is the aforementioned pixel-wise Cross-Entropy Loss. λseg

is a weighting coefficient that controls the influence of lane
segmentation as an auxiliary task on general training.

Lframe =
1

T − 1

T∑
t=2

(vpredt −vgtt )2, Lavg = (vpredavg −vgtavg)
2

The rationale for dualizing the speed loss function into frame-
level Lframe and average-level Lavg components is to induce
the model to learn both local dynamics and global tendency
in a balanced manner. Lframe forces the model to follow
instantaneous acceleration and deceleration patterns at each
time step, preventing the network from simply blurring pre-
dictions into an average value. Conversely, Lavg acts as a
global constraint across the sequence, mitigating temporary
prediction noise that may occur in individual frames and
securing the stability of the finally calculated average speed
value.

IV. EXPERIMENTAL RESULTS

All experiments in this study were conducted on an NVIDIA
GeForce RTX 3090 GPU with 24GB of VRAM. For model
training, the batch size was set to 1, and the training process
was conducted for a total of 40 epochs. We utilized the Adam
optimizer for optimization, with the initial learning rate set to
0.0001. The input sequence length T was set to 10, enabling
the model to estimate speed based on 10 consecutive video
frames.

A. Datasets
The dataset utilized in our experiments was collected from

actual urban and suburban roads in Daejeon, South Korea.
The data acquisition system captured driving scenes at a
resolution of 1280 × 720 using a front-mounted dashboard
camera. Simultaneously, precise ground truth ego-speed data
was acquired and synchronized via the vehicle’s internal
Controller Area Network (CAN) Bus. Specifically, to ensure
the model operates robustly across varying driving conditions,
we constructed the dataset to encompass diverse road envi-
ronments, including Suburban, Highway, School Zone, Urban,
and Overpass scenarios. Examples of the collected RGB
images and their corresponding ground truth lane masks are vi-
sualized in Fig. 2. The entire collected dataset was partitioned
into training and validation sets; the speed distribution ratio
between these sets is presented in Fig. 3. This distribution was
rigorously designed to evaluate whether the model can secure
generalized performance across low, medium, and high-speed
ranges without being biased toward specific speed bands.



Fig. 2. Representative samples from the collected dataset. The dataset covers diverse driving scenarios including Suburban, Highway, School Zone, Urban, and
Overpass to ensure environmental diversity. The top row displays the raw RGB images captured by the dashcam, and the bottom row shows the corresponding
ground truth lane masks.

Fig. 3. Distribution of ground truth ego-vehicle speeds in the collected dataset.
The histograms display the relative frequency of speed ranges for the training
set (top) and the validation set (bottom). The dataset covers a wide range
of driving conditions, from low-speed urban driving (10-30 km/h) to high-
speed highway driving (over 70 km/h), ensuring the model’s generalization
capability.

B. Quantitative Results

TABLE I
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART MODELS ON THE

COLLECTED DATASET.

Model RMSE (km/h) MAE (km/h)

FlexiNet [6] 16.932 14.724
3DCMA [5] 14.188 10.775

Ours 11.052 7.839

To evaluate the performance of the model, we utilized
Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE), which are widely adopted metrics in regression tasks.
The definitions of these metrics are as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, MAE =
1

N

N∑
i=1

|yi − ŷi|

where N denotes the number of samples, yi represents the
ground truth speed, and ŷi indicates the predicted speed
generated by the model. In our experiments, the weight
λseg for the lane segmentation loss in the proposed model
was set to 0.3. Table I presents the quantitative comparison
results between the proposed model and state-of-the-art speed

estimation models, FlexiNet [6] and 3DCMA [5]. Experi-
mental results demonstrate that the proposed model achieved
a significant performance improvement over the comparative
models. Specifically, in terms of RMSE, the proposed method
reduced the error by approximately 34.7% compared to Flex-
iNet and 22.1% compared to 3DCMA. Similarly, in terms of
MAE, it showed a performance improvement of approximately
46.7% over FlexiNet and 27.2% over 3DCMA. This suggests
that learning geometric context through lane segmentation is
highly effective for speed estimation, even in the absence
of calibration information. Furthermore, across all models,
RMSE values were consistently higher than MAE values.
This is attributed to the fact that RMSE imposes a quadratic
penalty on outliers. It is analyzed that transient prediction
errors occurring during rapid acceleration/deceleration phases
or in sections with unclear lane markings contributed to the
increase in RMSE. However, the proposed model exhibited the
smallest gap between RMSE and MAE among the compared
models, indicating that it possesses the most stable inference
capability even in the presence of outliers.

C. Ablation Study

TABLE II
ABLATION STUDY ON THE IMPACT OF THE AUXILIARY LOSS WEIGHT FOR

LANE SEGMENTATION (λseg ).

λseg RMSE (km/h) MAE (km/h)

0.0 (Baseline) 18.978 16.767
0.1 12.044 8.503
0.3 11.052 7.839
0.5 14.531 10.568
0.7 14.088 11.017

To analyze the impact of employing lane segmentation as
an auxiliary task on speed estimation performance within the
proposed multi-task learning framework, we conducted an
ablation study by varying the lane segmentation loss weight
λseg . The results are summarized in Table II. First, the Base-
line model (λseg = 0.0), which utilizes no lane information,
yielded the lowest performance, recording an RMSE of 18.978
and an MAE of 16.767. This suggests that relying solely



on learning temporal pixel variations has clear limitations in
inferring accurate scale from dashcam where intrinsic and
extrinsic parameters are absent. In contrast, when even a
small amount of lane segmentation loss was incorporated
(λseg = 0.1), the RMSE drastically decreased to 12.044,
demonstrating a significant improvement in performance. This
validates our hypothesis that lane mask information provides
strong cues regarding the road’s vanishing point and geometric
structure, thereby assisting the model in extracting robust
features even without calibration data. Notably, the model
achieved the best performance when λseg was set to 0.3, with
an RMSE of 11.052 and an MAE of 7.839. However, when the
weight was increased beyond 0.3 to 0.5 and 0.7, the RMSE
rose again to 14.531 and 14.088, respectively, indicating a
degradation in performance. This can be interpreted as the
model overfitting to the auxiliary task rather than the main task
when the influence of the auxiliary loss becomes excessively
large, or the optimization focus becoming diverted, leading
to reduced learning efficiency. Consequently, we identified
that λseg = 0.3 represents the optimal balance, effectively
modulating the trade-off between learning geometric features
and optimizing speed regression.

V. CONCLUSION

In this paper, we proposed a ConvLSTM-based multi-task
framework for precise ego-speed estimation in dashcam envi-
ronments. By incorporating lane segmentation as an auxiliary
task, the model explicitly learns geometric context to overcome
lens distortion and the absence of camera parameters. Ex-
periments demonstrate significant performance improvements
over SOTA models, confirming that lane-based geometric
cues play a pivotal role in reducing estimation uncertainty.
Furthermore, the combined loss function effectively balances
instantaneous and global speed learning. This study validates
the feasibility of reliable estimation using only monocular
cameras. While the current framework establishes a baseline
for parameter-free estimation on a single camera type, it
serves as a foundational step toward broader applicability. Our
future research will focus on scalability across diverse imaging
devices. Specifically, we aim to investigate blind parameter
estimation techniques to enable precise speed estimation for
arbitrary camera models, thereby generalizing the framework
to work regardless of camera specifications.
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