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Abstract—Carbon Capture and Storage (CCS) pipelines are
critical to large-scale decarbonization, yet their safety and re-
liability remain challenged by impurity-driven thermodynamic
instabilities, corrosion, and leakage events. Existing monitoring
approaches rely on centralized systems with limited real-time
intelligence and weak auditability of measurement, reporting,
and verification (MRV) data. This paper introduces PredBlock,
a hybrid AI-Blockchain framework for real-time anomaly detec-
tion, flow optimization, and tamper-proof operational logging in
CO2 pipeline networks. A physics-based simulator integrating
the Span-Wagner equation of state and Darcy-Weisbach flow
modeling generated multi-sensor datasets incorporating synthetic
leakage, corrosion, and overpressure anomalies. Random Forest
ensembles achieved high predictive performance with F1-scores of
1.000 (leakage), 0.932 (corrosion), and 0.978 (overpressure), while
a reinforcement learning controller reduced pressure deviation
to <1.5 bar and decreased compressor energy consumption
by 8.7%. The blockchain layer, implemented on a zero-gas
PoA2 PureChain network, ensured immutable logging with a
mean transaction latency of 15.58 ms. The full system achieved
an endto- end latency of 33.9 ms, confirming its suitability
for industrial real-time deployment. PredBlock establishes a
verifiable, predictive, and autonomous CCS pipeline management
framework with significant implications for operational safety
and regulatory compliance.

Index Terms—CCS, CO2 pipeline monitoring, anomaly detec-
tion, blockchain, machine learning, predictive maintenance.

I. INTRODUCTION

Rising CO2 emissions continue to accelerate global warm-
ing, amplifying critical environmental impacts such as floods,
droughts, sea-level rise, and glacier retreat [1]. Carbon Cap-
ture and Storage (CCS) and Bioenergy with CCS (BECCS)
have emerged as essential strategies for achieving large-scale
decarbonization, with CCS alone projected to mitigate up to
7 Gt of CO2 annually by 2050 [2]. National efforts, such as
Sweden’s net-zero target for 2045 and its BECCS removal
goals of 1.8 MtCO2/year by 2030 and 3–10 MtCO2/year by
2045, highlight the growing dependence on CCS systems [3].

Within the CCS value chain, CO2 transportation, partic-
ularly via pipelines, plays a central role due to its cost-
effectiveness, safety, and suitability for continuous, large-
volume transfer. Pipeline performance is strongly influenced
by the chosen capture technique, thermodynamic behavior,
impurity interactions, and dense-phase flow characteristics [2],
[4]. Impurities such as H2O, H2S, N2, O2, CH4, and SO2

can significantly alter density, viscosity, and speed of sound
while introducing risks such as hydrate formation, corrosion,

and crack propagation [5], [6]. These challenges underscore
the need for advanced modeling and monitoring frameworks
beyond traditional empirical or trial-and-error approaches [7],
[8].

Fig. 1. Integration of advance technologies into CCS system for optimization

Digital twin frameworks [9], thermodynamic analyses [10],
[11], and impurity-aware optimizations [12] have advanced
CCS pipeline research; however, they predominantly rely on
centralized systems lacking robust real-time anomaly detection
or verifiable data integrity. Early studies using blockchain
for CCS certification [13], [14] improved transparency but
omitted AI-driven predictive analytics. As a result, modern
CCS infrastructure still lacks integrated systems capable of
combining physics-informed AI prediction with decentralized,
tamper-proof MRV (measurement, reporting, and verification).

Despite the rapid expansion of CCS networks, current
pipeline monitoring systems exhibit three critical limitations as
seen in Table I. First, existing models struggle to detect subtle
impurity-driven deviations or transient pressure anomalies in
real time, especially under noisy or unbalanced operating
conditions [5]. This implies limited predictive capability of
current state-of-the-art methods. Secondly, there is insufficient
data integrity. MRV processes rely on centralized storage,
making them vulnerable to manipulation, delayed reporting,
and non-verifiable logs [13], [14]. Thirdly, there is a lack
of integrated frameworks, as current solutions treat pipeline
thermodynamics, anomaly detection, and auditability as sepa-
rate components, with no unified architecture for real-time AI
forecasting and secure, tamper-proof data management [7], [9].



TABLE I
COMPARISON OF EXISTING CCS PIPELINE APPROACHES AND THE PROPOSED PREDBLOCK FRAMEWORK

Approach Strengths Limitations Gaps Addressed by PredBlock

Digital Twin Frameworks for
CCUS [9]

High-fidelity process models; reduced-
order AI; improved CAPEX/OPEX
performance.

Centralized architecture; limited real-time
anomaly detection; no tamper-proof MRV
integration.

Adds decentralized blockchain verification, sub-40
ms real-time AI detection, and traceable MRV for
operational transparency.

Thermodynamic & Impurity
Studies [5], [10]

Accurate impurity behavior model-
ing; corrosion analysis; robust physical
characterization.

No predictive ML; no real-time leakage/cor-
rosion inference; no secure logging.

Combines physics-informed AI (Span–Wagner +
Random Forests) with blockchain-backed integrity
checks for continuous monitoring.

Pipeline Optimization / Eco-
nomic Models [7], [12]

Network-wide optimization; cost-
efficient pipeline design; impurity-
aware performance modeling.

Static or offline models; no integration with
sensor data; no operational anomaly tracking.

Enables RL-based real-time flow optimization with
measurable gains (8.7% lower compressor energy,
< 1.5 bar pressure deviation).

Blockchain-Based CCS Cer-
tification [13], [14]

Immutable MRV records; enhanced au-
ditability; transparent carbon account-
ing.

No AI prediction; no integration with
pipeline operations; not designed for high-
frequency sensor streams.

Implements PoA2 zero-gas blockchain with sub-16
ms logging and AI-triggered events for traceable
operational safety.

PredBlock (Proposed
Framework)

Unified AI–Blockchain architecture integrating physics-informed ML, multi-sensor anomaly forecasting, RL optimiza-
tion, and tamper-proof MRV for real-time CCS pipeline integrity management.

Quantitatively, impurities can reduce CO2 density by up to
35% [5], corrosion rates can exceed 5.6 mm/yr under reactive
conditions [5], and transport costs account for 60–80% of
total CCS project expenditures [15]. These challenges demand
a next-generation CCS monitoring system that is predictive,
secure, and optimized for real-time operation. To address
these limitations, this paper proposes PredBlock, a hybrid AI–
Blockchain framework that integrates multi-sensor anomaly
detection, impurity forecasting, reinforcement learning (RL)-
based flow optimization, and immutable MRV data logging.
The key contributions are:

1) AI-driven anomaly detection and impurity forecast-
ing: We develop Random Forest models trained on
physics-informed synthetic datasets generated via Span–
Wagner EoS and Darcy–Weisbach flow modeling. These
models detect leakage, corrosion, and overpressure with
high accuracy under unbalanced conditions.

2) Blockchain-enabled verifiable MRV: A PureChain
PoA2 zero-gas blockchain is implemented to provide
tamper-proof storage of sensor readings, predictions,
and alert events, ensuring traceability and regulatory
compliance with negligible latency.

3) Real-time optimization using reinforcement learning:
An RL-based controller minimizes pressure deviation
and compressor energy consumption, demonstrating im-
proved operational efficiency compared to PID control.

4) Integrated architecture for real-time CCS pipeline
management: We propose a low-latency, fault-tolerant,
and scalable design that unifies physics-based simula-
tion, machine learning inference, blockchain logging,
and real-time alerting into a single end-to-end pipeline
management system.

By bridging AI predictive analytics with decentralized data
integrity, PredBlock advances CCS pipeline safety, reliability,
and audit transparency, offering measurable operational gains
in accuracy, latency, and energy efficiency.

II. RELATED WORKS
Carbon Capture, Utilization, and Storage (CCUS) has

emerged as a critical pathway for global decarbonization,
with CO2 transportation via pipelines recognized as the most
efficient and scalable method for continuous, high-volume
transfer [16]. Recent works have examined pipeline thermody-
namics, impurity effects, corrosion mechanisms, and hydraulic
modeling using empirical equations of state (EoS) and high-
fidelity transient simulators [5], [6], [10] (see Table I). These
studies offer strong physical insights but lack real-time pre-
dictive capabilities or automated anomaly diagnostics.

In parallel, digital twin frameworks have begun integrat-
ing process simulation with AI-driven reduced-order models
for CCS optimization [9]. Although effective in reducing
CAPEX/OPEX, these systems remain centralized and do
not incorporate distributed anomaly monitoring or tamper-
evident data pipelines. Optimization-based studies [7], [12]
provide valuable cost and network insights but focus pri-
marily on steady-state or offline analysis. AI-based moni-
toring for pipeline and industrial systems has advanced sig-
nificantly, with Random Forests, LSTMs, CNNs, and Graph
Neural Networks (GNNs) demonstrating strong performance
in fault detection, time-series forecasting, and spatiotemporal
anomaly analysis. However, these methods have not been
widely applied to CCS pipeline impurity forecasting, corrosion
evolution, or multiphase flow diagnostics under dense-phase
CO2 conditions. Furthermore, prior blockchain-based CCS
efforts [13], [14] improved traceability and certification but
did not include AI-driven integrity management or real-time
anomaly tracking.

Despite these advancements, three key gaps persist in cur-
rent CCS pipeline research. One, there is a lack of unified
AI-driven anomaly detection. Existing digital twins and op-
timization models do not incorporate real-time detection of
leakage, corrosion, or impurity-driven instabilities, particularly
under noisy and unbalanced sensor distributions. Furthermore,
insufficient integration of physics-informed. Prior ML studies
rarely fuse mechanistic EoS modeling with high-frequency
sensor data to produce interpretable and physically consistent



predictions for CCS pipelines. Finally, the absence of verifi-
able MRV mechanisms. Blockchain-based CCS systems focus
on certification and carbon accounting but lack integration with
operational anomaly prediction or real-time data provenance.

These limitations highlight the need for an integrated frame-
work that unifies physics-based modeling, AI-driven anomaly
detection, and blockchain-secured MRV for reliable, scal-
able CCS pipeline management. In contrast to prior works,
PredBlock provides a unified architecture combining physics-
informed ML models, multi-sensor anomaly forecasting, RL-
based flow optimization, and blockchain-backed MRV to en-
able predictive, verifiable, and real-time CCS pipeline integrity
management.

III. SYSTEM ARCHITECTURE

The proposed PredBlock framework is a hybrid AI-
blockchain architecture designed to provide real-time anomaly
detection, impurity monitoring, and tamper-proof data logging
for CO2 pipeline networks. The architecture is composed of
three tightly integrated layers: the AI Layer, the Blockchain
Layer, and the Integration Layer (see Fig. 2). Each module
is optimized to ensure low-latency inference, scalable data
handling, and secure measurement, reporting, and verification
(MRV) across the CCS pipeline ecosystem.

A. Design Rationale and Constraints

The system is structured around four core design require-
ments: (1) real-time anomaly detection under sub-50 ms
latency constraints, (2) traceable and immutable MRV suitable
for regulatory compliance, (3) scalability to multi-kilometer
pipeline networks with high-frequency sensor data, and (4)
fault tolerance to ensure uninterrupted operation even under
partial node failure. These constraints informed the selec-
tion of Random Forest models for inference, a PoA2-based
blockchain for logging, and an event-driven integration layer
for orchestrating data flow.

Random Forests (RF) were selected due to their robustness
to noise, interpretability, and low computational footprint
relative to LSTMs or GNNs, making them optimal for edge-
level inference in latency-sensitive environments. Similarly,
the PureChain PoA2 blockchain was chosen over alterna-
tives such as Tendermint or Hyperledger Fabric due to its
zero-gas transaction model, minimal consensus overhead, and
millisecond-level block finalization, enabling continuous high-
frequency MRV logging without throughput bottlenecks.

B. AI Layer (Predictive Monitoring)

The AI Layer acts as the analytical engine of PredBlock,
ingesting high-frequency multi-sensor data streams (pressure,
temperature, flow rate, vibration, and impurity concentrations).
Three dedicated RF classifiers detect leakage, corrosion pro-
gression, and overpressure dynamics. The models integrate
physics-informed features derived from the Span–Wagner
equation of state and Darcy–Weisbach flow modeling, ensuring
prediction consistency with CO2 thermodynamic behavior.
The choice of RF is motivated by their (i) low inference

Fig. 2. The flow chart demonstrating the data flow in the proposed system
for CCS Pipeline during CO2 transportation

complexity O(T · logN), (ii) resilience to class imbalance,
(iii) interpretability for industrial operators, and (iv) high per-
formance in noisy, nonlinear environments. These properties
make them superior to LSTM-based architectures for real-time
edge inference where memory and compute budgets may be
restricted.

C. Blockchain Layer (Secure Data Logging)

The Blockchain Layer provides tamper-proof logging of
sensor readings, prediction outcomes, and alert events. Pred-
Block uses the PureChain PoA2 (Proof-of-Authority and As-
sociation) consensus mechanism to achieve low-latency, low-
cost, and high-throughput data immutability. Unlike Tender-
mint or PBFT-based systems, PoA2 eliminates the overhead
of stake-weighted consensus and supports deterministic block
timing, enabling a mean transaction latency of 15.58 ms under
typical CCS workloads.

Smart contracts store three categories of records: (i) raw
sensor packets, (ii) AI predictions with confidence scores, and
(iii) anomaly alerts with severity indexing. Each block contains
a SHA-256 hash chain to guarantee end-to-end auditability:

hi = SHA256(hi−1 ∥ Di), (1)
where Di represents the compressed data vector for each

recording event. This design ensures that MRV data cannot be
altered without detection, addressing critical regulatory needs
for CCS traceability and compliance (e.g., ISO 27916).

D. Integration Layer (Real-Time Orchestration)

The Integration Layer coordinates data flow across sen-
sors, AI modules, and the blockchain. It implements a four-
stage pipeline: (1) sensor acquisition, (2) AI inference, (3)
asynchronous blockchain commit batching, and (4) real-
time alert evaluation. This event-driven approach decouples
computation-heavy AI tasks from latency-sensitive blockchain
operations, preventing bottlenecks during high-frequency data
ingestion. To enhance robustness, the integration layer includes
fault-isolated channels such that failure in blockchain commit
does not interrupt anomaly detection. The system caches
recent data (latest 1000 samples) in memory for instantaneous



visualization and supports replay-based forensic analysis for
compliance audits.

E. Scalability and Failure Modes

PredBlock is designed for scalability across both pipeline
length and sensor density. Horizontal scaling is achieved by
distributing AI inference tasks across multiple edge nodes,
while the blockchain network can incorporate additional PoA2

validator nodes without impacting latency due to deterministic
block scheduling. Key failure modes and mitigations include:
Sensor failure, which is handled through redundancy and
interpolation; Blockchain node outage using the PoA2 to
ensure continuity through validator rotation; AI model drift,
for periodic retraining supported via blockchain-stored model
hashes; and Network congestion, to commit batching, thereby
preventing throughput degradation.

F. Computational Complexity and Latency Overview

Table II summarizes the complexity and latency profile of
each layer in PredBlock.

TABLE II
COMPUTATIONAL COMPLEXITY AND LATENCY OF PREDBLOCK MODULES

Module Complexity Latency/Throughput

AI Layer (RF Inference) O(T logN) 12–18 ms per sample
Blockchain Commit
(PoA2)

O(1) determinis-
tic

15.5 ms avg commit
time

Sensor Ingestion
Frequency

— 1 sample/min/channel
(scalable to 10 Hz)

End-to-End System La-
tency

— 33.9 ms total

Max Throughput Capacity — > 104 events/min

The combined architecture ensures that AI inference domi-
nates overall latency, while blockchain commits remain suffi-
ciently lightweight to support real-time MRV logging at scale.

IV. METHODOLOGY

The methodology underlying PredBlock integrates physics-
based simulation, machine learning inference, reinforcement
learning (RL) control, and blockchain-backed MRV logging.
The workflow follows a structured pipeline comprising (1)
synthetic data generation and preprocessing, (2) AI model
development, (3) blockchain integration, (4) real-time opti-
mization, and (5) deployment and performance evaluation.

A. Data Generation and Preprocessing

To replicate realistic CCS pipeline behavior, a physics-
informed simulator was developed using the Span–Wagner
equation of state (EoS) for CO2 thermodynamic properties and
the Darcy–Weisbach model with Swamee–Jain friction factor
for fluid dynamics. Pressure drop, density, and viscosity were
computed as:

∆P = f
L

D

ρv2

2
, ρ = 500

(
Pr

Tr

)
[1 + 0.1(Pr − 1)] , (2)

µ = 1.48× 10−6e507/T ,

where Pr and Tr denote reduced pressure and temperature.
Corrosion dynamics were incorporated through Arrhenius-

based kinetics:
CR = Ae−Ea/RT [H2O]α[H2S]

β [SO2]
γ , (3)

allowing controlled manipulation of reactive impurity ef-
fects. Synthetic anomalies, leakage, corrosion progression, and
overpressure excursions were injected using controlled offsets
in pressure, oxygen ingress, vibration, and impurity con-
centrations. Class imbalance was mitigated through inverse-
frequency weighting:

wc =
1

2pc
, (4)

ensuring stable model training despite low anomaly frequency.
B. AI Model Development

Three RF classifiers were trained independently for leak-
age, corrosion, and overpressure prediction using eight key
features: pressure, temperature, flow rate, H2O, H2S, SO2,
O2, and vibration. RF was selected for its low inference com-
plexity, robustness to noise, and interpretability for operational
settings. Node splitting follows the Gini impurity criterion:

G =
∑
i

pi(1− pi), (5)

and hyperparameters were tuned via five-fold cross-
validation to maximize the F1-score:

F1 =
2 · precision · recall
precision + recall

. (6)

Model interpretability was enhanced by feature attribution
analysis, enabling operators to trace anomaly decisions to
underlying physical parameters.

C. Blockchain Integration and Smart Contracts

All sensor packets, predictions, and alert events were
recorded on the PureChain PoA2 blockchain to ensure ver-
ifiable MRV compliance. Blocks were chained via SHA-256
hashing:

hi = SHA256(hi−1 ∥ Di), (7)
where Di is a compressed JSON-like data vector containing

the raw sensor features and model outputs.
Smart contracts implemented two core functions namely:

UpdateLog() : that stores new event records and ensure
chronological consistency; and VerifyIntegrity() : that
Validates block-level hashes to detect tampering. The PoA2

mechanism ensures deterministic block intervals, enabling
sub-20 ms commit times compatible with real-time monitor-
ing.

D. Reinforcement Learning Optimization

To optimize pipeline operating conditions, an RL agent was
trained using a Markov Decision Process (MDP) where the
state st encodes pressure, temperature, and compressor energy.
The reward function penalizes unsafe deviations and excessive
power usage:

Rt = − (λ1|Pt − P ∗|+ λ2CE) , (8)
and Q-learning updates follow:

Q(st, at)← Q(st, at)+α
[
Rt + γmax

a
Q(st+1, a)−Q(st, at)

]
.

(9)



After 105 training episodes, the RL controller stabilized
pressure deviations to below 1.5 bar and improved compressor
efficiency by 8.7% relative to PID control.

E. Performance Evaluation and Deployment

Performance was assessed using accuracy, precision, recall,
F1-score, AUC, and feature importance as AI metrics. Then
for blockchain metrics, commit latency, block production rate,
and hash verification latency are used. End-to-end latency,
throughput, and anomaly response time are used for System-
level performance metrics. The PredBlock achieved a total
system response time of 33.9 ms, dominated by AI infer-
ence and edge-to-chain commit propagation. A lightweight
deployment strategy using containerized microservices ensures
scalability and failover capability, making the system suitable
for industrial CCS pipeline environments.

V. RESULTS AND DISCUSSION

This section presents the performance of the PredBlock
framework across anomaly detection accuracy, model discrim-
inability, feature relevance, blockchain logging efficiency, and
integrated system responsiveness. The results demonstrate that
combining physics-informed AI with a PoA2-based blockchain
enables reliable, real-time CCS pipeline monitoring with min-
imal overhead.

Fig. 3. Frequency distribution of anomaly events across the three key risk
categories (leakage, corrosion and overpressure).

A. Anomaly Distribution & Model Performance

Fig. 3 shows the distribution of anomalies in the synthesized
CCS dataset. Leakage, corrosion, and overpressure anoma-
lies occurred at frequencies of 2.00%, 1.33%, and 0.22%,
respectively, reflecting realistic low-frequency operational dis-
turbances. Despite this imbalance, PredBlock maintained high
predictive stability thanks to the inverse-frequency weighting
scheme applied during training. This highlights the system’s
robustness in detecting rare but critical safety events. Further-
more, the RF classifiers achieved strong predictive accuracy
across all anomaly types with an F1-score of 1.000 for leakage,
an F1-score of 0.932 for corrosion, and an F1-score of 0.978
for Overpressure.

The Receiver Operating Characteristic (ROC) curves in
Fig. 4 show AUC = 1.0 for all classes, indicating high
separability of normal and abnormal states. This performance
is attributed to the integration of physics-based features (Span–
Wagner EoS and flow-derived variables), which significantly
improved interpretability and discrimination under noisy sen-
sor conditions.

Fig. 4. ROC curves demonstrating classifier separability (AUC = 1.0 for all
classes).

B. Feature Importance and Case Study Interpretation

Feature attribution results indicate that Leakage detection is
dominated by O2 ingress, pressure gradients, and vibration
signals. Corrosion detection relies primarily on H2S, SO2,
and H2O concentrations. Overpressure events are driven by
pressure and temperature excursions. Also, time-series case
studies (Fig. 6) demonstrate that prediction confidence sharply
increases during anomalous excursions (e.g., confidence rising
from 0.05 to 0.95 during sudden O2 spikes). This validates the
system’s ability to detect early-stage deviations using multi-
sensor fusion.

Fig. 5. (a) Blockchain transaction latency distribution and (b) time stability
across transactions.

C. Blockchain Layer Performance

The PureChain PoA2 blockchain achieved a mean trans-
action latency of 15.58 ms, with minimal variance across
blocks (Fig. 5). This confirms its suitability for high-frequency
MRV logging in real-world CCS operations. The zero-gas
PoA2 architecture ensures predictable performance without
risking congestion or fee escalation, differentiating it from
PoS or PBFT-based alternatives. Hash chain verification con-
firmed full immutability across all recorded events, and block
generation rates were consistent with deterministic consensus
scheduling.

D. Integrated System Responsiveness

PredBlock achieved an end-to-end system latency of 33.9
ms, with AI inference contributing the largest share and
blockchain commit latency adding minimal overhead. This
meets the real-time requirements for CCS pipeline supervi-
sion, enabling immediate alert generation and safe operational
responses. Furthermore, the RL-based flow optimizer reduced
pressure deviation to below 1.5 bar and achieved an 8.7% re-
duction in compressor energy consumption compared to clas-
sical PID control. This highlights the framework’s dual value:



Fig. 6. Sensor time-series showing pressure, temperature, and impurity concentration dynamics.

proactive safety assurance and operational efficiency enhance-
ment. Overall, PredBlock establishes a scalable, explainable,
and verifiable architecture for CCS pipeline management. By
unifying physics-informed ML, anomaly detection, real-time
optimization, and blockchain-secured MRV, the framework
addresses critical industrial needs for safety, transparency, and
regulatory alignment.

VI. CONCLUSION

This paper presented PredBlock, a hybrid AI–Blockchain
framework for real-time monitoring and secure MRV in CO2

pipeline networks. By combining physics-informed machine
learning, RL-based flow optimization, and a low-latency PoA2

blockchain, the system addresses critical challenges in detect-
ing leakage, corrosion, and overpressure events while ensuring
transparent and tamper-proof data governance. Experimental
results show high anomaly detection performance (F1-scores
up to 1.000), reliable blockchain commit times (15.58 ms),
and an end-to-end latency of 33.9 ms suitable for indus-
trial deployment. Additionally, the RL controller improved
compressor energy efficiency by 8.7% and maintained safe
operating pressures. PredBlock demonstrates that integrating
predictive analytics with secure, verifiable data infrastructures
can significantly enhance CCS pipeline safety and operational
reliability. Future work will extend the framework to field
deployments, incorporate advanced spatiotemporal models,
and support multi-pipeline coordination for next-generation
CCS networks.
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