Mitigating Global Knowledge Forgetting via
Adaptive Decoupled Knowledge Distillation

Hung-Chin Jang
Dept. of Computer Science
National Chengchi University
Taipei, Taiwan, R.O.C.
jang@cs.nccu.edu.tw

Abstract—Federated learning (FL) enables collaborative
model training without exposing raw data; however, conventional
aggregation schemes suffer from global knowledge forgetting
when client data are non-independent and identically distributed
(non-1ID). This paper introduces FedADKD, an FL framework
that performs Adaptive Decoupled Knowledge Distillation.
FedADKD splits distillation into true-class (TCKD) and
non-true-class (NCKD) components and adjusts the TCKD weight
on each client based on quantified data heterogeneity, while
keeping the NCKD weight constant to propagate shared dark
knowledge. Clients with highly skewed data receive a lower TCKD
weight, preserving local characteristics; balanced clients employ a
higher weight, reinforcing inter-client consensus. The adaptive
scheme incurs negligible communication overhead, as it transmits
only a few scalar values per round. Comprehensive experiments
on CIFAR-10 and CIFAR-100 with diverse non-1ID partitions
demonstrate that FedADKD consistently surpasses FedAvg and
FedNTD in global accuracy and markedly lowers forgetting rates.
Ablation studies confirm the independent contribution of adaptive
TCKD weighting, validating its role in reconciling local adaptation
with global integration. FedADKD therefore offers an efficient,
privacy-preserving solution for heterogeneous FL deployments.
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I. INTRODUCTION

The exponential proliferation of Internet of Things (IoT)
devices, mobile platforms, and smart-city applications has
fundamentally altered the data storage landscape. Rather than
residing in centralized repositories, data are increasingly
generated and stored across distributed edge devices. While this
decentralization mitigates single-point failure risks, it introduces
significant  challenges regarding data privacy and
communication overhead. To address these concerns, Federated
Learning (FL) [1] has emerged as a privacy-preserving
paradigm that enables clients to collaboratively train a global
model by exchanging model updates rather than raw data.

The standard FL algorithm, FedAvg [1], aggregates client
parameters via weighted averaging and has proven effective in
many general scenarios. However, in real-world deployments—
such as smart healthcare, where hospital data vary by patient
demographics and equipment—data are often Non-Independent
and Identically Distributed (Non-IID). This statistical
heterogeneity causes local updates to diverge, a phenomenon
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known as client drift [12], which leads to unstable convergence
and catastrophic forgetting of global knowledge during
aggregation [2]. To mitigate the adverse effects of non-IID data,
Knowledge Distillation (KD) [6] has been adapted for FL.
Unlike parameter averaging, KD operates at the output level,
making it more robust to structural model discrepancies. Recent
approaches, such as FedNTD [2], utilize KD to preserve global
knowledge by distilling "Not-True Class" (non-target)
information. While FedNTD effectively recovers some
forgotten knowledge, it is theoretically incomplete; it neglects
"True Class" (target) knowledge, which is essential for task-
specific discrimination. The concept of Decoupled Knowledge
Distillation (DKD) [7] posits that both True-Class KD (TCKD)
and Non-True-Class KD (NCKD) are requisite for optimal
transfer.

However, directly applying DKD to Federated Learning
presents a critical unresolved challenge: adaptability. Existing
distillation frameworks [10], [11], [18] typically employ fixed
weighting coefficients (e.g., a, B) for all clients. This static
approach fails to account for the severe heterogeneity in FL,
where some clients possess highly biased data while others hold
more balanced distributions. Although Adaptive Self-
Distillation (ASD) [19] adjusts weights based on label statistics,
it has not yet been integrated with DKD's decoupled
formulation. Consequently, current state-of-the-art methods
suffer from uneven contributions from distillation, leading to
suboptimal performance in highly heterogeneous environments.
To address these limitations, we propose FedADKD (Federated
Adaptive Decoupled Knowledge Distillation). This novel
framework integrates the decoupled distillation mechanism into
FL while introducing a heterogeneity-aware adaptive weighting
scheme. Specifically, FedADKD fixes the NCKD weight to
ensure consistent dark knowledge transfer but adaptively assigns
the TCKD weight based on each client's data divergence. Clients
with high divergence are assigned lower TCKD weights to
preserve unique local characteristics, while clients with
balanced data receive higher TCKD weights to align closely
with the global model.

The main contributions of this work are summarized as
follows. We introduce FedADKD, the first Federated Learning
framework to integrate Decoupled Knowledge Distillation with
a client-specific adaptive weighting scheme, thereby addressing
the rigidity inherent in existing global knowledge fusion



methods. By dynamically adjusting TCKD weights, FedADKD
significantly mitigates catastrophic forgetting and local bias;
extensive experiments on CIFAR-10 and CIFAR-100
demonstrate that our method consistently outperforms FedAvg
and FedNTD across diverse Non-IID settings. Furthermore, the
proposed solution enhances convergence stability and accuracy
without necessitating raw data sharing or introducing additional
communication overhead, making it an efficient and practical
solution for bandwidth-constrained edge environments.

II.  PROBLEM STATEMENT & ANALYSIS

Existing methods face significant challenges under Non-1ID
conditions: FedAvg suffers from catastrophic forgetting,
FedNTD neglects target-class information, and DKD relies on
static weights that are unsuited to client diversity. To quantify
these limitations, we simulate highly heterogeneous
environments using CIFAR-10 [8] partitioned via Latent
Dirichlet Allocation (LDA) [9], sharding [1], and mixed
configurations.

A. Impact of Non-1ID Distributions on Global Knowledge
Forgetting

To simulate heterogeneity, we distribute CIFAR-10 across
100 clients using LDA with parameter p. We train FedAvg for
200 rounds (10 clients per round, five local epochs). Fig. 1(a)
demonstrates that lower p values (higher heterogeneity)
significantly degrade convergence accuracy, confirming that
divergent client distributions impair global knowledge retention.
To quantify this, we adopt the "forgetting measure" [16], defined
as the maximum decline in class-wise accuracy:
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where c/lgt) denotes the accuracy for class c after round ¢t
and C is the number of classes. As depicted in Fig. 1(b), F
increases sharply as p decreases, confirming that severe
heterogeneity intensifies global knowledge forgetting.

(a) Global Test Accuracy (b) Forgetting Measure

Fig. 1. Global model results under different LDA heterogeneity levels (u): (a)
test accuracy; (b) forgetting measure F.

B. TCKD and NCKD in Federated Learning

FedNTD mitigates forgetting via NCKD and consistently
outperforms FedAvg under high heterogeneity (Fig. 2). To
capture target-specific information, we formulate FedDKD,
which combines TCKD and NCKD. Fig. 3(a) compares
FedDKD with FedNTD under a fixed NCKD weight (8 =1) and
varying TCKD weights (a € {0, 1,3, 5, 10}). Across all values
of a, FedDKD consistently underperforms FedNTD in terms of
global model accuracy. The original DKD definition of NCKD

retains the target-class dimension, leading to residual
interference. In contrast, replacing it with the dimension-
removed formulation of FedNTD significantly improves
performance, as shown in Fig. 3(b), thereby validating the
advantage of simultaneously applying TCKD and NCKD in the
federated context.

(a) LDA partitioning with p = 0.05 (b) Sharding partitioning withs =2

Fig. 2. Global model accuracy of FedAvg vs. FedNTD under different data
heterogeneity settings: (a) LDA partitioning with u=0.05, (b) Sharding
partitioning with s =2.

(a) Original FedDKD formulation vs. FedNTD (b) Modified FedDKD vs. FedNTD

Fig. 3. Global model accuracy of FedDKD vs. FedNTD under LDA
partitioning (n=0.1) with different TCKD weights («): (a) original FedDKD
formulation; (b) modified FedDKD with dimension-removed NCKD.

C. Effect of TCKD Weight Under Varying Heterogeneity

We hypothesize that the optimal TCKD weight (o) depends
on local heterogeneity. While balanced (IID) clients benefit
from strong TCKD to enhance discrimination, skewed (Non-
IID) clients require weaker TCKD to prevent overfitting. This
implies a fixed global a is suboptimal. Experiments in a mixed
environment (1:9 IID/Non-IID ratio) confirm this divergence:
IID clients improve with higher o (Fig. 4(a)), whereas Non-IID
clients perform better with lower a (Fig. 4(b)), validating the
necessity of a client-adaptive strategy.
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(a) Impact on IID clients (b) Impact on Non-IID clients

Fig. 4. Effect of TCKD weight (a) on global model accuracy in a 1:9 IID/Non-
1ID hybrid setup: (a) impact on 1ID clients; (b) impact on Non-1ID clients.

III. METHODOLOGY

In the previous section, we demonstrated that jointly
distilling target-class and non-target-class knowledge captures
multi-level information more completely, and the weight
assigned to target-class knowledge must adapt to each client’s
data heterogeneity. Building on these findings, we propose



FedADKD—Federated Learning with Adaptive Decoupled
Knowledge Distillation—which decouples knowledge into
TCKD and NCKD and dynamically adjusts the TCKD weight
via a heterogeneity metric. The approach aims to suppress global
knowledge forgetting while ensuring stable convergence under
highly non-IID data.
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Fig. 5. The working mechanism of adaptive TCKD and NCKD in FedADKD.

A. FedADKD Overview

FedADKD combines decoupled distillation and adaptive
weighting as shown in Fig.5. Given a sample x with
ground-truth label y:

. The global model g and local model [ produce logits,
which are converted into full probability vectors
(P8,PY) and true—class—removed vectors (P9 P").

. TCKD aligns P8 and P' on the target class, yielding
loss Lycxp; NCKD aligns P9 and P* on the remaining
classes, yielding Lycxp-

. Each client quantifies its data heterogeneity and
generates an adaptive TCKD coefficient ¢ to prevent
overly large or small emphasis on the target class.

The composite loss on client i is
L =Lcg(Phy)+¢-a Lrgp(P, P) +

B+ Lyckp (P!, P9) 2)
where a and f are global hyperparameters.

B. Decoupled Knowledge Distillation

1) True-Class Knowledge Distillation (TCKD)

TCKD specifically aligns the prediction distributions of the
true class between the local and global models. The TCKD loss
is defined as the Kullback-Leibler (KL) divergence between the
probability distributions on the true class.
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29 and z' denote the logits produced by the global and local

models, respectively. P9 and P' are the corresponding
target-class probability distributions obtained through a
soft-max transformation. By designating the ground-truth class
as the focal point of distillation, this loss enables the local model
to replicate the global model’s confidence on that label with
higher fidelity, thereby strengthening the retention of
target-class information within the federated framework.

2) Non-True-Class Knowledge Distillation (NCKD)
NCKD aligns the probability distributions of non-true
classes between global and local models, thereby preserving
global generalized knowledge across classes absent or
underrepresented in local client data. The NCKD loss is also
defined via the KL divergence as follows:
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q° and Z]Z represent the non-target-class logit vectors
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obtained after masking the target-class entry, whereas P and

P? are their soft-max counterparts. Because clients frequently
lack sufficient data for certain classes, NCKD allows the global
model to retain latent knowledge of these non-local categories
and prevents this data from being eroded during successive
rounds of local training.

C. Adaptive TCKD Weight

In the previous section, we showed that the contribution of
target-class knowledge distillation (TCKD) to both accuracy
and knowledge retention is not constant; it must vary with each
client’s data heterogeneity. To quantify heterogeneity, we adopt
the Gini index [17]:

1
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where p_is the class ¢ proportion on the client and C is the
total number of classes. Lower G values indicate highly skewed
(non-11D) data, whereas higher values approach the IID case. To
avoid extreme dispersion of G across clients in a single round,
we apply a monotonic, nonlinear mapping

f(G;,8) =logl1+6-G)~;, 6>0 (6)

where & controls the amplification or compression of
inter-client differences. After normalization, the adaptive TCKD
weight for client i in round t is
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with S© the set of sampled clients. Hence, clients with
highly skewed data automatically receive lower TCKD weight,
mitigating over-emphasis on rare local classes. In contrast,
clients with near-IID data are assigned a higher weight to exploit
their richer class coverage. This adaptive scheme aligns with our
earlier conclusion that dynamic adjustment of TCKD is essential
for simultaneously accommodating diverse local distributions
and global learning objectives.

D. FedADKD Algorithm

FedADKD integrates adaptive TCKD weighting with
decoupled knowledge distillation to handle non-I1ID data while
maintaining stable global learning. Algorithm 1 outlines the
procedure.

Algorithm 1 A Federated Learning Approach based on Adaptive
Decoupled Knowledge Distillation

1. Input: total rounds T, local epochs E, dataset D, sampled clients
sets S® c Sin round ¢, learning rate y, TCKD Weight a, NCKD
Weight

2. Initialize: Server initializes w(0) for global server weight and the

quantified data heterogeneity G = 1 for each node

3. for each communication round t = 1,---,T do

4. Server samples nodes S® and calculates the adaptive
TCKD weights @;, where i € SO by (6),(7)

5. Server broadcasts ¢; and W® « w®

6. for each node i € S in parallel do

7. Calculate quantified data heterogeneity G; by (5 )

8. for Local Steps e = 1,--, E do

9. for Batches b = 1,:--, B do .

10. w® < O - YVWL(\TV(K); [Dl]j) by

(2)

11. end for

12. end for

13. end for

14. Upload G; and w® to server

15. Server Aggregation : w¢*D « ﬁi € S(t)Wi(t)

16. end for

17. Server output :wy

IV. EXPERIMENTS

This section evaluates Fed ADKD under non-IID conditions.
We outline the experimental setup, compare performance
against baselines such as FedAvg and FedNTD, assess global
knowledge retention, and conduct ablation studies to validate
individual component contributions.

A. Experimental Design

1) Datasets and Training Environment
Two standard image classification benchmarks are used:

] CIFAR-10: Contains 10 classes, each with 32 x 32
color images, split into 50,000 training samples and
10,000 test samples.

. CIFAR-100: Comprises 100 classes with identical
image format and structure to CIFAR-10, posing a
more challenging classification task due to increased
class diversity.

We simulate a federated environment with 100 clients (10
sampled per round), each training for five local epochs. The
global model is a four-layer CNN optimized via Momentum
SGD (learning rate 0.01, momentum 0.9, decay 0.99). All

experiments are implemented in PyTorch on an NVIDIA RTX
3070 Ti GPU.

2) Non-IID Data Simulation
Three common partitioning strategies are adopted to
simulate heterogeneous client distributions:

. Sharding: The dataset is label-sorted and split into
equal-sized shards, which are randomly assigned so
that each client receives s shards. For CIFAR-10 with
s=2, each client obtains data from exactly two classes,
generating extreme heterogeneity. Increasing s yields
more balanced distributions.

. Latent Dirichlet Allocation (LDA): Client class
proportions pk~Dir(u) are sampled from a Dirichlet

distribution. Smaller u produces higher skewness,
whereas larger y yields more uniform allocations.

. IID/Non-IID hybrid: To reflect mixed real-world
settings, clients are partitioned into IID and highly
Non-IID groups (the latter using LDA with u=0.05).

These diverse partitioning schemes enable a systematic
evaluation of FedADKD across varying degrees and types of
data heterogeneity, thereby demonstrating its generalization
capability and practical value in federated learning.

B. Performance Analysis under Varying Data-Heterogeneity

We evaluate FedADKD against representative baselines—
including FedAvg, FedNTD, FedCurv [14], FedProx [3],
FedNova [5], SCAFFOLD [4], and MOON [13]—across three
data partitioning strategies. The results are summarized in
Tables I-III.

1) Sharding Strategy

Table I details top-1 accuracy on CIFAR-10 and CIFAR-100
across varying shard sizes (s). Under extreme heterogeneity
(CIFAR-10, s=2), FedADKD reaches 65.68%, significantly
outperforming FedAvg (46.15%) and FedNTD (63.40%). As
shard availability increases (s=5 and s=10), FedADKD
consistently maintains the highest accuracy, notably achieving
33.19% on CIFAR-100 with s=5.

TABLE L ToP-1 ACCURACY (%) ON CIFAR-10 AND CIFAR-100 WITH
SHARDING
Non-IID Partition Strategy : Sharding
CIFAR-10 CIFAR-100
Method

s=2 s=5 s=10 s=5

FedAvg 46.15 64.64 72.15 24.70
FedNTD 63.40 73.74 75.50 32.11
FedNTD+ASD 56.22 71.59 75.09 23.77
FedCurv 51.07 61.64 69.63 21.23
FedProx 43.79 60.65 67.49 24.71
FedNova 44.26 62.95 70.39 21.86



SCAFFOLD 46.76 73.18 76.24 32.62
MOON 43.06 64.04 72.37 24.50
FedADKD 65.68 75.48 71.74 33.19

2) LDA Partition

Table II summarizes the performance under varying levels
of data heterogeneity using the LDA partitioning scheme, where
the Dirichlet parameter u controls the degree of class imbalance.
When p=0.05, FedADKD achieves 56.46% accuracy on
CIFAR-10 and 37.62% on CIFAR-100. Across all values of u
considered, FedADKD consistently attains the highest accuracy
among the evaluated methods, demonstrating robustness to
different levels of data heterogeneity.

TABLE II. Top-1 ACCURACY (%) ON CIFAR-10 AND CIFAR-100 WITH
LDA
Non-IID Partition Strategy : LDA
CIFAR-10 CIFAR-100
Method
u=005 p=01 u=0.5 u=10.05
FedAvg 39.25 53.93 71.03 34.50
FedNTD 53.41 64.38 73.42 36.66
FedNTD+ASD 46.57 62.59 72.29 34.10
FedCurv 46.02 49.40 67.79 32.52
FedProx 44.32 47.55 64.08 29.21
FedNova 21.44 31.51 67.24 30.83
SCAFFOLD 10.00 27.31 72.59 37.18
MOON [25] 37.65 52.63 70.87 33.79
FedADKD 56.46 65.98 75.41 37.62

3) IID/Non-I1ID Hybrid Partition

Table Il presents the performance of FedADKD and
baseline methods under mixed data distributions, where clients
are divided into IID and highly non-IID groups (LDA with
1=0.05) at ratios of 1:9, 3:7, and 5:5. Notably, even with only
10% of clients holding IID data (1:9), FedADKD achieves
55.83% accuracy on CIFAR-10 and 40.10% on CIFAR-100,
outperforming all compared methods. This result highlights
FedADKD'’s ability to effectively leverage a small fraction of
IID data to stabilize training. The performance advantage
remains consistent as the proportion of IID clients increases.

TABLE IIL. ToP-1 ACCURACY (%) ON CIFAR-10 AND CIFAR-100 WITH

IID/NON-IID HYBRID

Mix Partition Strategy : IID and Non-IID (LDA p = 0.05)

CIFAR-10 CIFAR-100

Method .
1:9 3:7 5:5 1:9

FedAvg 27.86 51.59 53.19 3535
FedNTD 4431 60.24 67.54 38.23
FedNTD+ASD 54.51 63.06 71.00 36.52
FedCurv 32.22 51.44 59.46 33.00
FedProx 38.71 55.01 64.16 29.72
FedNova 13.98 37.67 42.25 32.61
SCAFFOLD 10.00 10.00 10.00 38.29
MOON 28.04 52.46 55.64 34.78
FedADKD 55.83 66.44 73.11 40.10

C. Global Knowledge Retention

This section evaluates the global knowledge retention
capability of FedADKD under non-IID federated settings. Two
evaluation metrics are employed: the Forgetting Measure [15]
and Knowledge Outside of Local Distribution (KOLD) [2]. The
results are compared with those of FedAvg and FedNTD.

1) Forgetting Measure Results

Experiments are conducted on CIFAR-10 using mixed 11D
and non-IID client splits, generated via LDA with 4=0.05, at
ratios of 1:9, 3:7, and 5:5. Table IV reports the forgetting rates
across methods, where FedADKD consistently achieves the
lowest values. In the most heterogeneous setting (1:9),
FedADKD reduces forgetting to 38.90%, outperforming
FedNTD by approximately 13% and FedAvg by approximately
33%. This advantage remains as heterogeneity decreases (3:7
and 5:5), indicating that the adaptive decoupled distillation
mechanism in FedADKD effectively balances TCKD and
NCKD to enhance generalization.

TABLE IV. FORGETTING RATES (%) OF FEDAVG, FEDNTD, AND
FEDADKD UNDER MIXED IID/NON-IID SPLITS.

Mix Partition Strategy : IID and Non-IID

CIFAR-10
Method
1:9 3:7 5:5
FedAvg 7191 46.95 44.29
FedNTD 51.97 3591 25.78
FedADKD 38.90 28.74 17.99

2) Knowledge Outside of Local Distribution (KOLD)

To assess knowledge retention, we evaluate FedADKD on
CIFAR-10 using mixed IID/Non-IID splits (1:9, 3:7, 5:5). Fig.
6 compares performance on in-local (seen) versus out-local
(unseen) classes. While in-local accuracy remains comparable
across methods, FedADKD significantly outperforms FedAvg
and FedNTD on out-local classes, particularly in the high-
heterogeneity 1:9 setting. This superior cross-client transfer
enables FedADKD to achieve the highest global accuracy with
lower variance, demonstrating robust resilience to data sparsity.
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Fig. 6. The comparisons among FedAvg, FedNTD, and FedADKD on
CIFAR-10 across mixed IID/Non-IID settings (1:9, 3:7, 5:5). Accuracy is
shown for each client’s seen classes (in-local), unseen classes (out-local), and
the global server test set.

D. Ablation Studies

We conduct an ablation study on CIFAR-10 (1:9 mixed
ratio, LDA p=0.05) to isolate the contributions of the adaptive
weight (@) and the TCKD branch. Fig. 7(a) reveals that
removing ¢ degrades accuracy from 55.83% to 48.54%, while
excluding TCKD entirely further drops performance to 44.31%
and introduces severe oscillation. Knowledge retention (Fig.
7(b)) mirrors this trend: forgetting increases from 38.90% (Full)
to 47.48% (w/o ¢) and 51.97% (w/o TCKD). Together, these
components yield an 11% accuracy gain and a 13% reduction in
forgetting, validating the critical role of adaptive target-class
distillation in balancing performance and stability.
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Fig. 7. Performance of FedADKD and its ablated variants under mixed
IID/Non-1ID data distribution (1:9 ratio) on CIFAR-10: (a) Global Test
Accuracy; (b) Forgetting Measure (F).

V. CONCLUSION

This paper presented FedADKD, a federated distillation
framework that mitigates global knowledge forgetting in non-
independent and identically distributed (non-IID) settings.
Building upon the decoupled knowledge distillation paradigm,
FedADKD introduces a client-adaptive mechanism that
dynamically balances target-class and non-target-class
knowledge distillation, with modulation guided by each client’s
data heterogeneity. Extensive experiments on CIFAR-10 and
CIFAR-100 under various partitioning schemes demonstrate
that FedADKD consistently outperforms existing baselines in

both accuracy and knowledge retention. Importantly, these
improvements are achieved without requiring synthetic data,

public datasets,

or additional communication overhead,

highlighting the practicality and scalability of FedADKD for
real-world federated learning applications.
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