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Abstract—Federated learning (FL) enables collaborative 

model training without exposing raw data; however, conventional 

aggregation schemes suffer from global knowledge forgetting 

when client data are non‑independent and identically distributed 

(non‑IID). This paper introduces FedADKD, an FL framework 

that performs Adaptive Decoupled Knowledge Distillation. 

FedADKD splits distillation into true‑class (TCKD) and 

non‑true‑class (NCKD) components and adjusts the TCKD weight 

on each client based on quantified data heterogeneity, while 

keeping the NCKD weight constant to propagate shared dark 

knowledge. Clients with highly skewed data receive a lower TCKD 

weight, preserving local characteristics; balanced clients employ a 

higher weight, reinforcing inter‑client consensus. The adaptive 

scheme incurs negligible communication overhead, as it transmits 

only a few scalar values per round. Comprehensive experiments 

on CIFAR‑10 and CIFAR‑100 with diverse non‑IID partitions 

demonstrate that FedADKD consistently surpasses FedAvg and 

FedNTD in global accuracy and markedly lowers forgetting rates. 

Ablation studies confirm the independent contribution of adaptive 

TCKD weighting, validating its role in reconciling local adaptation 

with global integration. FedADKD therefore offers an efficient, 

privacy‑preserving solution for heterogeneous FL deployments.   

Keywords—federated learning, knowledge distillation, non-IID, 

knowledge forgetting, decoupled knowledge distillation 

I. INTRODUCTION 

The exponential proliferation of Internet of Things (IoT) 
devices, mobile platforms, and smart-city applications has 
fundamentally altered the data storage landscape. Rather than 
residing in centralized repositories, data are increasingly 
generated and stored across distributed edge devices. While this 
decentralization mitigates single-point failure risks, it introduces 
significant challenges regarding data privacy and 
communication overhead. To address these concerns, Federated 
Learning (FL) [1] has emerged as a privacy-preserving 
paradigm that enables clients to collaboratively train a global 
model by exchanging model updates rather than raw data. 

The standard FL algorithm, FedAvg [1], aggregates client 
parameters via weighted averaging and has proven effective in 
many general scenarios. However, in real-world deployments—
such as smart healthcare, where hospital data vary by patient 
demographics and equipment—data are often Non-Independent 
and Identically Distributed (Non-IID). This statistical 
heterogeneity causes local updates to diverge, a phenomenon 

known as client drift [12], which leads to unstable convergence 
and catastrophic forgetting of global knowledge during 
aggregation [2]. To mitigate the adverse effects of non-IID data, 
Knowledge Distillation (KD) [6] has been adapted for FL. 
Unlike parameter averaging, KD operates at the output level, 
making it more robust to structural model discrepancies. Recent 
approaches, such as FedNTD [2], utilize KD to preserve global 
knowledge by distilling "Not-True Class" (non-target) 
information. While FedNTD effectively recovers some 
forgotten knowledge, it is theoretically incomplete; it neglects 
"True Class" (target) knowledge, which is essential for task-
specific discrimination. The concept of Decoupled Knowledge 
Distillation (DKD) [7] posits that both True-Class KD (TCKD) 
and Non-True-Class KD (NCKD) are requisite for optimal 
transfer. 

However, directly applying DKD to Federated Learning 
presents a critical unresolved challenge: adaptability. Existing 
distillation frameworks [10], [11], [18] typically employ fixed 
weighting coefficients (e.g., α, β) for all clients. This static 
approach fails to account for the severe heterogeneity in FL, 
where some clients possess highly biased data while others hold 
more balanced distributions. Although Adaptive Self-
Distillation (ASD) [19] adjusts weights based on label statistics, 
it has not yet been integrated with DKD's decoupled 
formulation. Consequently, current state-of-the-art methods 
suffer from uneven contributions from distillation, leading to 
suboptimal performance in highly heterogeneous environments. 
To address these limitations, we propose FedADKD (Federated 
Adaptive Decoupled Knowledge Distillation). This novel 
framework integrates the decoupled distillation mechanism into 
FL while introducing a heterogeneity-aware adaptive weighting 
scheme. Specifically, FedADKD fixes the NCKD weight to 
ensure consistent dark knowledge transfer but adaptively assigns 
the TCKD weight based on each client's data divergence. Clients 
with high divergence are assigned lower TCKD weights to 
preserve unique local characteristics, while clients with 
balanced data receive higher TCKD weights to align closely 
with the global model. 

The main contributions of this work are summarized as 
follows. We introduce FedADKD, the first Federated Learning 
framework to integrate Decoupled Knowledge Distillation with 
a client-specific adaptive weighting scheme, thereby addressing 
the rigidity inherent in existing global knowledge fusion 



methods. By dynamically adjusting TCKD weights, FedADKD 
significantly mitigates catastrophic forgetting and local bias; 
extensive experiments on CIFAR-10 and CIFAR-100 
demonstrate that our method consistently outperforms FedAvg  
and FedNTD across diverse Non-IID settings. Furthermore, the 
proposed solution enhances convergence stability and accuracy 
without necessitating raw data sharing or introducing additional 
communication overhead, making it an efficient and practical 
solution for bandwidth-constrained edge environments. 

II. PROBLEM STATEMENT & ANALYSIS 

Existing methods face significant challenges under Non-IID 
conditions: FedAvg suffers from catastrophic forgetting, 
FedNTD neglects target-class information, and DKD relies on 
static weights that are unsuited to client diversity. To quantify 
these limitations, we simulate highly heterogeneous 
environments using CIFAR-10 [8] partitioned via Latent 
Dirichlet Allocation (LDA) [9], sharding [1], and mixed 
configurations.  

A.  Impact of Non-IID Distributions on Global Knowledge 

Forgetting 

To simulate heterogeneity, we distribute CIFAR-10 across 
100 clients using LDA with parameter μ. We train FedAvg for 
200 rounds (10 clients per round, five local epochs). Fig. 1(a) 
demonstrates that lower μ values (higher heterogeneity) 
significantly degrade convergence accuracy, confirming that 
divergent client distributions impair global knowledge retention. 
To quantify this, we adopt the "forgetting measure" [16], defined 
as the maximum decline in class-wise accuracy: 

ℱ � 1� � max	∈��,…,��������	� � �������
���

 （1） 

where �����
  denotes the accuracy for class � after round � 

and � is the number of classes. As depicted in Fig. 1(b), ℱ 
increases sharply as � decreases, confirming that severe 
heterogeneity intensifies global knowledge forgetting. 

 

Fig. 1. Global model results under different LDA heterogeneity levels (�): (a) 

test accuracy; (b) forgetting measure ℱ. 

B. TCKD and NCKD in Federated Learning 

FedNTD mitigates forgetting via NCKD and consistently 
outperforms FedAvg under high heterogeneity (Fig. 2). To 
capture target-specific information, we formulate FedDKD, 
which combines TCKD and NCKD. Fig. 3(a) compares 
FedDKD with FedNTD under a fixed NCKD weight (� = 1) and 

varying TCKD weights (  ∈ {0, 1, 3, 5, 10}). Across all values 

of  , FedDKD consistently underperforms FedNTD in terms of 
global model accuracy. The original DKD definition of NCKD 

retains the target-class dimension, leading to residual 
interference. In contrast, replacing it with the dimension-
removed formulation of FedNTD significantly improves 
performance, as shown in Fig. 3(b), thereby validating the 
advantage of simultaneously applying TCKD and NCKD in the 
federated context. 

 

Fig. 2. Global model accuracy of FedAvg vs. FedNTD under different data 

heterogeneity settings: (a) LDA partitioning with μ = 0.05, (b) Sharding 

partitioning with s = 2. 

 

Fig. 3. Global model accuracy of FedDKD vs. FedNTD under LDA 

partitioning (μ = 0.1) with different TCKD weights ( ): (a) original FedDKD 
formulation; (b) modified FedDKD with dimension-removed NCKD. 

C. Effect of TCKD Weight Under Varying Heterogeneity 

We hypothesize that the optimal TCKD weight (α) depends 
on local heterogeneity. While balanced (IID) clients benefit 
from strong TCKD to enhance discrimination, skewed (Non-
IID) clients require weaker TCKD to prevent overfitting. This 
implies a fixed global α is suboptimal. Experiments in a mixed 
environment (1:9 IID/Non-IID ratio) confirm this divergence: 
IID clients improve with higher α (Fig. 4(a)), whereas Non-IID 
clients perform better with lower α (Fig. 4(b)), validating the 
necessity of a client-adaptive strategy. 

 

Fig. 4. Effect of TCKD weight ( ) on global model accuracy in a 1:9 IID/Non-
IID hybrid setup: (a) impact on IID clients; (b) impact on Non-IID clients. 

III.  METHODOLOGY 

In the previous section, we demonstrated that jointly 
distilling target‑class and non‑target‑class knowledge captures 
multi‑level information more completely, and the weight 
assigned to target‑class knowledge must adapt to each client’s 
data heterogeneity. Building on these findings, we propose 



FedADKD—Federated Learning with Adaptive Decoupled 
Knowledge Distillation—which decouples knowledge into 
TCKD and NCKD and dynamically adjusts the TCKD weight 
via a heterogeneity metric. The approach aims to suppress global 
knowledge forgetting while ensuring stable convergence under 
highly non‑IID data. 

 

Fig. 5. The working mechanism of adaptive TCKD and NCKD in FedADKD. 

A. FedADKD Overview 

FedADKD combines decoupled distillation and adaptive 
weighting as shown in Fig. 5. Given a sample ! with 
ground‑truth label ": 

• The global model # and local model $ produce logits, 
which are converted into full probability vectors 

(%&,%') and true-class-removed vectors (%(),%('). 
• TCKD aligns %&  and %'  on the target class, yielding 

loss ℒ��+,; NCKD aligns %() and %('  on the remaining 
classes, yielding ℒ-�+,. 

• Each client quantifies its data heterogeneity and 
generates an adaptive TCKD coefficient . to prevent 
overly large or small emphasis on the target class. 

The composite loss on client 0 is 

ℒ � ℒCE�%' , y� 1 . ∙  ∙ ℒ��+,�%' ,  %)� 1 

� ∙ ℒ-�+,�%(' ,  %3 )� （2） 

where   and � are global hyperparameters. 

B. Decoupled Knowledge Distillation 

1) True-Class Knowledge Distillation (TCKD) 
TCKD specifically aligns the prediction distributions of the 

true class between the local and global models. The TCKD loss 
is defined as the Kullback-Leibler (KL) divergence between the 
probability distributions on the true class. 

ℒ��+,�%' ,  %)� � � P&���$5# 6%&���%'���7�
���

,  

⎩⎪
⎨
⎪⎧%&（c） � =!>�?@)�

∑ =!> B?C)DC
%'（c） � =!>�?@' �∑ =!>�?C'�C

 

（3） 

?# and ?$ denote the logits produced by the global and local 

models, respectively. %#  and %$  are the corresponding 
target‑class probability distributions obtained through a 
soft‑max transformation. By designating the ground‑truth class 
as the focal point of distillation, this loss enables the local model 
to replicate the global model’s confidence on that label with 
higher fidelity, thereby strengthening the retention of 
target‑class information within the federated framework. 

2) Non-True-Class Knowledge Distillation (NCKD) 
NCKD aligns the probability distributions of non-true 

classes between global and local models, thereby preserving 
global generalized knowledge across classes absent or 
underrepresented in local client data. The NCKD loss is also 
defined via the KL divergence as follows: 

ℒ-�+,�%(' ,  %3 )� � � %()���$5# 6%()���%('��� 7�
���,�E@

,  

⎩⎪⎨
⎪⎧%()（c） � =!>�FGH)�∑ =!>�FGH)�H

%('（c） � =!>�FGH' �∑ =!>�FGH' �H
 

（4） 

FG#
 and FG$

 represent the non‑target‑class logit vectors 

obtained after masking the target‑class entry, whereas %G $
 and  %G#

 are their soft‑max counterparts. Because clients frequently 
lack sufficient data for certain classes, NCKD allows the global 
model to retain latent knowledge of these non‑local categories 
and prevents this data from being eroded during successive 
rounds of local training. 

C. Adaptive TCKD Weight 

In the previous section, we showed that the contribution of 
target‑class knowledge distillation (TCKD) to both accuracy 
and knowledge retention is not constant; it must vary with each 
client’s data heterogeneity. To quantify heterogeneity, we adopt 
the Gini index [17]: 

I � 1 � � >�J
�

���
, 0 L I L 1 � 1� （5） 

where >� is the class � proportion on the client and � is the 

total number of classes. Lower I values indicate highly skewed 
(non‑IID) data, whereas higher values approach the IID case. To 
avoid extreme dispersion of I across clients in a single round, 
we apply a monotonic, nonlinear mapping 

M�IN, O� � $5#�1 1 O ∙ IN�N��P , O Q 0 （6） 

where O controls the amplification or compression of 
inter‑client differences. After normalization, the adaptive TCKD 
weight for client 0 in round � is 

.N � IN���
∑ IC���RS�T�RC��

⋅ RV�	�R, 0 ∈ W （7） 



with V���
 the set of sampled clients. Hence, clients with 

highly skewed data automatically receive lower TCKD weight, 
mitigating over‑emphasis on rare local classes. In contrast,  
clients with near‑IID data are assigned a higher weight to exploit 
their richer class coverage. This adaptive scheme aligns with our 
earlier conclusion that dynamic adjustment of TCKD is essential 
for simultaneously accommodating diverse local distributions 
and global learning objectives. 

D. FedADKD Algorithm 

FedADKD integrates adaptive TCKD weighting with 
decoupled knowledge distillation to handle non‑IID data while 
maintaining stable global learning. Algorithm 1 outlines the 
procedure. 

Algorithm 1 A Federated Learning Approach based on Adaptive 

Decoupled Knowledge Distillation 

1. Input: total rounds X , local epochs Y , dataset Z , sampled clients 

sets V�	� ⊂  V in round �, learning rate γ, TCKD Weight  , NCKD 
Weight � 

2. Initialize: Server initializes ]�0� for global server weight and the 
quantified data heterogeneity I = 1 for each node 

3. for each communication round ^ � _, ⋯ , a do 

4. Server samples nodes V�	� and calculates the adaptive 

TCKD weights .N , where 0 ∈ V�	� by （6）,（7） 

5. Server broadcasts .N and wc �	� ← ]�	� 
6. for each node 0 ∈ V�	� in parallel do 

7. Calculate quantified data heterogeneity IN  by（5） 

8. for Local Steps = � 1, ⋯ , Y do 
9. for Batches e � 1, ⋯ , f do 

10. wc �	� ← wc �	� � γ∇hℒ�wc �	�; jZNkl� by

（2） 

11. end for 
12. end for 
13. end for 

14. Upload IN  mno wc �	� to server 

15. Server Aggregation : ]�	p�� ← �RS�T�R 0 ∈ V�	�]cN�	�
 

16. end for 
17. Server output :]� 

IV. EXPERIMENTS 

This section evaluates FedADKD under non-IID conditions. 
We outline the experimental setup, compare performance 
against baselines such as FedAvg and FedNTD, assess global 
knowledge retention, and conduct ablation studies to validate 
individual component contributions. 

A.  Experimental Design 

1) Datasets and Training Environment 
Two standard image classification benchmarks are used: 

• CIFAR‑10: Contains 10 classes, each with 32 × 32 
color images, split into 50,000 training samples and 
10,000 test samples. 

• CIFAR‑100: Comprises 100 classes with identical 
image format and structure to CIFAR-10, posing a 
more challenging classification task due to increased 
class diversity. 

We simulate a federated environment with 100 clients (10 
sampled per round), each training for five local epochs. The 
global model is a four-layer CNN optimized via Momentum 
SGD (learning rate 0.01, momentum 0.9, decay 0.99). All 

experiments are implemented in PyTorch on an NVIDIA RTX 
3070 Ti GPU. 

2) Non‑IID Data Simulation 
Three common partitioning strategies are adopted to 

simulate heterogeneous client distributions: 

• Sharding: The dataset is label‑sorted and split into 
equal‑sized shards, which are randomly assigned so 
that each client receives q shards. For CIFAR‑10 with q=2, each client obtains data from exactly two classes, 
generating extreme heterogeneity. Increasing q yields 
more balanced distributions. 

• Latent Dirichlet Allocation (LDA): Client class 

proportions >r~Z0t��� are sampled from a Dirichlet 

distribution. Smaller � produces higher skewness, 
whereas larger � yields more uniform allocations. 

• IID/Non‑IID hybrid: To reflect mixed real‑world 
settings, clients are partitioned into IID and highly 
Non‑IID groups (the latter using LDA with �=0.05). 

These diverse partitioning schemes enable a systematic 
evaluation of FedADKD across varying degrees and types of 
data heterogeneity, thereby demonstrating its generalization 
capability and practical value in federated learning. 

B. Performance Analysis under Varying Data‑Heterogeneity 

We evaluate FedADKD against representative baselines—
including FedAvg, FedNTD, FedCurv [14], FedProx [3], 
FedNova [5], SCAFFOLD [4], and MOON [13]—across three 
data partitioning strategies. The results are summarized in 
Tables I–III. 

1) Sharding Strategy 
Table I details top-1 accuracy on CIFAR-10 and CIFAR-100 

across varying shard sizes (s). Under extreme heterogeneity 
(CIFAR-10, s=2), FedADKD reaches 65.68%, significantly 
outperforming FedAvg (46.15%) and FedNTD (63.40%). As 
shard availability increases (s=5 and s=10), FedADKD 
consistently maintains the highest accuracy, notably achieving 
33.19% on CIFAR-100 with s=5. 

TABLE I.  TOP‑1 ACCURACY (%) ON CIFAR‑10 AND CIFAR‑100 WITH 

SHARDING 

Non-IID Partition Strategy : Sharding 

Method 
CIFAR-10 CIFAR-100 q = 5 q = 2 q = 5 q = 10 

FedAvg 46.15 64.64 72.15 24.70 

FedNTD 63.40 73.74 75.50 32.11 

FedNTD+ASD 56.22 71.59 75.09 23.77 

FedCurv 51.07 61.64 69.63 21.23 

FedProx 43.79 60.65 67.49 24.71 

FedNova 44.26 62.95 70.39 21.86 



SCAFFOLD 46.76 73.18 76.24 32.62 

MOON 43.06 64.04 72.37 24.50 

FedADKD 65.68 75.48 77.74 33.19 

 

2) LDA Partition 
Table II summarizes the performance under varying levels 

of data heterogeneity using the LDA partitioning scheme, where 
the Dirichlet parameter � controls the degree of class imbalance. 
When � = 0.05, FedADKD achieves 56.46% accuracy on 
CIFAR-10 and 37.62% on CIFAR-100. Across all values of � 
considered, FedADKD consistently attains the highest accuracy 
among the evaluated methods, demonstrating robustness to 
different levels of data heterogeneity. 

TABLE II.  TOP‑1 ACCURACY (%) ON CIFAR‑10 AND CIFAR‑100 WITH 

LDA 

Non-IID Partition Strategy : LDA 

Method 
CIFAR-10 CIFAR-100 � � 0.05 � � 0.05 � � 0.1 � � 0.5 

FedAvg 39.25 53.93 71.03 34.50 

FedNTD 53.41 64.38 73.42 36.66 

FedNTD+ASD 46.57 62.59 72.29 34.10 

FedCurv 46.02 49.40 67.79 32.52 

FedProx 44.32 47.55 64.08 29.21 

FedNova 21.44 31.51 67.24 30.83 

SCAFFOLD 10.00 27.31 72.59 37.18 

MOON [25] 37.65 52.63 70.87 33.79 

FedADKD 56.46 65.98 75.41 37.62 

 

3)  IID/Non‑IID Hybrid Partition 
Table III presents the performance of FedADKD and 

baseline methods under mixed data distributions, where clients 
are divided into IID and highly non-IID groups (LDA with � = 0.05) at ratios of 1:9, 3:7, and 5:5. Notably, even with only 
10% of clients holding IID data (1:9), FedADKD achieves 
55.83% accuracy on CIFAR-10 and 40.10% on CIFAR-100, 
outperforming all compared methods. This result highlights 
FedADKD’s ability to effectively leverage a small fraction of 
IID data to stabilize training. The performance advantage 
remains consistent as the proportion of IID clients increases. 

TABLE III.  TOP‑1 ACCURACY (%) ON CIFAR‑10 AND CIFAR‑100 WITH 

IID/NON‑IID HYBRID 

Mix Partition Strategy : IID and Non-IID （LDA � � 0.05） 

Method 
CIFAR-10 CIFAR-100 

1：9 1：9 3：7 5：5 

FedAvg 27.86 51.59 53.19 35.35 

FedNTD 44.31 60.24 67.54 38.23 

FedNTD+ASD 54.51 63.06 71.00 36.52 

FedCurv 32.22 51.44 59.46 33.00 

FedProx 38.71 55.01 64.16 29.72 

FedNova 13.98 37.67 42.25 32.61 

SCAFFOLD 10.00 10.00 10.00 38.29 

MOON 28.04 52.46 55.64 34.78 

FedADKD 55.83 66.44 73.11 40.10 

 

C. Global Knowledge Retention 

This section evaluates the global knowledge retention 
capability of FedADKD under non-IID federated settings. Two 
evaluation metrics are employed: the Forgetting Measure [15] 
and Knowledge Outside of Local Distribution (KOLD) [2]. The 
results are compared with those of FedAvg and FedNTD. 

1) Forgetting Measure Results 
Experiments are conducted on CIFAR-10 using mixed IID 

and non-IID client splits, generated via LDA with � = 0.05, at 
ratios of 1:9, 3:7, and 5:5. Table IV reports the forgetting rates 
across methods, where FedADKD consistently achieves the 
lowest values. In the most heterogeneous setting (1:9), 
FedADKD reduces forgetting to 38.90%, outperforming 
FedNTD by approximately 13% and FedAvg by approximately 
33%. This advantage remains as heterogeneity decreases (3:7 
and 5:5), indicating that the adaptive decoupled distillation 
mechanism in FedADKD effectively balances TCKD and 
NCKD to enhance generalization. 

TABLE IV.  FORGETTING RATES (%) OF FEDAVG, FEDNTD, AND 

FEDADKD UNDER MIXED IID/NON‑IID SPLITS. 

Mix Partition Strategy : IID and Non-IID  

Method 
CIFAR-10 

1：9 3：7 5：5 

FedAvg 71.91 46.95 44.29 

FedNTD 51.97 35.91 25.78 

FedADKD 38.90 28.74 17.99 

 

2) Knowledge Outside of Local Distribution (KOLD) 
To assess knowledge retention, we evaluate FedADKD on 

CIFAR-10 using mixed IID/Non-IID splits (1:9, 3:7, 5:5). Fig. 
6 compares performance on in-local (seen) versus out-local 
(unseen) classes. While in-local accuracy remains comparable 
across methods, FedADKD significantly outperforms FedAvg 
and FedNTD on out-local classes, particularly in the high-
heterogeneity 1:9 setting. This superior cross-client transfer 
enables FedADKD to achieve the highest global accuracy with 
lower variance, demonstrating robust resilience to data sparsity. 



 

Fig. 6. The comparisons among FedAvg, FedNTD, and FedADKD on 

CIFAR-10 across mixed IID/Non-IID settings (1:9, 3:7, 5:5). Accuracy is 

shown for each client’s seen classes (in-local), unseen classes (out-local), and 
the global server test set. 

D. Ablation Studies 

We conduct an ablation study on CIFAR-10 (1:9 mixed 
ratio, LDA μ=0.05) to isolate the contributions of the adaptive 
weight (φ) and the TCKD branch. Fig. 7(a) reveals that 
removing φ degrades accuracy from 55.83% to 48.54%, while 
excluding TCKD entirely further drops performance to 44.31% 
and introduces severe oscillation. Knowledge retention (Fig. 
7(b)) mirrors this trend: forgetting increases from 38.90% (Full) 
to 47.48% (w/o φ) and 51.97% (w/o TCKD). Together, these 
components yield an 11% accuracy gain and a 13% reduction in 
forgetting, validating the critical role of adaptive target-class 
distillation in balancing performance and stability. 

 

Fig. 7. Performance of FedADKD and its ablated variants under mixed 

IID/Non-IID data distribution (1:9 ratio) on CIFAR-10: (a) Global Test 

Accuracy; (b) Forgetting Measure (ℱ). 

V. CONCLUSION 

This paper presented FedADKD, a federated distillation 
framework that mitigates global knowledge forgetting in non-
independent and identically distributed (non-IID) settings. 
Building upon the decoupled knowledge distillation paradigm, 
FedADKD introduces a client-adaptive mechanism that 
dynamically balances target-class and non-target-class 
knowledge distillation, with modulation guided by each client’s 
data heterogeneity. Extensive experiments on CIFAR-10 and 
CIFAR-100 under various partitioning schemes demonstrate 
that FedADKD consistently outperforms existing baselines in 

both accuracy and knowledge retention. Importantly, these 
improvements are achieved without requiring synthetic data, 
public datasets, or additional communication overhead, 
highlighting the practicality and scalability of FedADKD for 
real-world federated learning applications. 
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