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Abstract—We solve the sum rate approximation problem in
downlink millimeter-wave (mmWave) non-orthogonal multiple
access (NOMA) systems under hybrid beamforming with sub-
connected architecture. A unique data-driven power allocation
scheme based on random forest regression (RFR) is proposed,
where historical link datasets generated using distance- and path-
loss model-based dynamic power allocation schemes serve as
training inputs. The RFR scheme predicts power coefficients that
balance user fairness and system throughput. Simulation results
validate that the RFR scheme achieves performance close to
model-based baselines while substantially lowering computation
complexity, offering a scalable and practical solution for future
mmWave-NOMA networks.

Index Terms—Data rate, hybrid beamforming, non-orthogonal
multiple access, mmWave, random forest regression, sum rate.

I. INTRODUCTION

HE quest for high data rate service in 6G can be satis-

fied by exploring untapped millimeter Wave (mmWave)
spectrum. However, mmWave propagation signals suffer from
pathloss, penetration loss, and even shadowing in both line of
sight (LOS) and non line of sight (NLOS) [1]. Antenna beam-
forming has been identified as a feasible solution to mitigate
these propagation effects [2]. Consequently, the current fully
digital beamforming (FDBF) will consume substantial power
for massive multiple input multiple output (MIMO) system,
because each antenna is dedicated to a single transceiver’s RF
chain [3]. Hybrid beamforming (HBF) has been recommended
as a practical substitute to a FDBF in order to reduce hardware
complexity, which in turns diminishes the considerable power
consumption and implementation cost. In particular, the impact
of mmWave propagation losses on 6G power consumption has
been quantitatively analyzed in [1], where energy efficiency
gaps were detailed in Figs. 6 and 7 for different HBF schemes.
Incorporating non-orthogonal multiple access (NOMA) with
the standard multiuser MIMO will further improve the system
spectrum efficiency [4]. Concerted efforts have been made
among researchers to solve users’ power ration coefficient op-
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timization problem in power domain NOMA, which involves a
superposition of users’ symbols with different power levels at
the base station (BS) to achieve multiple access. HBF-NOMA
optimization problems are regarded as non-convex and hard to
solve. Therefore, the problem is usually simplified exploiting
a round robin approach for optimzing HBF precoders and
power allocation factors. In literature, power-domain NOMA
configurations such as fixed power (FP) and dynamic power
(DP) approaches have been investigated [5], [6]. The DP
proposed in [6] was based on an iterative search, which
enabled it to result in a substantially high overhead. Ideas in
[5], [7] have allocated fixed user’s power in a greedy manner
and the users’ fairness may not be met especially under the
users’ channels being dynamic and the cluster users being
more than two.

Recently, successive interference cancellation (SIC) based
dynamic power allocation (DPA) approach has been intro-
duced to dynamically allocate power to more than two users
per cluster [8]. Searching for optimized power allocation
factors under the joint constraints of both SIC and unity
summation of total power factor leads to high overhead as
the number of cluster users increases. A model-based DPA
approach recently introduced in [1] may greedily select power
factors that maximize sum rate, which may be unfair to
the weak user’s access. Furthermore, the model-based DPA
approach may be suboptimal to iterative method but less com-
plicated under the assumption that an SIC can be successively
processed at the strong user if the users’ ordering is based on
the effective hybrid (digital-analog) channel weights of each
cluster user in a descending order [5].

Unlike DPA methods that rely on either greedy model-
based heuristics or iterative search algorithms, we introduce
that random forest regression (RFR) [9] scheme learns from
historical distance and inverse pathloss (IPL)-based data (or
models) to predict fair and effective power coefficients in
a non-iterative, computationally efficient way without com-



promising sum rate maximization in both LOS and NLOS
scenarios of a mmWave urban microcell (UMi) environment.
Compared to reinforcement learning (RL), which often re-
quires online interaction, convergence tuning, and large state-
action exploration, the proposed non-iterative RFR scheme is
trained offline exploiting labeled data derived from sum rate
simulations, allowing for faster and more stable deployment,
rendering it applicable to near real-time optimization tasks
within the 6G radio acceas networks.

II. METHODOLOGY

The RFR powering scheme visualized in Fig. 1 is proposed
for a downlink HBF-NOMA network illustrated in Fig. 2 to
optimize the power allocation coefficients. Readers are referred
to Section II in [8] for detailed descriptions of the HBF-
NOMA system models and structures. The RFR powering
scheme’s framework consists of the HBF-NOMA system’s
environment and the RFR-based power factor optimization
training agent at the BS. HBF-NOMA environment at the
lower part is assumed to have the knowledge of network
parameters, namely received signal to interference plus noise
ratio (SINR) denoted as G € CV*M having an element
9(n,m) for each user, DPA power factors A% € RVXM and
AY € RV*M computed based on distance and IPL model
expressed as (40) and (41) in [1] having each user’s power
factor element O‘(Zn,m) and X m)> respectively, UMi link
pathloss factor matrix is also symbolized as C € RN*M
having each user’s c(y .,) pathloss factor, and finally users’
distance to BS matrix Z € RV*M which constitutes each
user’s distance z(p,m,). Notably, N and M as well as C and
R represent the maximum number of clusters and users in
the NOMA network as well as the sets of complex and real
numbers, respectively.

The RFR (power) optimization module at the upper part
contains two elements, namely the first one computes the
users’ data rates and network’s sum rate dataset arisen from
the successive deployment of both power ration factors based
on the distance and IPL model functions at the BS as well as
the second one intelligently predicts optimized AP € RNV*M
users’ power ration coefficients capable of offering fair access
to users’ data rate. Explicitly, in Fig. 1, the lower part of RFR
optimization module (green) processes a user’s data rate on the
basis of each power ration factor’s model and the observed
user’s received SINR from the HBF-NOMA environment.
Then, at the upper part of RFR optimization module (yellow),
the associated sum rate and data rate dataset is deployed
for RFR training for the purpose of predicting a fair access
power factor A” for HBF-NOMA deployment. Details of the
proposed powering scheme leveraging the RFR training agent
are presented under Subsection II-B.

Although the proposed RFR-based powering scheme can
be deployed for both (fully connected and sub-connected)
structure HBF-NOMA systems, and can utilize numerically
iterative-based powering scheme’s dataset for better training
and prediction, throughout this paper, the analysis and sim-
ulation are limited only to a single stream sub-connected
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Fig. 1: Random forest regression power allocation framework
for HBF-NOMA system (refer to Fig. 2 for the brief illustra-
tion of a typical SCS-HBF-NOMA system’s environment).
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Fig. 2: The proposed down link mmWave HBF-NOMA system
equipped with a SCS-HBF precoder at the BS to beamform
NOMA signals to M single antena users in each cluster (refer
to Fig. 1 in [8] for detailed descriptions of the HBF-NOMA
system models and structures).

structure (SCS) version of HBF-NOMA, which offers more
energy efficiency compared to the fully connected structure
(FCS) HBF-NOMA [8]. The simulation environment consti-
tutes SCS-HBF-NOMA having an NV, antennas aided BS with
N - M clustered users. Each of the NOMA users is equipped
with a single antenna. BS and each user are equipped with NV
and a single RF chains, respectively. HBF-NOMA channel is
based on NYU mmW channel model [10].

It is assumed that the single carrier channel coefficient
h(n,m) = Z;/:l V(n,m,v)ejq)(n’m’“)eijwaT(n'm‘v)at(¢(n,m,v))a
where Y(n.m.v)> Pnym,o)s o Tn,m,v)» and a;(-) denote am-
plitude of the channel gain in the wth resolvable LOS or
NLOS multipath link component, the phase of the multipath
component, carrier frequency, time delay, and array steering



function depending on angle of departure (AOD) ¢ at the BS,
respectively. The NYUSIM software is set up for both LOS
and NLOS scenarios, exploiting the information in Table I
to create DirPDPinfo.mat for the hy,, ,,,) € C™*Nt simulation
that takes advantage of the NYU channel model. According
to their channel magnitudes, users in the same angle of
arrival (AOA) 6 are grouped together and arranged as follows:
|h(n1)Fdn| > Ih(n,Q)Fdn| > > ‘h(n,JW)FdnL where F
and d,, denote analog beamforming matrix and nth cluster
users’ digital precoding vector, respectively.

The users’ symbols are superimposed at the BS employing
the DPA power allocation factor prior to transmission, that is
Sp = Zmzl vV &(n,m) X Pn X S(n,m)» where X(n,m)> S(n,m)>
and p, = % represent the power ration coefficient, transmitted
symbol of a user Uy, ), and nth cluster power, respectively.
Before the strongest user detects its own symbol, SIC is
applied to the symbols of the other weak users. Therefore,
(M — 1) SIC processings are performed before the weakest
users finally detect its own symbols. This SIC is attainable
because strong user rates are higher than weak user rates.
Our previous work in [1] presented multistream per user with
model-based DPA for HBF-NOMA system. Dataset derived
from its simulation can directly be leveraged to train the
proposed RFR scheme, extending its applicability to more
complex scenarios with more than two users per cluster. To
align with energy-efficient application contexts such as low-
power 6G IoTs or vehicular networks, we limit further analysis
in this paper to M = 2 users per cluster. Hence, the SIC
decoding order follows R, 1) > R(n2)—(n,1) constraint,
where R, 2)_(n,1) is the rate received at Uy, 1) after decoding
the message of U, ). Details on SIC decoding orders are
referred to Section II (Page 1335, Paragraph 1) in [8].

Therefore, attainable rate of the user Uy, ) is formulated

as: R(ym) = 10g5(1 + g(n,m))s (1)

where g(,,1) and g(, o) of strong and weak users are formu-

2 C(n,2)|B(n,2)Fdn |*
lated as C(n1)|h(nl)Fdn| and W,

Cinym) = p”:;% denotes signal to noise (SNR) power for
user Uy,m) and ﬁzztg)“ = ((n,1)|h(n2)Fd,|* indicates the
intra-cluster interference at the U, o) after SIC processing at
the strong user Uy, 1). Moreover, the inter-cluster interference
Béztg)r represents >, 2221 S hn,2)Fdi|? at the Uy, 2
in the nth cluster. Also, F, d, and U(Qn’m) symbolize analog
beamforming matrix, digital beamforming vector, and noise
variance of additive white Gaussian noise arising from the
user U(",m) antenna, respectively. Hence, we formulate the
sum rate performance of the mmWave power-domain NOMA

system as
N M
Ri=>">" Rum): )

n=1m=1

A. Sum Rate Approximation Problem

respectively.

The sum rate approximation problem indicates that the sum
rate loss arising from implementing a fair data rate access
powering scheme for HBF-NOMA communication should be

minimal. This can be mathematically expressed for HBF-
NOMA as the maximization of the sum rate in (2), while
adhering to the related constraints outlined in (3b) to (3e),
mathematically

maximize R, (3a)
{F,D, o}
subject to  [F(i,7)]* = M; ", (3b)
|blk. diag[F] - D||% = N, (3c)
R? ~ RY ~ R,, (3d)
2
Z A(n,m) <1, (n,m) > 07 (3e)

m=1

where D € CV*N_ M,, R,, RZ, RY, and blk. diag. denote the
digital precoder, the number of antenna elements for each sub
array at the transmitter, sum rate achieved by RFR, distance,
IPL-based power ration prediction schemes, and SCS’s block
diagonalization constraint, respectively. Constraints in (3b)
and (3c) ensure a unit magnitude element in analog precoder
and power consumed by hybrid precoder constrained to N are
achievable, respectively. (3d) denotes sum rate approximation
problem. Finally, (3e) represents constraints of power factors
of users.

B. Proposed Solution

Maximization of (3a) is non-convex as it involves a joint
optimization of both the HBF precoder and users’ power factor
optimization problems. Therefore, the optimization problem
solution is simplified exploiting a round robin approach be-
tween the HBF design optimization and power coefficient op-
timization. We adopt the Phased Zero Forcing (P-ZF) approach
in [8] to optimize HBF precoder, while optimization of powers
for users is solved by the proposed RFR scheme for typical
UMi links. To elaborate it a little bit further, we practically for-
mulate two DPA models, based on user’s distance and inverse
pathloss denoted as DPA-D and DPA-IPL to optimize users’
power coefficients using (40) and (41) in [1], respectively.
Furthermore, each model ensures that a summation of the
clustered user power allocation factors is restricted to unity,
and power allocation factors are dynamically allocated to
satisfy a(pn,1) < Q(p,2). The sum rate approximation problem
is solved using the proposed RFR powering scheme.

A typical UMi links can either be LOS or NLOS. HBF-
NOMA powers practically formulated are tested for each of
the UMi links to determine their corresponding data rate
and sum rate. Results obtained guide us to produce an RFR
scheme’s dataset deployed for RFR training (yellow) predic-
tion. Meanwhile, deployed DPA-D and DPA-IPL coefficients
for HBF-NOMA operation may not offer the users’ fair access
due to the exponent of z parameter, which tends to favour
strong users to maximize sum rate. In order to obtain a fair
access power factors, a RFR training prediction scheme is
employed to solve regression problems associated with the
available dataset exploiting the average value approach at the
decision tree leaf node [9]. Finally, the predicted fair access
af’7l7m) is returned to update optimized A” for HBF-NOMA



deployment. RFR prediction processing is therefore presented
in II-C for more clarification.

C. Random Forest Regression prediction

The training dataset! was constructed by simulating link-
level transmissions over a SNR range spanning from —10 dB
to 30 dB in increments of 5 dB, leading to a total of 9
discrete SNR levels. A total of T'(= 18) training samples were
generated in MATLAB for each of the LOS and NLOS scenar-
ios exploiting the NYUSIM channel simulator, with channel
parameters detailed in Table I. Each sample includes link type
(0 and 1 decode LOS and NLOS links, respectively), model j
(0 and 1 decode distance and IPL models, respectively), Qi)
i&;j=1,2> SNR, R(i,j)’ i&j=1,2, and . Therefore, the training
data can the be modeled as D, = {(XZ—)}Z.T=1 . These features
enable the RFR model to learn from the regression patterns
between the sum rates corresponding to each model-based
power coefficient indexed by j(= 1,..., Mr). The fairness-
optimal power coefficient is then predicted as the average value
along the segment of the regression curve where the minimum
predicted sum rate begins to increase and the maximum
predicted value starts to saturate.

The RFR model is an ensemble of Mt decision trees. Each
tree is trained on a bootstrapped subset of the training data.
For a given input X, the prediction of the j-th tree is A? , and
the ensemble prediction of the RFR model is given by:

1 &
AM = > A “)
j=1

where M is the total number of trees in the ensemble. Specif-
ically, the data is partition into training and testing sets using
80 ratio 20, and the RFR model is trained exploiting Scikit-
learn, which minimizes the mean squared error internally
without requiring a manually defined loss function. During
its inference, predicted sum rates having two models-based
power coefficients are used to predict optimize power factors
across a dense grid of candidate power factors. The optimal
factor is then selected by evaluating a fairness-aware criterion
that balances rate gains between paired users, exploiting (4).

The RFR-based powering scheme offers a much lower
complexity compared to model-based DAP-D and DAP-IPL
methods that offer complexity of O(MN). Specifically, the
training complexity of RFR is O(My - T - d - logT'), where
d is the feature dimensionality, Once trained, the RFR model
performs prediction with constant time inference complexity
O(MTr), enabling real-time adaptability.

III. RESULTS

LOS and NLOS link level simulations of the proposed P-ZF-
SCS-HBF-NOMA based on RFR scenarios are implemented
for M(= 2) users and N(= 2) clusters to benchmark the
SCS-HBF-NOMA scenarios based on DPA-D and DPA-IPL
schemes. Transmit and receive antennas are configured to

ISumRateDataset is accessible on https://ieee-dataport.org/documents /sum-
ratedataset.

TABLE I: NOMA channel parameters deployed for NYUSIM

Parameters LOS NLOS
Z01) and 2(1.9) 42.6, 124.1 [m] | 83.3, 161.5 [m)]
Z(2.1) a0d 2(2.9) 17.8, 177.7 [m] | 26.3, 195.5 [m]

B(1.m) d (2 ) 20°, 40° 20°, 357
9(1,m) and 0(2,m) 200, 400 30, 450
BS and users’ heights | 10 and 1.65 [m] | 10 and 1.65 [m]

128 and 1, respectively. Pathloss factors C for Users U(1,1)7
U2y, U1y, and Ug gy are set to (2.5,2.4,2.2,1.9) and
(3.0,3.0,3.3,3.3) for LOS and NLOS links as retrieved from
NYUSIM channel simulation, respectively. User’s determin-
istic distance z(p ) is set as shown in Table I. Optimized
A%, AY, and AP factors matrices for DPA-D, DPA-IPL, and
RFR schemes result in [0.1050, 0.8946; 0.0099, 0.9901],
[0.2510, 0.7494; 0.1475, 0.8525], and [0.18, 0.82; 0.09, 0.91]
for LOS link as well as [0.2101, 0.7899; 0.0178, 0.9822],
[0.2703, 0.7297; 0.0352, 0.9648], and [0.24, 0.76; 0.0275,
0.9725] for NLOS link, respectively. A single run simulation
is carried out using the deterministic channel model and
system configurations for SNR values ranging from —10[dB]
to 30[dB]. Since the objective function is based on the sum
rate approximation problem to achieve users’ fairness to data
rates, the presentation of the performance measure is more
focused on the data rate of the users, revealing the impact
of the proposed RFR powering scheme solution on offering
fairness to users’ data rates [11] [12].

Figs. 3 and 4 manifest the attainable data rates for various
single stream SCS-HBF-NOMA schemes in LOS and NLOS
links, respectively. For the sake of clarity, the weak and strong
users’ data rates in LOS and NLOS links are separately
presented. Specifically, Fig. 3 reveals that at all SNRs, the
proposed RFR and DPA-D schemes compared to the DPA-IPL
approach experience an average data rate degradation of 10%
for strong user Uy 1) in 1st cluster. Instead, an average data
rate gain of 62% for weak user Uy 2y in st cluster is obtained.
Furthermore, in 2nd cluster, the proposed RFR and DPA-D
averagely results in 24% data rate degradation for strong user
(U2,1)). However, average data rate gain of 59% for weak
user (Uz,2y) is also attained. Qualitatively, it can be inferred
from results of Fig. 3 that the proposed scheme offers more
fair access to weak users to compensate its weak beamforming
gain in LOS link.

In NLOS link, the proposed RFR compared with the DPA-
IPL in Fig. 4 manifests an average data rate degradation of
2% for strong user U(y1) at all SNRs. Instead, a data rate
gain of 6% for weak user U(; o) in 1st cluster is obtained.
Furthermore, the proposed RFR compared with the DPA-IPL
degrades by 8% for strong user U, ;). However, data rate
gain of 17% for weak user U(2,2) in 2nd cluster is achieved.
It is also worth noting that the proposed RFR compared with
DPA-D experiences an average data rate degradation of 5% for
weak user U(y o). Instead, the data rate of strong user U 1)
is averagely boosted by 2%. Furthermore, the proposed RFR
averagely experiences an average data rate degradation of 3%
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Fig. 3: Attainable users’ data rates for the proposed single
stream P-ZF SCS-HBF-NOMA deploying RFR-based power-
ing approach in LOS link compared with the distance and IPL
model based power allocation counterparts.

for weak user U o). However, a gain of 2% data rate for
strong user Uy 1) is achieved. Hence, it can be deduced from
Fig. 4 that the proposed RFR scheme performs better than
the DPA-IPL and approaches that of DPA-D method in NLOS
link. Qualitatively, the proposed scheme offers fair access to
strong users rather than weak users in both clusters so as
to maintain the asymptotic sum rate to those of DPA-D and
DPA-IPL schemes in NLOS link. The proposed RFR scheme
demonstrates a meaningful insight for a feasible candidate
having greater potential to offer fair access to various clustered
users based on their channel parameters. To verify whether
the proposed scheme satisfies the sum rate approximation
constraint, the achievable sum rates of the three schemes are
also presented in Fig. 5. The results indicate that, despite the
proposed scheme providing more equitable access to users, the
loss in the sum rate remains negligible in both link scenarios.

IV. CONCLUSION

In this paper, we have studied a downlink multiuser HBF-
NOMA system deployed in a typical UMi environment. We
have proposed an RFR-based powering scheme for P-ZF-SCS-
HBF-NOMA to address the optimized sum rate approximation
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Fig. 4: Attainable users’ data rates for the proposed single
stream P-ZF SCS-HBF-NOMA deploying RFR-based power-
ing scheme approach in NLOS link compared with the distance
and IPL model-based power allocation counterparts.
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Fig. 5: Achievable sum rate of the RFR power prediction
scheme for the HBF-NOMA system, benchmarking the model-
based counterparts.

problem. Sum rate dataset associated with both DPA-D and
DPA-IPL optimizations were employed for the RFR training



to predict an optimized power factor matrix. Because the
RFR scheme avoids reliance on complex deep-layer neural
networks, the RFR-based approach can generalize across de-
ployment topologies with similar pathloss characteristics, as
demonstrated through LOS and NLOS training coverages. The
prediction rule leveraged on average value approach of RFR
algorithm to predict fairness optimized power factor at the
decision tree leaf node. Link level simulation results validated
the robustness of our proposed RFR powering scheme for
both LOS and NLOS links without jeopardizing users’ fair
access. Obtained results gave beneficial insight on the realistic
performance of the proposed scheme owing to the use of
realistic channel model. Therefore, the results can serve as a
clear guide for the design stage of a 6G NOMA. Future study
will extend the RFR framework to dynamic vehicular scenarios
leveraging both online learning and distributed model updates.
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