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Abstract—This study investigates the impact of boosted read
wordline voltage (Vrwri) on the read bitline (RBL) voltage
swing (AVgpr) and read energy consumption in a 3T gain-
cell eDRAM implemented in a 65nm CMOS process. Circuit-
level HSPICE simulations were performed by sweeping Viwr,
under representative PVT conditions to evaluate the RBL dis-
charge behavior and read efficiency. Increasing Vw1, enhances
the access-transistor overdrive, thereby increasing AVrpr, and
improving the sensing margin; however, beyond approximately
1.2V, the discharge improvement begins to saturate while the
read energy rises nonlinearly, revealing a clear performance—
efficiency trade-off. To quantitatively capture this relationship,
a Gaussian Process Regression (GPR)-based machine learning
(ML) model was trained using 1,000 simulation samples to pre-
dict AVipr, and read energy as functions of Vrwi,. The proposed
model achieved mean absolute errors (MAE) of 1.386 x 107%V
for AVgpr and 3.27 x 107'° J/bit for energy. Furthermore,
an ML-driven weighted-sum optimization identified an optimal
boosted voltage around Vrwi = 1.18V, yielding a predicted
AVggr, of 0.596 V and energy consumption of 0.33 £J/bit. These
results demonstrate that the proposed ML-based prediction
and optimization framework provides an effective, data-driven
voltage design strategy for high-performance gain-cell eDRAMs
requiring both fast operation and low power consumption.

Index Terms—embedded Dynamic Random Access Memory
(eDRAM), 3T gain cell, Read performance, Energy consumption

I. INTRODUCTION

Today, memory technology plays a key role in diverse
fields, including mobile devices, high-performance computing,
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and artificial intelligence (AI) [1],[2]. Embedded Dynamic
Random Access Memory (eDRAM) is attracting attention for
its ability to simultaneously achieve high-speed data process-
ing capabilities and high density [3],[4]. In particular, gain-
cell eDRAM is considered a promising solution for next-
generation systems that require both high-speed operation and
low power [5]-[7]. While the conventional 2T gain cell archi-
tecture achieves high density and fast read/write operations
with a simple cell configuration [8], it suffers from Read
Bit Line (RBL) voltage distortion due to interference from
unselected cells during read operations, leading to reduced
detection accuracy and stability. To address these limitations,
the proposed 3T gain cell architecture adds transistors to
the read node to isolate the storage node, thereby mitigating
the read interference issue [9]. However, the isolated node
configuration results in insufficient RBL discharge, resulting
in delayed read times and reduced read margins.

In this paper, we propose a method to improve the read
path driving capability and the discharge characteristics of
the Read Word Line (RWL) by applying a boost voltage to
the RWL to address these issues. Furthermore, we propose a
framework that automatically searches for the optimal RWL
boost voltage by applying machine learning (ML) to simulate
data at various boost voltages in addition to the existing
simulation-based analysis. The proposed method consists of a
training dataset consisting of data from HSPICE simulations
performed on a 65nm CMOS process, and a regression-
based model quantitatively predicts the trade-off between read
performance and energy efficiency. This study presents both
the efficiency of high-performance eDRAM design and the
possibility of design automation through a data-driven circuit
driving optimization approach that utilizes machine learning.

II. 3T GAIN CELL

Figure 1 (a) shows the circuit diagram of a 3T Gain
Cell eDRAM. Compared to a 2T Gain Cell, the transistor
configuration for write operations is identical. However, to
address cell interference issues that arise in 2T Gain Cells,
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Fig. 1. (a) Schmetic of 3T gain cell and (b) Operation waveform of 3T gain
cell

the transistors responsible for read operations are separated
into M2 and M3. Figure 1 (b) shows the waveforms for each
operation, with the left waveform representing data 0’ and
the right waveform representing data *1’. The write operation
applies a voltage higher than VDD to WWL, strongly turning
on M1, which in turn transmits the WBL voltage to the SN.
During a read operation, when the RBL is precharged to VDD
and the RWL voltage rises from 0 to VDD, M3 turns on.
If the voltage stored in SN is 0, M2 turns off, maintaining
the RBL voltage at VDD. If SN is 1, M2 also turns on,
discharging the RBL voltage. This voltage change is detected
by a sense inverter or differential sense amplifier, outputting
a 0 or 1. Sufficient discharge of the RBL voltage is necessary
for accurate determination, but this can lead to reduced speed
due to read node isolation, and in severe cases, RBL voltage
sensing failure. While boosting the RWL voltage can improve
speed, a high boost voltage can increase energy consumption,
making it crucial to determine an appropriate RWL boost
voltage.

III. SIMULATION RESULTS AND DISCUSSION

The circuit-level simulations were performed using
HSPICE, and Table 1 summarizes the simulation conditions.
The TSMC 65-nm CMOS process was adopted under the
slow-slow (SS), typical-typical (TT), and fast-fast (FF) process
corners. The supply voltage was fixed at 0.9 V, and the
operating temperatures were set to 0,° C, 25,° C, and 85,° C.
The transistor dimensions (W/L) were 120 nm/60 nm for M1,
and 200 nm/60 nm for both M2 and M3. The storage node
(SN) was initialized to 0.9 V to represent the read operation
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Fig. 2. RBL voltage changes according to boosted RWL voltage

of data ‘1’. To construct the machine learning dataset, the
RBL voltage variation and energy consumption were simulated
across different RWL boost voltages under the above PVT
conditions. A total of 1,000 data points were collected and
used to train the regression-based ML model for predicting
optimal RWL boost conditions. This dataset-model integration
enables quantitative exploration of the trade-off between read
performance and energy efficiency in gain-cell eDRAM.

TABLE I
SIMULATION CONDITIONS
Parameter Value
Process 65 nm TSMC
Process Corner SS, TT, FF
VDD 09V
Temp 0°C,25°C,85°C

W/L (M1) 120 nm / 60 nm
W/L (M2) 200 nm / 60 nm
W/L (M3) 200 nm / 60 nm

SN Voltage 09V

A. RBL Voltage

Figure 2 shows the read bit-line (RBL) voltage after ap-
plying a boosted read word-line (RWL) voltage for 0.5 ns.
As the boosted Vgyw increases, the driving capability of
the read transistor (M3) is enhanced, which accelerates the
RBL discharge and reduces Vipr. However, the reduction in
Vrpr becomes less pronounced in the higher Vg1 region,
indicating a diminishing marginal benefit of further boosting.
This behavior is consistent with the onset of saturation in M3
and the presence of discharge-limit factors in the read path. To
quantify the marginal improvement across each boost interval,
the slope Sy, is defined as

Equation (1) defines the slope of the RBL voltage drop
according to the boosted RWL voltage change.



65nm, TT, 25°C

0.5
=
=
E 0.4 -
c ]
o knee region /
s i d Si)
2 03 (increased Sy, n
£
: "
s | -

1

O 02 P
> o
2 0.1
w

0.0 T T

0.9 1.0 14 12 13 14 15
Boosted RWL Voltage [V]

Fig. 3. Energy consumption changes according to according to boosted RWL
voltage

_ Vrr (Vi) = Vepr (Vi + AV) )
AV '

Here, AV = 0.1 V. As highlighted in Fig. 2, Si becomes
noticeably smaller in the 1.1-1.2 V interval, which is marked
as the knee region (reduced Sy). Although Vyppr continues
to decrease beyond 1.2 V, the incremental Vzp; reduction
per additional Vg 1 boost is substantially reduced. Therefore,
the Vrwr = 1.1-1.2 V interval is defined as a recommended
operating window that captures the transition toward the satu-
rated discharge regime, rather than claiming a global optimum
solely from the monotonic trend in Fig. 2.

Sk

B. Energy Consumption

Figure 3 shows the read energy consumption as a function
of the boosted read word-line (RWL) voltage. As Vrwr
increases, the dynamic energy required to drive the RWL
rises due to charging/discharging of the associated gate and
coupling capacitances, and the RBL discharge current through
the read path (including M3) generally increases. As a result,
the total read energy exhibits a nonlinear increase with Vg .

To quantify the incremental energy penalty across each
boost interval, the local energy sensitivity E, is defined as
E(VkJrAV) *E(Vk) ?)

AV '
Here, E(V}) denotes the read energy consumption at Vg, =
Vi, and AV is set to 0.1 V. This metric captures the additional
energy increase per unit Vg boost, enabling a quantitative
identification of the nonlinearity in the energy—voltage char-
acteristic. As highlighted in Fig. 3, Ej, increases noticeably in
the 1.1-1.2 V interval, which is marked as the knee region
(increased FE). Beyond this region, further boosting leads
to a rapidly increasing energy penalty, which is consistent
with the quadratic voltage dependence of capacitive switching
energy and the increased read-path conduction loss. Therefore,
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Fig. 4. Comparison between the predicted and actual values obtained from
the ML-based regression model. (a) RBL voltage, (b) Energy consumption.

from an energy-efficiency perspective, the Vg = 1.1-1.2V
interval is selected as a recommended operating window.

C. ML-based Prediction and Optimization

A machine learning-based prediction model was developed
to predict RBL voltage and read energy consumption based
on boosted RWL voltage changes. A total of 1,000 simulation
data sets were used as training and test data, with the RWL
voltage as the input variable and the corresponding RBL
voltage and energy consumption as the output variables. The
regression model was implemented based on Gaussian Process
Regression (GPR) with a Mattern kernel, and all input data
were normalized before training. Five-fold cross-validation
was performed to prevent overfitting. The model’s prediction
accuracy was verified by comparison with actual HSPICE
simulation results, as shown in Figures 4 (a) and 4 (b). The
predicted and actual values showed high agreement, and the
mean absolute error (MAE) was very low, at 1.386 x 1074V
for the RBL voltage and 3.27 x 10~!° J/bit for the energy.

Using an ML model, we performed weighted-sum opti-
mization based on the normalized values of RBL voltage
and energy consumption. To find a balance between the two
performance metrics, the objective function was defined as
Equation (3).

- AVgeL
AVRBL,max

J=ao- - (1-a) 3)

Here, a = 0.5 was set to equally prioritize read speed and
energy efficiency. The optimization results revealed an optimal
RWL boost voltage around 1.18 V, at which point the pre-
dicted RBL voltage swing (AVypr) and energy consumption
were 0.586 V and 0.33 £J/bit, respectively. This coincides
with the optimal RWL boost voltage range analytically derived
using Equations (1) and (2), demonstrating the reliability and
validity of the proposed ML-based optimization model.

IV. CONCLUSION

In this study, we analyzed the read characteristics of a
65 nm process-based 3T gaincell eDRAM and evaluated the
impact of the boosted RWL voltage on the RBL voltage and



energy efficiency. While increasing Vgwr, improves the RBL
voltage discharge rate, a saturation region appears after 1.1-
1.2V, limiting further performance improvement. Furthermore,
increasing the boosted voltage also leads to a rapid increase
in energy consumption. To address this issue, a GPR-based
performance prediction model was developed to quantitatively
predict and optimize the RBL voltage and energy consumption
as functions of Vrwr,. The model’s prediction accuracy closely
matched the actual HSPICE simulation results, and the ML-
based weighted-sum optimization yielded an optimal operating
voltage that balances read speed and energy efficiency at
approximately Vrwr = 1.18 V. These results are expected
to serve as useful guidelines for designing efficient read drive
voltages in high-performance memory systems that require fast
data access and low latency.

ACKNOWLEDGMENT

The EDA tool was supported by the IC Design Education
Center (IDEC), South Korea.

REFERENCES

[11 M. J. Lee, “A Sensing Noise Compensation Bit Line Sense Amplifier
for Low Voltage Applications,” in IEEE Journal of Solid-State Circuits,
vol. 46, no. 3, pp. 690-694, March 2011.

[2] M. J. Lee et al., “Partial SOI type isolation for improvement of DRAM
cell transistor characteristics,” in IEEE Electron Device Letters, vol. 26,
no. 5, pp. 332-334, May 2005.

[3] Meterelliyoz, Mesut, Jaydeep P. Kulkarni, and Kaushik Roy. ”Analysis
of SRAM and eDRAM cache memories under spatial temperature
variations.” IEEE transactions on computer-aided design of integrated
circuits and systems 29.1 (2009): 2-13.

[4] Teman, Adam, et al. "Review and classification of gain cell eDRAM
implementations.” 2012 IEEE 27th Convention of Electrical and Elec-
tronics Engineers in Israel. IEEE, 2012.

[5] Bonetti, Andrea, et al. ”Gain-cell embedded DRAMSs: Modeling and
design space.” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 28.3 (2020): 646-659.

[6] Tien, Jen-Chun, et al. "A Microscaling Multi-Mode Gain-Cell
Computing-in-Memory Macro for Advanced AI Edge Device.” IEEE
Journal of Solid-State Circuits(2025).

[7]1 Wang, Kaifeng, et al. "Logic-Compatible Asymmetrical FET for Gain
Cell eDRAM With Long Retention and Fast Access Speed.” IEEE
Journal of the Electron Devices Society (2025).

[8] Chun, Ki Chul, et al. ”A 667 MHz logic-compatible embedded DRAM
featuring an asymmetric 2T gain cell for high speed on-die caches.”
IEEE Journal of Solid-State Circuits 47.2 (2011): 547-559.

[9] Chun, Ki Chul, et al. A 3T gain cell embedded DRAM utilizing
preferential boosting for high density and low power on-die caches.”
IEEE Journal of Solid-State Circuits 46.6 (2011): 1495-1505.



