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Abstract—Learned image compression has increasingly bene-
fited from hybrid architectures that aim to combine the local
modeling of CNNs with the global context of transformers. Our
prior work, BACF-Net, established a competitive baseline by
introducing the Bifurcated Attention-Convolution Fusion (BACF)
block to integrate these technologies. In this paper, we advance
this framework by proposing an optimized 2-layer BACF-Net,
demonstrating that a strategically shallower depth yields a
superior rate-distortion trade-off. We support this optimization
with a comprehensive architectural analysis that was previously
unexplored. Our ablation studies provide empirical validation for
the complementary integration of mixed-attention mechanisms,
the efficiency of our asymmetric encoder-decoder design, and
the critical role of split-attention in outperforming traditional
GDN. Our refined model achieves competitive performance,
highlighting that rigorous architectural analysis is essential for
optimizing hybrid compression models.

I. INTRODUCTION

The relentless growth of visual data has established effi-
cient image compression as a cornerstone of modern data
management and transmission. For decades, this field was
dominated by hand-crafted codecs, such as JPEG [1], HEVC
[2], and the current state-of-the-art, Versatile Video Coding
(VVCO) [3]. While highly optimized, these traditional methods
are fundamentally constrained by fixed, manually engineered
transformation and entropy coding pipelines. Learned image
compression (LIC) has emerged as a transformative paradigm,
leveraging end-to-end optimization of deep neural networks.
This data-driven approach allows models to automatically
discover more compact and perceptually aligned latent rep-
resentations, enabling LIC frameworks to consistently surpass
the rate-distortion (R-D) performance of VVC [4], [5].

Within the LIC landscape, two dominant architectural
paradigms have emerged. On the one hand, Convolutional
Neural Networks (CNNs) excel at capturing local spatial
correlations and translation invariance, making them highly
effective for texture and pattern modeling [4], [6]. However,
the inductive bias imposed by their local receptive fields inher-
ently limits their ability to model long-range dependencies. On
the other hand, Vision Transformers [7] leverage self-attention
mechanisms to capture global contextual relationships across
the entire image. While powerful, this global modeling often
incurs significant computational complexity and may overlook
fine-grained local details. Consequently, hybrid architectures
that integrate the complementary strengths of both CNNs and
Transformers represent a promising direction for advancing
compression performance [8], [9].

Building upon this hybrid trend, our prior work [10] intro-
duced the Bifurcated Attention-Convolution Fusion (BACF)
network. The core of this framework is the BACF block, a
novel dual-path parallel design: one path employs a residual
CNN augmented with Split Attention, while the other utilizes
a vision transformer module (instantiated as either MaxViT
[11] or Swin Transformer [12]). This parallel architecture
is designed to simultaneously process fine-grained local tex-
tures and high-level global semantic information before fusing
them. The resulting framework established a solid performance
baseline, demonstrating competitive rate-distortion results and
validating the potential of this fusion strategy.

While BACF-Net [10] demonstrated strong empirical re-
sults, its initial presentation focused on the final architecture,
leaving the underlying design rationale and the impact of
individual components unexplored. Specifically, the efficacy
of the combined mixed-attention, asymmetric decoding, and
split-attention mechanisms was not empirically validated. Fur-
thermore, the architectural configuration, such as the depth of
the core encoder, was presented as a fixed choice, leaving open
the question of whether it represented the optimal trade-off
between performance and complexity.

This paper addresses these gaps and presents two primary
contributions. First, we provide a comprehensive architec-
tural dissection of the BACF-Net framework. We conduct
a rigorous series of ablation studies to empirically validate
the core design choices, evaluating: (a) the necessity of the
mixed-attention strategy over single-transformer variants, (b)
the efficiency of the asymmetric decoder, (c) the significant
R-D gains yielded by the split-attention module compared
to traditional GDN, and (d) the performance equivalence
of serial versus parallel connection strategies, validating our
simpler cascaded design. Second, informed by this analysis,
we propose an architectural optimization. Our investigation
into encoder depth reveals that the original 3-layer stack was
suboptimal. We introduce a refined 2-layer core encoder that
not only reduces complexity but, more importantly, achieves
superior rate-distortion performance, establishing a new opti-
mal configuration for the BACF-Net architecture.

II. METHODOLOGY: THE OPTIMIZED BACF-NET

A. Overall Framework

Our proposed architecture, illustrated in Fig. 1, is built upon
the widely adopted hyperprior-based framework [6], [13]. An
input image « is first transformed by the core encoder g, into
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Fig. 1: The overall architecture of our optimized learned image compression framework. The core encoder (g,) and core
decoder (gs) are refined to use two transformation layers, each composed of a residual block (Fig. 3) and cascaded BACF

blocks (Fig. 2). The symbols 2 1 and 2 | represent upsampling
quantization, arithmetic encoding, and decoding, respectively.

a latent representation y. To capture spatial redundancies and
provide side information, y is further analyzed by a hyper-
encoder h, to produce a hyper-latent z. Both y and z are
quantized (g, 2) and compressed into a bitstream using entropy
coding. On the decoder side, a hyper-decoder kg reconstructs
the parameters (e.g., mean and scale) of ¢’s distribution from
Z, enabling accurate probability estimation via a channel-wise
entropy model [14]. Finally, the core decoder g5 reconstructs
the image & from y. The entire model is optimized end-to-end
by minimizing the rate-distortion (R-D) loss:

L=R(g)+R(Z)+ X D(z, %), (1)

where R denotes the estimated bitrates of the latents, D is
the distortion between = and z (measured by MSE), and A
controls the R-D trade-off.

B. The Bifurcated Attention-Convolution Fusion (BACF)
Block

The fundamental component of our framework is the Bifur-
cated Attention-Convolution Fusion (BACF) block, depicted in
Fig. 2. This module is designed to integrate the complementary
strengths of Vision Transformers and residual CNNs via a
parallel configuration. An input tensor first passes through
a 1 x 1 convolutional layer to unify feature dimensions.
The resulting tensor is then split evenly along the channel
dimension, bifurcating the features into two distinct paths:
(1) a vision transformer branch and (2) a residual CNN
branch. This parallel design serves a dual purpose: it re-
duces the computational load for each subsequent branch and,
more critically, it allows the network to independently and
simultaneously process local patterns (via CNN) and global
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Fig. 2: The Bifurcated Attention-Convolution Fusion (BACF)
block. It integrates vision transformers (BACF-Max or BACF-
Swin) and a residual CNN module with split attention in a
parallel configuration.

dependencies (via Transformer), thereby enhancing its feature
extraction capabilities [9].

The Vision Transformer branch, shown in Fig. 2, processes
its half of the feature channels. In our framework, this module
is instantiated as two distinct variants, which in turn define
two types of BACF blocks. The BACF-Max variant employs
a MaxViT [11] block to capture global, multi-axis attention.
Conversely, the BACF-Swin variant utilizes a Swin Trans-
former [12] block for efficient, shifted window-based local
attention. As detailed in Section II-C, these two block types
are cascaded within the full encoder architecture.

Running in parallel to the vision transformer, the second
path is the residual CNN model with split attention. This
branch (bottom path of Fig. 2) also processes its half of the
feature channels, passing them through a 3 x 3 convolution
followed by a ReLU activation. Critically, this path is en-
hanced by a ResNeSt-inspired [15] split-attention mechanism
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Fig. 3: The residual blocks for spatial downsampling (2 ) via
strided convolution in the encoder (left) and upsampling (2 1)
via sub-pixel convolution in the decoder (right).

[16]. This module, which our analysis in Section III proves is
important, allows the network to perform feature-map attention
across different splits, adaptively refining local representations.

Finally, the outputs from the Vision Transformer path (e.g.,
MaxViT) and the residual CNN path are fused. The two tensors
are concatenated along the channel dimension. A concluding
1x 1 convolution then integrates these parallel-processed local
and global representations, producing the final output of the
BACEF block.

C. Optimized 2-Layer Architecture

We present the proposed optimized BACF-Net framework,
illustrated in Fig. 1. This architecture integrates the BACF
blocks described in Section II-B into a complete compres-
sion pipeline. This configuration results from the extensive
architectural analysis presented in Section III. Specifically, a
key contribution of this architecture is the refinement of the
core encoder g, to an optimal depth of two transformation
layers, a direct optimization over the 3-layer stack used in our
preliminary work [10].

As shown in Fig. 1, the core encoder g, is responsible
for transforming the input image x into the compact latent
representation y. Our optimized design for g, consists of two
sequential transformation layers. Each transformation layer
begins with a strided convolutional residual block (Fig. 3,
left) that performs spatial downsampling (2 ) [4]. This
is immediately followed by a cascaded pair of our fusion
blocks: first, a BACF-Max block to capture global context,
and second, a BACF-Swin block to refine local features. After
the input passes through these two transformation layers, a
final 3 x 3 convolution maps the features to the target channel
dimension of the latent representation y. This 2-layer design
is a deliberate optimization (validated in Section III) that
balances deep feature extraction with computational efficiency.

A key feature of our framework is the asymmetric archi-
tecture. In contrast to the core encoder’s "Max+Swin” hybrid
design, the core decoder gs; and the entire hyper-decoder
are intentionally made more lightweight. As shown in Fig. 1,
their transformation layers utilize only the BACF-Swin blocks.
This asymmetric approach, which we validate in Section III,
achieves a favorable balance between model capacity and
efficiency by leveraging SwinV2’s localized attention for high-
fidelity reconstruction.
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Fig. 4: Comparative analysis of R-D performance on the
Kodak dataset for BACF blocks utilizing Swin Transformer
V2 only, MaxViT blocks only, and a mixture of both.

III. ARCHITECTURAL ANALYSIS AND ABLATION

The optimized architecture presented in Section II results
from a detailed investigation into the framework’s core compo-
nents. This section details the ablation studies that validate our
design choices, providing empirical justification absent in our
preliminary work [10]. All models in this section were trained
on a 30,000-image subset of Openlmages [17] to ensure a fair
and consistent comparison.

A. Necessity of Mixed-Attention in the Encoder

Our first investigation probes the fundamental premise of the
“hybrid-attention” BACF encoder. To validate the hypothesis
that a mixture of transformer variants is beneficial, we de-
signed three distinct encoder configurations: (i) Swin Only: All
BACF blocks in the encoder use only Swin Transformer V2.
(i) MaxViT Only: All BACF blocks in the encoder use only
MaxViT. (iii) Mixed: The cascaded BACF-Max — BACF-
Swin design proposed in Section II-C. These experiments
utilized the previous 3-layer stack for a direct comparison of
the attention mechanisms themselves.

The results presented in Fig. 4 are unequivocal. The Mixed
configuration (black line) achieves a consistently superior rate-
distortion curve compared to architectures relying on a single
transformer type. This outcome provides strong empirical
evidence for our central hypothesis: the attention mechanisms
are complementary, rather than redundant. The multi-axis
attention in MaxViT facilitates global context aggregation and
long-range dependency modeling, while the shifted-window
strategy of SwinV2 enables the efficient capture of localized
structures. By integrating these distinct mechanisms within our
cascaded design, the BACF encoder attains a more balanced
and expressive feature representation in the latent space,
validating the design’s contribution to compression efficiency.

B. Efficacy of Asymmetric Design

Our next analysis investigates the decision to use an
asymmetric module configuration within the encoder-decoder
framework. In this context, asymmetry refers to the specific
transformer variants employed, rather than the layer depth. We
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Fig. 5: Rate-distortion performance comparison on the Kodak
dataset for various symmetric and asymmetric combinations
of vision transformers in the BACF blocks (e.g., Encoder —
Decoder).

compare symmetric configurations (e.g., identical modules in
both encoder and decoder) against our proposed asymmetric
design, which utilizes the full “Max+Swin” mixture in the
encoder but employs “Swin” blocks exclusively in the decoder.
To validate this choice, we evaluated six distinct architectural
pairings. For this specific study, all models were configured
with the same 2-layer depth (as determined in Section III-C)
to isolate the effect of module composition.

The results plotted in Fig. 5 clearly support our design
choice. The asymmetric configuration (represented by the
black line, Max+Swin — Swin+Swin) yields the most
favorable rate-distortion trade-off among all tested variants.
This outcome suggests an efficient architectural balance: the
encoder benefits from the powerful feature extraction of the
full “Max+Swin” hybrid module to model complex depen-
dencies, while the decoder achieves robust high-fidelity re-
construction using only the more lightweight SwinV2 blocks.
This asymmetric module composition provides superior com-
pression performance without incurring the full computational
load associated with a symmetric hybrid decoder.

C. Architectural Depth Optimization

Perhaps our most critical investigation concerns the optimal
depth of the core encoder and decoder. The performance of
deep learning models does not always monotonically improve
with depth; adding layers can introduce vanishing gradients,
increase parameter counts, and, in some cases, even de-
grade performance [18]. To identify the “sweet spot” for our
BACF framework, we conducted an ablation study varying
the number of stacked transformation layers (each containing
a residual block and the BACF block pair) in both the encoder
and decoder. We specifically examined configurations with
one (BACF_1), two (BACF_2), and three (BACF_3) stacked
layers.

The results, illustrated in Fig. 6, reveal a clear optimal point.
Stacking two BACF layers consistently outperforms the single-
layer configuration, confirming that deeper feature fusion is
necessary for rich representational power. However, increasing
the depth further to three stacked layers, the configuration used
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Fig. 6: Rate-distortion performance comparison (PSNR vs.
bpp) on the Kodak dataset for models with 1, 2, and 3 stacked
BACF transformation layers in the encoder and decoder.

TABLE I: Comparison of different nonlinear layers (GDN vs.
Residual Blocks) on the Kodak dataset. BD-Rate is computed
against the GDN baseline. Enc./Dec. denotes inference time.
RBs stands for residual blocks.

Layer BD-Rate| Enc.(s) Dec.(s)
GDN 0.00 1.932 1.618
RBs w/o Split-Atten -7.22 2.371 1.671
RBs w/ Split-Atten -9.38 3.443 1.698

in our preliminary work [10], does not yield additional bene-
fits. Instead, it leads to a marginal but consistent performance
degradation across the bitrate range. These findings are critical:
they demonstrate that a balanced depth of two BACF layers
strikes the most effective trade-off between model complexity
and compression performance. Therefore, we adopt the 2-
layer architecture as the definitive, optimized framework for
all subsequent evaluations in this paper.

D. Role of Split Attention vs. GDN

Our final ablation study evaluates the non-linear transfor-
mation block used within the residual CNN branch of our
BACF module. In our design (Fig. 2), we diverged from the
Generalized Divisive Normalization (GDN) [19] commonly
used in learned compression, opting instead for residual bot-
tleneck blocks (RBs) augmented with a Split-Attention (Split-
Atten) mechanism [15]. To quantify the impact of this choice,
we compared three models: (i) GDN: The traditional GDN
layer is used as the non-linear unit. (ii) RBs w/o Split-
Atten: Residual blocks are used, but without the split-attention
module. (iii) RBs w/ Split-Atten: Our proposed design. For this
test, models were configured with a 3-layer stack to maximize
the observable effect of the non-linearity.

The results, presented in Table I, are illuminating. We use
Bjontegaard Distortion-Rate (BD-Rate) [20] as the quantitative
metric, with the GDN model serving as the anchor (0.00).
Replacing GDN with standard residual blocks (RBs w/o Split-
Atten) yields a significant BD-Rate improvement of —7.22%.
However, augmenting these residual blocks with our chosen
Split-Attention mechanism (RBs w/ Split-Atten) achieves a
remarkable —9.38% reduction. This demonstrates that the
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Fig. 7: Rate-distortion performance comparison on the Kodak
dataset for different connection strategies. “Ours” represents
the adopted Series connection.

split-attention module is a critical driver of performance in
our CNN branch. While this design incurs a higher inference
latency compared to the highly optimized GDN layer, the
substantial bitrate saving at equivalent PSNR quality strongly
justifies its inclusion for maximizing compression efficiency.

E. Connection Strategy: Series vs. Parallel

Finally, we analyze the connection strategy used to combine
the BACF-Max and BACF-Swin blocks within each trans-
formation layer. Our adopted framework (Fig. 1) utilizes a
series (cascaded) connection, where the output of the BACF-
Max block is sequentially fed into the BACF-Swin block.
We compare this against an alternative parallel configuration,
where the input feature map is fed to both the BACF-Max
and BACF-Swin blocks simultaneously, and their respective
outputs are fused via element-wise addition.

As shown in Fig. 7, the resulting R-D performance curves
for the Series (labeled “Ours”) and Parallel (labeled “Parallel,
Swin” and “Parallel, Mixed”) configurations are nearly iden-
tical. This observation suggests that the choice of connection
topology for the internal transformer blocks does not yield a
significant difference in compression efficiency. The perfor-
mance gains primarily originate from the fusion design of the
BACEF block itself, rather than the specific method of stacking
the internal attention modules. Given this negligible difference,
we adopted the more straightforward Series connection for our
final architecture.

IV. EXPERIMENTAL EVALUATION
A. Implementation Details

To evaluate its performance, our optimized 2-layer BACF-
Net was implemented using the CompressAl platform [21].
Following established practices for SOTA comparisons [5],
[9], we trained our models on a large-scale dataset of 300,000
images randomly selected from the ImageNet training set [22].
During training, images were randomly cropped to 256 x 256
patches. We optimized the network using the Adam optimizer
[23] with a batch size of 8.

We evaluate the R-D performance of our optimized model
on two widely used benchmark datasets: (i) CLIC, specifically
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Fig. 8: Rate-distortion performance comparison on the Tec-
nick dataset. (Top) PSNR (dB) vs. bpp. (Bottom) MS-SSIM
(dB) vs. bpp. Our optimized 2-layer BACF-Net demonstrates
competitive performance.

the professional validation set (pro val), which consists of
41 high-quality images at 2K resolution; and (ii) Tecnick,
which includes 100 high-resolution images (1200 x 1200). For
clearer visual comparison on R-D plots, MS-SSIM values are
converted to decibels (dB) using the formula —10log;(1 —
MS-SSIM).

B. Performance Comparison

We benchmark the R-D performance of our optimized 2-
layer BACF-Net against a comprehensive set of recent meth-
ods. Our comparisons include the traditional VVC (VTM-23)
codec and leading learned compression frameworks, such as
Ball¢’18 [6], Cheng’20 [4], WACNN’22 [8], ELIC’22 [5],
LIC_TCM’23 [9], and SCH’24 [24]. The results for these com-
peting methods are sourced from their original publications or
pre-trained models to ensure a fair comparison.

The Rate-Distortion (R-D) performance of our optimized
2-layer model is presented in Fig. 8 (Tecnick) and Fig. 9
(CLIC). Across all benchmark datasets, which feature di-
verse image resolutions and content, our optimized BACF-Net
demonstrates competitive performance. The results highlight
the robustness and effectiveness of our hybrid approach. The
strategic combination of advanced residual CNN blocks, split
attention, and mixed-transformer variants enables our model
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Fig. 9: Rate-distortion performance comparison on the CLIC
Professional Validation dataset. (Top) PSNR (dB) vs. bpp.
(Bottom) MS-SSIM (dB) vs. bpp.

to effectively balance the extraction of fine-grained local
details with high-level semantic information. This allows our
optimized framework to achieve a superior trade-off in both
PSNR and MS-SSIM metrics, validating the efficacy of our
architectural analysis and subsequent optimization.

V. CONCLUSION

In this paper, we presented a comprehensive architectural
analysis and optimization of BACF-Net, a hybrid CNN-
Transformer framework for learned image compression. Mov-
ing beyond the baseline performance established in our pre-
liminary work, we provided a rigorous dissection of the
key components driving the system’s efficiency. This work
confirms that a “dissect-then-optimize” approach is crucial for
maximizing the potential of complex hybrid architectures.

[1]
[2]

[3]
[4]

REFERENCES

Gregory K Wallace. The jpeg still picture compression standard.
Communications of the ACM, 34(4):30-44, 1991.

Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan. High efficiency
video coding (hevc). In Integrated circuit and systems, algorithms and
architectures, volume 39, page 40. Springer, 2014.

Joint Video Experts Team. Vvc official test model vtm, 2021.
Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto.
Learned image compression with discretized gaussian mixture like-
lihoods and attention modules. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 7939—
7948, 2020.

[5

—_

[6

—

[7

—

[8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23

—_

[24]

Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei Qin, and
Yan Wang. Elic: Efficient learned image compression with unevenly
grouped space-channel contextual adaptive coding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5718-5727, 2022.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and
Nick Johnston. Variational image compression with a scale hyperprior.
In International Conference on Learning Representations, 2018.
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning
Representations, 2021.

Renjie Zou, Chunfeng Song, and Zhaoxiang Zhang. The devil is in the
details: Window-based attention for image compression. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
pages 17492-17501, 2022.

Jinming Liu, Heming Sun, and Jiro Katto. Learned image compres-
sion with mixed transformer-cnn architectures. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14388-14397, 2023.

Chen-Lin Chang and Hsu-Feng Hsiao.  Bacf-net: An attention-
convolution fusion architecture for learned image compression. In 2025
IEEE International Symposium on Circuits and Systems (ISCAS), pages
1-5, 2025.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman
Milanfar, Alan Bovik, and Yinxiao Li. Maxvit: Multi-axis vision
transformer. In European conference on computer vision, pages 459—
479. Springer, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 10012—-10022, 2021.
David Minnen, Johannes Ballé, and George D Toderici. Joint autoregres-
sive and hierarchical priors for learned image compression. Advances
in neural information processing systems, 31, 2018.

David Minnen and Saurabh Singh. Channel-wise autoregressive entropy
models for learned image compression. In 2020 IEEE International
Conference on Image Processing (ICIP), pages 3339-3343. IEEE, 2020.
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi
Zhang, Yue Sun, Tong He, Jonas Mueller, R Manmatha, et al. Resnest:
Split-attention networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2736-2746, 2022.
Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7132-7141, 2018.

I Krasin, T Duerig, N Alldrin, V Ferrari, S Abu-El-Haija, A Kuznetsova,
H Rom, J Uijlings, S Popov, A Veit, et al. Openimages: a public dataset
for large-scale multi-label and multi-class image classification. dataset
(2017), 2017.

Zhengbo Luo, Zitang Sun, Weilian Zhou, Zizhang Wu, and Sei-ichiro
Kamata. Rethinking resnets: improved stacking strategies with high-
order schemes for image classification. Complex & Intelligent Systems,
8(4):3395-3407, 2022.

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end
optimization of nonlinear transform codes for perceptual quality. In
2016 Picture Coding Symposium (PCS), pages 1-5. IEEE, 2016.

Gisle Bjontegaard. Calculation of average psnr differences between rd-
curves. [TU SG16 Doc. VCEG-M33, 2001.

Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay Pushparaja.
Compressai: a pytorch library and evaluation platform for end-to-end
compression research. arXiv preprint arXiv:2011.03029, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248-255.
Teee, 2009.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

H. Xu, B. Hai, Y. Tang, and Z. He. Window-based channel attention
for wavelet-enhanced learned image compression. In Proceedings of the
Asian Conference on Computer Vision, pages 4334-4351, 2024.



