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Abstract—This paper presents a Support Vector Regression
(SVR)-based surrogate modeling framework for fast, gate-
voltage-conditioned prediction of leakage-aware drain current in
a Buried Channel Array Transistor (BCAT). Accurate current
estimation under gate-bias sweeps is essential for modern semi-
conductor design because scaling intensifies strong electric-field
effects and leakage-related behavior. Using Synopsys Sentaurus
TCAD, we generated 1000 bias-point samples over a gate-voltage
sweep range under a fixed drain bias, and used the corresponding
drain current as the learning target. With systematic preprocess-
ing and hyperparameter optimization, the trained SVR model
achieved a test-set accuracy of R2 = with RMSE=and MAPE=.
Cross-validation further showed stable performance (mean R2 =
with standard deviation ). The results confirm that SVR can serve
as a highly efficient surrogate model, reducing computational
cost by several orders of magnitude compared to TCAD while
maintaining physically consistent bias-dependent trends.

Index Terms—BCAT, drain current, leakage current, gate
voltage, Support Vector Regression, TCAD simulation, machine
learning, surrogate model

I. INTRODUCTION

As semiconductor device dimensions continue to shrink,
bias-dependent current behavior—including leakage-relevant
operating regions—has become a critical concern for low-
power operation, stability, and reliability. In practical eval-
uation flows, repeated ID–VG sweeps under fixed VD are
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frequently required for device characterization and device–
circuit co-analysis, but TCAD-based sweeps are computation-
ally expensive.

The Buried Channel Array Transistor (BCAT) features
a buried conduction path beneath the gate oxide, offering
reduced surface scattering and enhanced carrier mobility
compared to surface-channel MOSFETs. However, the drain
current response to gate bias is strongly nonlinear across
subthreshold and inversion regimes, and high-field conditions
can emphasize leakage components such as gate-induced drain
leakage (GIDL) and tunneling-related behavior. Therefore, a
fast and reliable surrogate for predicting ID as a function of
VG is valuable for accelerating bias exploration and design
iteration.

Support Vector Regression (SVR) is attractive for nonlinear
regression due to robust generalization and efficiency under
limited data—a practical advantage when datasets originate
from expensive TCAD runs. In this work, we develop an
SVR model to predict BCAT drain current conditioned on
the applied gate voltage VG (with fixed VD and temperature),
targeting rapid and physically consistent ID prediction across
the sweep range.

A. Contributions

The main contributions of this paper are:

• A gate-voltage-conditioned SVR surrogate for BCAT
drain current prediction over leakage-relevant bias re-
gions.

• A TCAD-driven dataset construction and a reproducible
training pipeline (standardization, outlier filtering, cross-
validated hyperparameter tuning).

• Quantitative validation showing R2 = on the test split
and stable cross-validation behavior (mean R2 =).



II. THEORETICAL BACKGROUND

A. BCAT Device and Bias-Dependent Current Behavior

The BCAT structure (Fig. 1) incorporates a conduction
channel buried beneath the gate oxide, allowing carriers to
flow through a region separated from the Si–SiO2 interface.
As VG increases, barrier modulation and channel formation
drive a rapid transition from subthreshold conduction to strong
inversion, producing a highly nonlinear ID–VG relationship.
Depending on the electric-field distribution and device geom-
etry, leakage-related mechanisms such as GIDL and tunneling
components can contribute, especially in off/near-off and high-
field regions.

Fig. 1: Schematic of the Buried Channel Array Transistor
(BCAT) structure.

B. Principles of Support Vector Regression

SVR extends Support Vector Machines to regression by
fitting a function f(x) = w · x + b within an ε-insensitive
tube while minimizing model complexity:

min
w,b,ξi,ξ∗i

1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ), (1)

subject to

yi−(w·xi+b) ≤ ε+ξi, (w·xi+b)−yi ≤ ε+ξ∗i , ξi, ξ
∗
i ≥ 0.

Here, C controls the trade-off between model flatness and
tolerance to deviations. To model nonlinearities in the ID–VG

mapping, we adopt the radial basis function (RBF) kernel:

K(xi, xj) = exp
(
−γ∥xi − xj∥2

)
. (2)

III. METHODOLOGY

A. Problem Definition

Given a gate voltage input VG under fixed operating con-
ditions (VD and temperature fixed), the objective is to predict
the corresponding drain current ID:

ÎD = f(VG),

where f(·) is learned from TCAD-generated pairs (VG, ID).
This formulation targets fast emulation of TCAD bias sweeps
for design-space exploration.

B. Data Generation via TCAD

Device characteristics were simulated using Synopsys Sen-
taurus TCAD. The BCAT structure was modeled with p-type
channel and n-type source/drain regions, and physical models
included the drift-diffusion transport model, Shockley–Read–
Hall (SRH) recombination, bandgap narrowing, and field-
dependent mobility effects. Simulations were performed at
300K.

To construct the learning dataset, the gate voltage VG was
swept within -1.0V to 1.0V while fixing the drain voltage at
VD = 0.5V . From the sweep, 1000 bias-point samples were
collected and the drain current ID at each VG point was used
as the prediction target:

Input: [VG], Output: [ID(VG)].

Mesh refinement was applied near the gate–drain overlap
region to improve electric-field accuracy and leakage-related
current estimation.

C. Data Preprocessing and Model Training

Data were normalized using StandardScaler to zero
mean and unit variance. Outliers due to numerical instabilities
in TCAD were removed using the interquartile range (IQR)
method. The dataset was split into 70% training, 15% valida-
tion, and 15% testing sets.

Hyperparameters (C, γ, and ε) were optimized via grid
search combined with 5-fold cross-validation. The search
space is listed (aligned) as:

• C ∈ {0.1, 1, 10, 100}
• γ ∈ {0.001, 0.01, 0.1, 1}
• ε ∈ {0.01, 0.1, 0.5}

Model performance was evaluated using R2, RMSE, MAE,
and MAPE metrics.

IV. RESULTS AND DISCUSSION

A. Performance Evaluation Using Scatter Plot

The overall prediction performance is shown in Fig. 2,
which compares the SVR-predicted and TCAD-simulated
drain currents across the gate-voltage sweep. Each point rep-
resents a single TCAD sample, and the diagonal line (y = x)
denotes perfect prediction.



Fig. 2: Scatter plot comparing SVR-predicted and TCAD-
simulated drain currents for performance evaluation.

The SVR model achieved R2 =, RMSE=, MAE=, and
MAPE=. Data points are densely clustered near the ideal line,
indicating that SVR successfully learns the nonlinear mapping
between VG and ID. Residuals were centered around zero,
suggesting limited systematic bias across the gate-bias range.

B. Physical Consistency and Interpretation

The SVR model exhibits physically consistent bias depen-
dence by reproducing the nonlinear transition of ID across
subthreshold and inversion regimes. In leakage-relevant op-
erating points (e.g., near-off biases), the predicted currents
follow the same trend as TCAD, indicating that kernel-
based learning effectively encodes the nonlinear dependencies
shaped by barrier modulation and electric-field effects.

C. Computational Efficiency

Compared to TCAD, where dense bias sweeps can require
substantial runtime, the trained SVR model produces predic-
tions in milliseconds per bias point. This corresponds to an
effective speedup of approximately 103–104 times, enabling
integration with optimization algorithms and rapid design-
space exploration under varying gate-bias conditions.

D. Cross-validation Analysis and Metric Consistency

To avoid confusion from inconsistent metric reporting,
test-split and cross-validation results are reported separately.
Across five folds, the cross-validated performance was mean
R2 = with standard deviation , confirming stability and
robustness against data partitioning.

V. CONCLUSION

This study developed an SVR-based surrogate model to
predict leakage-aware BCAT drain current as a function of
gate voltage under fixed drain bias and temperature. The
model achieved high accuracy (R2 =, RMSE=) and re-
produced physically consistent bias-dependent current trends
while reducing evaluation time by several orders of magnitude
compared to TCAD. Future work will extend the model to
multi-input prediction by incorporating additional operating

conditions (e.g., VD, temperature) and structural parameters
to further strengthen its contribution to practical device design
workflows.
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