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Abstract—Neural networks appear as an increasingly
attractive approach for the behavioral modeling and
linearization of radio frequency power amplifiers. However,
their relative complexity when compared to analytically defined
models hinders their wide adoption in field deployed systems.
This work tackles the complexity issue in neural networks by
proposing a two-box structure using a look-up table followed by
a real-valued time delay neural network (RVTDNN) in a
Hammerstein-like structure in order to reduce the overall
complexity of neural network based behavioral models without
compromising their performance. The proposed model was
evaluated using experimental data for a Doherty power
amplifier driven by a 100MHz 5G test signal. The performance
and complexity of the proposed model were compared to that of
the standalone RVITDNN and the standalone augmented real-
valued time-delay neural network (ARVTDNN). The results
show that, compared to the standalone RVTDNN and
ARVTDNN, the proposed model improves the NMSE especially
for a reduced number of parameters. Hence, allowing for a
better complexity and performance tradeoff.
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1. INTRODUCTION

The wupcoming 6G technology, which promises
exceptional speed, capacity, and reduced latency, is the next
step in wireless communication growth. It is anticipated to
outperform 5G by incorporating innovative features that will
allow for new applications and services. PAs are essential
components of wireless communication systems that increase
the signal power prior to transmission. Reducing the
impairments caused by power amplifiers (memory effects and
nonlinear distortions) is necessary to achieve high-quality
communication. Behavioral modeling is an effective method
for predicting the output signal of the PA and assessing and
analyzing its nonlinear behavior. Conventional PA models,
including the Volterra model and its simpler versions, have
been used to formulate mathematical relations between PAs
input and output signals [1]. The high correlation between the
polynomial basis functions in these models makes it difficult
to improve the modeling performance, even when additional
polynomial terms are included.

Neural networks based techniques have recently drawn a
lot of interest in power amplifier behavioral modeling and
predistortion because they are better than traditional
polynomial-based techniques at capturing intricate nonlinear
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dynamics and memory effects [2] [3]. The real-valued time
delay neural network (RVTDNN) is one of the architectures
that effectively strikes a compromise between model
complexity and performance [4]. More advanced neural
network structures, including convolutional neural networks
(CNNSs) and bidirectional long short-term memory (BiLSTM)
networks, have been proposed in the literature for a behavioral
modeling and predistortion of nonlinear power amplifiers
exhibiting memory effects [5]-[9]. These advanced models
results in a significantly larger parameters count and
frequently require significant computational resources and
lengthy training times. Conversely, RVTDNN maintains a
simpler structure with fewer parameters while still achieving
competitive accuracy. Without requiring recurrent or
convolutional layers, its time-delay structure of the input
features vector efficiently simulates the temporal
dependencies present in power amplifier behavior. This made
RVTDNN models very useful for real-time applications and
attractive for hardware deployment because of their lower
complexity, greater convergence speed, and simpler
construction.

An improved version of the traditional RVTDNN
architecture is the augmented real-valued time delay neural
network (ARVTDNN) which is intended to offer higher
modeling accuracy without a significant computational
overhead [10]. The ARVTDNN outperforms the simple
RVTDNN in capturing higher-order nonlinearities and
memory effects by adding further input features such as signal
magnitude, phase, or nonlinear power of the signal magnitude,
along with their respective delayed versions [10]. By having a
richer set of input features, the ARVTDNN was found to
require a lesser number of parameters than the RVTDNN and
achieve comparable or slightly better results.

From a different perspective, parallel and cascade
configurations are basic two-box structures that were
frequently used in analytically defined behavioral models to
achieve reduced complexity with reliable performance. These
architectures divide the system's memory and nonlinear
components into discrete processing blocks; they are
frequently depicted by models like the Wiener, Hammerstein,
or Wiener—Hammerstein forms [1][11]-[13]. This modular
representation keeps computational requirements reasonable,
simplifies the modeling process, and enables flexible
adaptation to different amplifier characteristics [1].

In this work, a behavioral model based on the
Hammerstein structure, made of a nonlinear lookup table
(LUT) followed by RVTDNN block, is proposed. While the



RVTDNN is used to mimic the dynamic behavior and
memory effects, the LUT is designed to capture the PA's static
nonlinear characteristics. This hybrid setup combines the
flexibility of NN with the simplicity of analytically inspired
structures. It is anticipated that the suggested model will
considerably lower the computing complexity in comparison
to the ARVTDNN while preserving an equivalent level of
modeling accuracy.

The remainder of this article is structured as follows:
Section II describes the proposed model and its identification
procedure, Section III presents the experimental results as well
as a performance comparison with the benchmark model. The
conclusions are summarized in Section IV.

II. PROPOSED MODEL

The proposed model is devised using a cascaded two-box
structure conceptually similar to the Hammerstein model.
The main difference is that, in this model, the linear filter
commonly used in the Hammerstein model is replaced by a
real-valued time-delay neural network (RVTDNN).
Compared to advanced neural networks, the RVTDNN has a
relatively low complexity since it does not involve additional
functions such as those present in long-short term memory
(LSTM) based models, and convolutional models.

The block diagrams of the conventional single-box
RVTDNN and the proposed model are depicted in Figure 1.
For the conventional model, the neural network is fed by the

amplifier’s input signal (x,) at its input and attempts to
predict the measured signal at the output of the amplifier
(x,,) . In the proposed model, the input signal (x,) is
initially fed into a memoryless look-up table. The output of
the look-up table (x()MUT) is then applied at the input of the

RVTDNN model to predict the output signal (xum.m) which

is ideally a copy of the amplifier’s output (x,, ). Thus, in the

conventional single box RVTDNN model, the RVTDNN is
used to model the entire behavior of the DUT including the
static distortions and the memory effects, and is trained using
the measured input and output signals (x, andx,,) .

Conversely, in the proposed model, the RVTDNN is solely
used to model the residual distortions that are not captured by
the LUT. These distortions are mainly made of the memory
effects since the nonlinear behavior is often accurately
modeled using look-up tables. In this case, the RVTDNN is

trained using the look-up table output signal (xwwm ) and the
measured output signal (x,,,).
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Figure 1. RVTDNN behavioral models. (a) single-box
conventional model, (b) proposed two-box model.

The identification process of the proposed model is
performed as summarized in the flow chart shown in Figure
2. The measured input and output baseband waveforms of the
device under test are acquired and then processed to
compensate for the propagation delay and ensure time-
alignment between the input and output signals. Then, the
measured signals are de-embedded to the input and output
planes of the device under test by compensating for any
attenuation between the data acquisition plane and the DUT
measurement plane. The time-aligned and de-embedded
input and output signals are referred to as x, and x

respectively. These signals are used to synthesize the look-up
table. Several approaches can be used for the synthesis of the
look-up table including memoryless polynomial fitting and
moving average. In this work, the exponentially weighted
moving average algorithm was adopted. Once the look-up

table is synthesized, the input signal (x, ) is applied to it in
order to generate the corresponding output signal (x(,m,wr)

which represents the input of the RVTDNN function. This

signal (x,,,,,) along with the measured output signal (x,,)

are used for the identification/training of the RVTDNN. The
model performance is later assessed by comparing the output

of the neural network block (x ) to the output signal

out ,est

measured at the output of the power amplifier (x,, ).
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Figure 2. Identification process of the proposed model.

The performance of the proposed model is assessed using
the normalized mean-squared error (NMSE) given by

Sl (1) 5.0 ()

NMSE =10log,,-| =— (4)
2
D ., ()
n=1

where N represents the number of samples in the
measured waveforms.

2

The proposed model is benchmarked against the
standalone RVTDNN and ARVTDNN models. The



benchmarking is performed by considering the performance
as well as the complexity of each model.

The identification of the look-up table uses linear
regression algorithm and therefore its computational
complexity can be considered as negligible compared to that
associated with the training of the neural network model.
Accordingly, it is reasonable to assume that the complexity
associated with the model identification is almost that of its
neural network part.

The number of neurons per layer and the number of layers
were varied in order to evaluate the model performance as a
function of its complexity. The model complexity is assessed
by computing the total number of parameters used in the
neural network (including weights and biases). Figure 3
presents a simplified block diagram of the RVTDNN. The
signal at the input of this model is first processed to generate
the input features that will used by the model. In the
RVTDNN version, the input features consists of the in-phase
and quadrature components of the input signal as well as their
delayed version. The decision as to how many past terms to
include in the input features depends on the memory depth

(M) of the device under test being modeled. Therefore, the

number of input features (D,) in the RVTDNN can be
expressed as

DOfRVTDNN = 2 (M + 1) (2)
The RVTDNN depicted in Figure 3 contains only one
densely connected layer for ease of representation. However,
the number of layers can be set to any desired value based on
the problem at hand. The number of neurons in each of these
layers can be optimized independently. The final layer of the
RVTDNN is the output layer which is used to generate the
estimated in-phase and quadrature components of the output
signal. This output layer contains two neurons. Finally, if
needed, a rectangular to polar conversion is performed to

generate the complex valued output waveform (xou,’est) .
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Figure 3. Simplified block diagram of the real-valued neural
network.

The total number of parameters in the RVTDNN
including weights and biases is given by

P:[ZL:(D1+1)’D/+1:| (3)

where L represents the number of layers in the
RVTDNN excluding the input and the output layers which

correspond to /=0 and /= L+1, respectively. D, refers to

the number of neurons in layer /.

In the case of the ARVTDNN used for benchmarking, the
number of parameters in the model can also be computed
using Equation (3). However, the number of input features
for a memory depth of M becomes

D =(2+K)(M +1) (4)

0_ ARVTDNN
where K is the largest nonlinearity order of the
magnitude of the input signal used as input feature. This is
because the input features of the ARVTDNN will be made of
the in-phase and quadrature components of the input signal
along with their past M values, along with the magnitudes

of the input signal ( X (n)|, X, (n)|2 SR B (n)|K ) and their

past M values.

III. TESTING AND EVALUATION

A. Device Under Test and Data Acquisition

The device under test used in this work consists of a
cascade made of a ZHL-5W-2G-S+ operating as a drive for a
custom designed Doherty power amplifier [14]. The power
amplifiers lineup was characterized using a 100MHz 5G test
signal sampled at 491.52Msps. The carrier frequency was set
to 1.425GHz. The test signal has a peak to average power
ratio of 10.9dB. The functional block diagram of the
experimental setup is presented in Figure 4. The baseband
input waveform in downloaded into the RF signal generation
board to synthesize the RF signal that will be applied at the
input of the driver. The signal at the output of the power
amplifier is attenuated and then fed into the receiver that is
used to acquire the RF output signal and generate the
corresponding  baseband  in-phase and  quadrature
components. A Python code was used to process the input and
output baseband waveform components to perform the delay
estimation and alignment, the data de-embedding to the DUT
reference planes, and the model identification and
performance assessment.

Python Based Signal Processing
(Delay estimation, de-embedding, model identification and
performance assessment)
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Figure 4. Functional block diagram of the experimental setup.

The AM/AM and AM/PM characteristics of the DUT
extracted from the measured input and output waveforms are
reported in Figure 5. The AM/AM characteristic shows a
pronounced compression region with up to approximately
4dB of compression at peak power. The AM/PM



characteristics show a less pronounced distortion profile.
Both the AM/AM and AM/PM characteristics show
significant dispersion demonstrating the presence of strong
memory effects in the device under test behavior.
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Figure 5. Measured AM/AM and AM/PM characteristics of
the DUT. (a) AM/AM characteristic, (b) AM/PM
characteristic.

B. Model Identification and Performance Assessment

First, the LUT function of the proposed model was
identified using the exponentially weighted moving average
technique. The AM/AM and AM/PM characteristics of the
LUT are shown in Figure 5 along with the measured AM/AM
and AM/PM characteristics of the DUT. This figure shows
that the LUT is able to fit the nonlinear behavior in both
characteristics.

For the identification of the neural networks, 70% of the
available signals were used for the training, 15% for the
testing and 15% for the validation. The activation function
used in all layers was the rectified linear unit (ReLU)
function. The identification was performed using the adaptive
moments (ADAM) optimizer. All neural networks models
were trained using 15 epochs.

In this study, it was determined that the memory depth of
the DUT is M =4. Thus, the number of input features used
in the RVTDNN was 10. The number of layers as well as the
number of neurons per layer in the RVTDNN block of the
proposed model were varied. For each considered
combination the overall performance of the proposed model
was assessed in terms of the NMSE. The complexity of the
model was evaluated in terms of the total number of
parameters in the neural network which was computed for
each RVTDNN settings using equation (3). These results are

TABLE L  PERFORMANCE AND COMPLEXITY COMPARISION

BETWEEN THE PROPOSED MODEL AND THE RVTDNN MODEL
Number Number of NMSE (dB)
of neurons per c exi
omplexit
Layers layer p Y | Proposed RVTDNN

(L) (Dla""DL) Model
2 8,2) 106 -33.2 -30.9
2 (16,2) 210 -33.8 -32.8
3 (50,25,2) 1877 -354 -35.0
4 (32,18,8,2) 1116 -354 -35.1
4 (100,50,25,2) 7477 -35.7 -353

summarized in Table 1 which also includes the performance
of the single-box RVTDNN based behavioral model for the
same number of layers and neurons. These results show that
the proposed model is able to achieve accurate modeling
while requiring a very limited number of neurons. In fact,
only 106 neurons are needed to achieve an NMSE better than
-33dB .

The results presented in Table 1 can be explained by the
fact that the use of the LUT enables the RVTDNN block to
solely focus on the modeling of the residual distortions which
are mainly made of mildly nonlinear memory effects. To
illustrate this, the AM/AM derived using the signals x,,,,,

and x  isreported in Figure 6. For conciseness, the AM/PM

characteristic is not shown. However, a similar trend is
observed. This AM/AM characteristic represents the
behavior that the RVTDNN block of the proposed model
attempts to mimic. As it can be seen in this figure, this
behavior is mainly linear. Therefore, a limited number of
neurons is sufficient to achieve satisfactory modeling
accuracy. This also shows that the use of the LUT removes
the nonlinear behavior and thus allows the RVTDNN to
model the DUT with a low number of parameters without
requiring the use of an augmented input features set as it is
the case in the ARVTDNN.

Gain (dB)

4 8 12 16 20 24 28 32 36
Input Power (dBm)

Figure 6. AM/AM characteristic of the residual distortions
after applying the LUT function.

To further evaluate the performance of the proposed
model compared to state of the art models, the ARVTDNN
model was considered. In this model, the input features were

generated using the same memory depth (M =4) as in the

RVTDNN models. However, the input features also included
the magnitude of the input signal and its powers up to the



TABLE II. PERFORMANCE AND COMPLEXITY OF THE ARVTDNN
MODEL
Number of Relative
Number of | neurons per ) Complexity NMSE
Layers (L) layer Complexity of the (dB)
(Dy..Dp) Proposed
L Model
2 (8,2) 226 46.9% -31.1
2 (16,2) 450 46.7% -34.4
3 (50,25,2) 1596 69.9% -33.3
4 (32,18,8,2) 2627 71.4% -35.6
4 (100,50,25,2) 8977 83.2% -36.3

third order (K =3). The number of layers and number of

neurons per layer were set to the same values as those
reported in Table 1 for the RVIDNN networks. The
complexity and performances of the standalone ARVTDNN
are summarized in Table 2. These results show that at a
reduced number of neurons and for two layers networks, the
proposed model outperforms the ARVTDNN since it uses a
reduced number of features and hence results in a much lower
complexity while achieving comparable accuracy. However,
for significantly higher complexities (above 2000
parameters), the ARVTDNN has a slightly better accuracy
than the proposed model (approximately 0.2dB). Table 2 also
shows the relative complexity of the proposed models when
compared to the ARVTDNN for the same numbers of layers
and neurons per layer. This clearly shows that at low
complexity, the proposed model complexity is around 46%
that of the ARVTDNN while it achieves comparable NMSE
performance.

Figure 7 presents the performance and complexity of the
proposed model, the RVTDNN benchmark and the
ARVTDNN benchmark for various complexities. These
results clearly show that in the region of interest
(corresponding to low complexity), the proposed model has
the best performance. It is important to mention here that the
main objective is to achieve a trade-off between performance
and complexity, and that the main factor limiting the adoption
of neural networks in field-deployed systems for such
applications is their relatively high complexity. Therefore,
the proposed model can help resolve this dilemma by
allowing neural network based models to achieve better
accuracy at a significantly reduced complexity.
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Figure 7. NMSE as a function of the number of parameters
for the proposed model and the benchmark models.

A more detailed sweep on the number of layers and the
number of neurons was carried out for the proposed model,
the RVTDNN, and the ARVTDNN. In this study, the number
of input features and the number of neurons in the output
layer were kept as defined previously. The number of layers
was varied from L =2 to L =4, and the number of neurons
per layer was methodically varied from 5 to 20 in steps of 5.
The numbers of neurons per layer were varied such that
D,>D 2D, >---2D,. The NMSE results corresponding

to this study are reported in Figure 8. This figure only shows
the decaying NMSE profile for each model which is obtained
by filtering the raw data such that the NMSE is decreasing as
the number of parameters increases. This figure corroborates
the results previously obtained and clearly demonstrates the
superiority of the proposed model in achieving significant
performance enhancement at low number of parameters.
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Figure 8. NMSE as a function of the number of parameters
for the proposed model and the benchmark models for a
sweep on the number of layers and neurons.

IV. CONCLUSION

In this paper, a hybrid two-box model built using the
cascade of a look-up table and a real-valued time-delay neural
network was proposed of the behavioral modeling of RF
power amplifiers. The addition of the LUT upstream of the
neural network allows for the modeling of the highly
nonlinear behavior of the power amplifier using a simple
look-up table. Consequently, the neural network only focuses
on the modeling of the residual distortions mainly due to the
memory effects. The proposed model was evaluated using
experimental data for a Doherty power amplifier driven by a
100MHz 5G test signal. The results show that the proposed
model enhances the performance of the standalone RVTDNN
especially for a small number of parameters. In fact, for less
than 100 parameters in the neural network, the proposed
architecture can achieve more than 4dB improvement in the
NMSE. Moreover, the use of the LUT/RVTDNN architecture
allows for a much lower number of parameters when
compared to the ARVTDNN approach. In the performed
tests, it was found that the relative complexity of the proposed
model, at a reduced number of neurons, is less than 50% of
the ARVTDNN while its performance are comparable. The
proposed model appears as a viable alternative for hardware
friendly RVTDNN structures for power amplifiers behavioral
modeling and predistortion.
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