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Abstract—Neural networks appear as an increasingly 

attractive approach for the behavioral modeling and 

linearization of radio frequency power amplifiers. However, 

their relative complexity when compared to analytically defined 

models hinders their wide adoption in field deployed systems. 

This work tackles the complexity issue in neural networks by 

proposing a two-box structure using a look-up table followed by 

a real-valued time delay neural network (RVTDNN) in a 

Hammerstein-like structure in order to reduce the overall 

complexity of neural network based behavioral models without 

compromising their performance. The proposed model was 

evaluated using experimental data for a Doherty power 

amplifier driven by a 100MHz 5G test signal. The performance 

and complexity of the proposed model were compared to that of 

the standalone RVTDNN and the standalone augmented real-

valued time-delay neural network (ARVTDNN). The results 

show that, compared to the standalone RVTDNN and 

ARVTDNN, the proposed model improves the NMSE especially 

for a reduced number of parameters. Hence, allowing for a 

better complexity and performance tradeoff. 

Keywords— 5G, behavioral modelling, distortions, memory 
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I. INTRODUCTION 

The upcoming 6G technology, which promises 
exceptional speed, capacity, and reduced latency, is the next 
step in wireless communication growth. It is anticipated to 
outperform 5G by incorporating innovative features that will 
allow for new applications and services. PAs are essential 
components of wireless communication systems that increase 
the signal power prior to transmission. Reducing the 
impairments caused by power amplifiers (memory effects and 
nonlinear distortions) is necessary to achieve high-quality 
communication. Behavioral modeling is an effective method 
for predicting the output signal of the PA and assessing and 
analyzing its nonlinear behavior. Conventional PA models, 
including the Volterra model and its simpler versions, have 
been used to formulate mathematical relations between PAs 
input and output signals [1]. The high correlation between the 
polynomial basis functions in these models makes it difficult 
to improve the modeling performance, even when additional 
polynomial terms are included. 

Neural networks based techniques have recently drawn a 
lot of interest in power amplifier behavioral modeling and 
predistortion because they are better than traditional 
polynomial-based techniques at capturing intricate nonlinear 

dynamics and memory effects [2] [3]. The real-valued time 
delay neural network (RVTDNN) is one of the architectures 
that effectively strikes a compromise between model 
complexity and performance [4]. More advanced neural 
network structures, including convolutional neural networks 
(CNNs) and bidirectional long short-term memory (BiLSTM) 
networks, have been proposed in the literature for a behavioral 
modeling and predistortion of nonlinear power amplifiers 
exhibiting memory effects [5]-[9]. These advanced models 
results in a significantly larger parameters count and 
frequently require significant computational resources and 
lengthy training times. Conversely, RVTDNN maintains a 
simpler structure with fewer parameters while still achieving 
competitive accuracy. Without requiring recurrent or 
convolutional layers, its time-delay structure of the input 
features vector efficiently simulates the temporal 
dependencies present in power amplifier behavior. This made 
RVTDNN models very useful for real-time applications and 
attractive for hardware deployment because of their lower 
complexity, greater convergence speed, and simpler 
construction.  

An improved version of the traditional RVTDNN 
architecture is the augmented real-valued time delay neural 
network (ARVTDNN) which is intended to offer higher 
modeling accuracy without a significant computational 
overhead [10]. The ARVTDNN outperforms the simple 
RVTDNN in capturing higher-order nonlinearities and 
memory effects by adding further input features such as signal 
magnitude, phase, or nonlinear power of the signal magnitude, 
along with their respective delayed versions [10]. By having a 
richer set of input features, the ARVTDNN was found to 
require a lesser number of parameters than the RVTDNN and 
achieve comparable or slightly better results.  

From a different perspective, parallel and cascade 
configurations are basic two-box structures that were 
frequently used in analytically defined behavioral models to 
achieve reduced complexity with reliable performance. These 
architectures divide the system's memory and nonlinear 
components into discrete processing blocks; they are 
frequently depicted by models like the Wiener, Hammerstein, 
or Wiener–Hammerstein forms [1][11]-[13]. This modular 
representation keeps computational requirements reasonable, 
simplifies the modeling process, and enables flexible 
adaptation to different amplifier characteristics [1].  

In this work, a behavioral model based on the 
Hammerstein structure, made of a nonlinear lookup table 
(LUT) followed by RVTDNN block, is proposed. While the This work was supported by the Office of Research at the American 
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RVTDNN is used to mimic the dynamic behavior and 
memory effects, the LUT is designed to capture the PA's static 
nonlinear characteristics. This hybrid setup combines the 
flexibility of NN with the simplicity of analytically inspired 
structures. It is anticipated that the suggested model will 
considerably lower the computing complexity in comparison 
to the ARVTDNN while preserving an equivalent level of 
modeling accuracy. 

The remainder of this article is structured as follows: 
Section II describes the proposed model and its identification 
procedure, Section III presents the experimental results as well 
as a performance comparison with the benchmark model. The 
conclusions are summarized in Section IV. 

II. PROPOSED MODEL 

The proposed model is devised using a cascaded two-box 

structure conceptually similar to the Hammerstein model. 

The main difference is that, in this model, the linear filter 

commonly used in the Hammerstein model is replaced by a 

real-valued time-delay neural network (RVTDNN). 

Compared to advanced neural networks, the RVTDNN has a 

relatively low complexity since it does not involve additional 

functions such as those present in long-short term memory 

(LSTM) based models, and convolutional models.  

The block diagrams of the conventional single-box 

RVTDNN and the proposed model are depicted in Figure 1. 

For the conventional model, the neural network is fed by the 

amplifier’s input signal ( )in
x  at its input and attempts to 

predict the measured signal at the output of the amplifier 

( )out
x . In the proposed model, the input signal ( )in

x  is 

initially fed into a memoryless look-up table. The output of 

the look-up table ( ),out LUT
x  is then applied at the input of the 

RVTDNN model to predict the output signal ( ),out est
x  which 

is ideally a copy of the amplifier’s output ( )out
x . Thus, in the 

conventional single box RVTDNN model, the RVTDNN is 

used to model the entire behavior of the DUT including the 

static distortions and the memory effects, and is trained using 

the measured input and output signals ( ) and 
in out

x x . 

Conversely, in the proposed model, the RVTDNN is solely 

used to model the residual distortions that are not captured by 

the LUT. These distortions are mainly made of the memory 

effects since the nonlinear behavior is often accurately 

modeled using look-up tables. In this case, the RVTDNN is 

trained using the look-up table output signal ( ),out LUT
x  and the 

measured output signal ( )out
x . 

 
(a) 

 
(b) 

Figure 1. RVTDNN behavioral models. (a) single-box 

conventional model, (b) proposed two-box model. 

The identification process of the proposed model is 

performed as summarized in the flow chart shown in Figure 

2. The measured input and output baseband waveforms of the 

device under test are acquired and then processed to 

compensate for the propagation delay and ensure time-

alignment between the input and output signals. Then, the 

measured signals are de-embedded to the input and output 

planes of the device under test by compensating for any 

attenuation between the data acquisition plane and the DUT 

measurement plane. The time-aligned and de-embedded 

input and output signals are referred to as 
in

x  and 
out

x , 

respectively. These signals are used to synthesize the look-up 

table. Several approaches can be used for the synthesis of the 

look-up table including memoryless polynomial fitting and 

moving average. In this work, the exponentially weighted 

moving average algorithm was adopted. Once the look-up 

table is synthesized, the input signal ( )in
x  is applied to it in 

order to generate the corresponding output signal ( ),out LUT
x  

which represents the input of the RVTDNN function. This 

signal ( ),out LUT
x  along with the measured output signal ( )out

x  

are used for the identification/training of the RVTDNN. The 

model performance is later assessed by comparing the output 

of the neural network block ( ),out est
x  to the output signal 

measured at the output of the power amplifier ( )out
x . 

 
Figure 2. Identification process of the proposed model. 

 

The performance of the proposed model is assessed using 

the normalized mean-squared error (NMSE) given by 
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where N  represents the number of samples in the 

measured waveforms. 

 

The proposed model is benchmarked against the 
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benchmarking is performed by considering the performance 

as well as the complexity of each model. 

The identification of the look-up table uses linear 

regression algorithm and therefore its computational 

complexity can be considered as negligible compared to that 

associated with the training of the neural network model. 

Accordingly, it is reasonable to assume that the complexity 

associated with the model identification is almost that of its 

neural network part. 

The number of neurons per layer and the number of layers 

were varied in order to evaluate the model performance as a 

function of its complexity. The model complexity is assessed 

by computing the total number of parameters used in the 

neural network (including weights and biases). Figure 3 

presents a simplified block diagram of the RVTDNN. The 

signal at the input of this model is first processed to generate 

the input features that will used by the model. In the 

RVTDNN version, the input features consists of the in-phase 

and quadrature components of the input signal as well as their 

delayed version. The decision as to how many past terms to 

include in the input features depends on the memory depth 

( )M  of the device under test being modeled. Therefore, the 

number of input features ( )0D  in the RVTDNN can be 

expressed as 

 

( )0 _
2 1

RVTDNN
D M= +  (2) 

The RVTDNN depicted in Figure 3 contains only one 

densely connected layer for ease of representation. However, 

the number of layers can be set to any desired value based on 

the problem at hand. The number of neurons in each of these 

layers can be optimized independently. The final layer of the 

RVTDNN is the output layer which is used to generate the 

estimated in-phase and quadrature components of the output 

signal. This output layer contains two neurons. Finally, if 

needed, a rectangular to polar conversion is performed to 

generate the complex valued output waveform ( ),out estx . 

 

 
Figure 3. Simplified block diagram of the real-valued neural 

network. 

 

The total number of parameters in the RVTDNN 

including weights and biases is given by 
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where L  represents the number of layers in the 
RVTDNN excluding the input and the output layers which 

correspond to 0l =  and 1l L= + , respectively. lD  refers to 

the number of neurons in layer l . 

In the case of the ARVTDNN used for benchmarking, the 

number of parameters in the model can also be computed 

using Equation (3). However, the number of input features 

for a memory depth of M  becomes 

( )( )0 _
2 1

ARVTDNN
D K M= + +  (4) 

where K  is the largest nonlinearity order of the 

magnitude of the input signal used as input feature. This is 

because the input features of the ARVTDNN will be made of 

the in-phase and quadrature components of the input signal 

along with their past M  values, along with the magnitudes 

of the input signal ( ) ( ) ( )( )2
, , ,

K

in in inx n x n x nL  and their 

past M  values. 

III. TESTING AND EVALUATION 

A. Device Under Test and Data Acquisition  

The device under test used in this work consists of a 

cascade made of a ZHL-5W-2G-S+ operating as a drive for a 

custom designed Doherty power amplifier [14]. The power 

amplifiers lineup was characterized using a 100MHz 5G test 

signal sampled at 491.52Msps. The carrier frequency was set 

to 1.425GHz. The test signal has a peak to average power 

ratio of 10.9dB. The functional block diagram of the 

experimental setup is presented in Figure 4. The baseband 

input waveform in downloaded into the RF signal generation 

board to synthesize the RF signal that will be applied at the 

input of the driver. The signal at the output of the power 

amplifier is attenuated and then fed into the receiver that is 

used to acquire the RF output signal and generate the 

corresponding baseband in-phase and quadrature 

components. A Python code was used to process the input and 

output baseband waveform components to perform the delay 

estimation and alignment, the data de-embedding to the DUT 

reference planes, and the model identification and 

performance assessment. 

 

 
Figure 4. Functional block diagram of the experimental setup. 

 

The AM/AM and AM/PM characteristics of the DUT 

extracted from the measured input and output waveforms are 

reported in Figure 5. The AM/AM characteristic shows a 

pronounced compression region with up to approximately 

4dB of compression at peak power. The AM/PM 
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characteristics show a less pronounced distortion profile. 

Both the AM/AM and AM/PM characteristics show 

significant dispersion demonstrating the presence of strong 

memory effects in the device under test behavior. 

 

 
(a) 

 
(b) 

Figure 5. Measured AM/AM and AM/PM characteristics of 

the DUT. (a) AM/AM characteristic, (b) AM/PM 

characteristic. 

B. Model Identification and Performance Assessment 

First, the LUT function of the proposed model was 

identified using the exponentially weighted moving average 

technique. The AM/AM and AM/PM characteristics of the 

LUT are shown in Figure 5 along with the measured AM/AM 

and AM/PM characteristics of the DUT. This figure shows 

that the LUT is able to fit the nonlinear behavior in both 

characteristics. 

For the identification of the neural networks, 70% of the 

available signals were used for the training, 15% for the 

testing and 15% for the validation. The activation function 

used in all layers was the rectified linear unit (ReLU) 

function. The identification was performed using the adaptive 

moments (ADAM) optimizer. All neural networks models 

were trained using 15 epochs. 

In this study, it was determined that the memory depth of 

the DUT is 4M = . Thus, the number of input features used 

in the RVTDNN was 10. The number of layers as well as the 

number of neurons per layer in the RVTDNN block of the 

proposed model were varied. For each considered 

combination the overall performance of the proposed model 

was assessed in terms of the NMSE. The complexity of the 

model was evaluated in terms of the total number of 

parameters in the neural network which was computed for 

each RVTDNN settings using equation (3). These results are 

summarized in Table 1 which also includes the performance 

of the single-box RVTDNN based behavioral model for the 

same number of layers and neurons. These results show that 

the proposed model is able to achieve accurate modeling 

while requiring a very limited number of neurons. In fact, 

only 106 neurons are needed to achieve an NMSE better than 

33dB− . 

The results presented in Table 1 can be explained by the 

fact that the use of the LUT enables the RVTDNN block to 
solely focus on the modeling of the residual distortions which 

are mainly made of mildly nonlinear memory effects. To 

illustrate this, the AM/AM derived using the signals 
,out LUT

x  

and 
out

x  is reported in Figure 6. For conciseness, the AM/PM 

characteristic is not shown. However, a similar trend is 

observed. This AM/AM characteristic represents the 

behavior that the RVTDNN block of the proposed model 

attempts to mimic. As it can be seen in this figure, this 

behavior is mainly linear. Therefore, a limited number of 

neurons is sufficient to achieve satisfactory modeling 
accuracy. This also shows that the use of the LUT removes 

the nonlinear behavior and thus allows the RVTDNN to 

model the DUT with a low number of parameters without 

requiring the use of an augmented input features set as it is 

the case in the ARVTDNN.  

 

 
Figure 6. AM/AM characteristic of the residual distortions 

after applying the LUT function. 
 

To further evaluate the performance of the proposed 

model compared to state of the art models, the ARVTDNN 

model was considered. In this model, the input features were 

generated using the same memory depth ( )4M =  as in the 

RVTDNN models. However, the input features also included 

the magnitude of the input signal and its powers up to the 

TABLE I.  PERFORMANCE AND COMPLEXITY COMPARISION 

BETWEEN THE PROPOSED MODEL AND THE RVTDNN MODEL 

Number 

of 
Layers 

( )L   

Number of 

neurons per 
layer 

( ), ,1D DLL  

Complexity 

NMSE (dB) 

Proposed 
Model 

RVTDNN 

2 (8,2) 106 -33.2 -30.9 

2 (16,2) 210 -33.8 -32.8 

3 (50,25,2) 1877 -35.4 -35.0 

4 (32,18,8,2) 1116 -35.4 -35.1 

4 (100,50,25,2) 7477 -35.7 -35.3 

 



third order ( )3K = . The number of layers and number of 

neurons per layer were set to the same values as those 

reported in Table 1 for the RVTDNN networks. The 

complexity and performances of the standalone ARVTDNN 

are summarized in Table 2. These results show that at a 
reduced number of neurons and for two layers networks, the 

proposed model outperforms the ARVTDNN since it uses a 

reduced number of features and hence results in a much lower 

complexity while achieving comparable accuracy. However, 

for significantly higher complexities (above 2000 

parameters), the ARVTDNN has a slightly better accuracy 
than the proposed model (approximately 0.2dB). Table 2 also 

shows the relative complexity of the proposed models when 

compared to the ARVTDNN for the same numbers of layers 

and neurons per layer. This clearly shows that at low 

complexity, the proposed model complexity is around 46% 

that of the ARVTDNN while it achieves comparable NMSE 
performance. 

Figure 7 presents the performance and complexity of the 

proposed model, the RVTDNN benchmark and the 

ARVTDNN benchmark for various complexities. These 

results clearly show that in the region of interest 
(corresponding to low complexity), the proposed model has 

the best performance. It is important to mention here that the 

main objective is to achieve a trade-off between performance 

and complexity, and that the main factor limiting the adoption 

of neural networks in field-deployed systems for such 

applications is their relatively high complexity. Therefore, 
the proposed model can help resolve this dilemma by 

allowing neural network based models to achieve better 

accuracy at a significantly reduced complexity. 

 

 
Figure 7. NMSE as a function of the number of parameters 

for the proposed model and the benchmark models. 

 

A more detailed sweep on the number of layers and the 

number of neurons was carried out for the proposed model, 
the RVTDNN, and the ARVTDNN. In this study, the number 

of input features and the number of neurons in the output 

layer were kept as defined previously. The number of layers 

was varied from 2L =  to 4L = , and the number of neurons 

per layer was methodically varied from 5 to 20 in steps of 5. 

The numbers of neurons per layer were varied such that 

0 1 2 L
D D D D> ≥ ≥ ≥L . The NMSE results corresponding 

to this study are reported in Figure 8. This figure only shows 

the decaying NMSE profile for each model which is obtained 
by filtering the raw data such that the NMSE is decreasing as 

the number of parameters increases. This figure corroborates 

the results previously obtained and clearly demonstrates the 

superiority of the proposed model in achieving significant 

performance enhancement at low number of parameters. 

 
Figure 8. NMSE as a function of the number of parameters 

for the proposed model and the benchmark models for a 

sweep on the number of layers and neurons. 

IV. CONCLUSION 

In this paper, a hybrid two-box model built using the 

cascade of a look-up table and a real-valued time-delay neural 

network was proposed of the behavioral modeling of RF 

power amplifiers. The addition of the LUT upstream of the 

neural network allows for the modeling of the highly 
nonlinear behavior of the power amplifier using a simple 

look-up table. Consequently, the neural network only focuses 

on the modeling of the residual distortions mainly due to the 

memory effects. The proposed model was evaluated using 

experimental data for a Doherty power amplifier driven by a 
100MHz 5G test signal. The results show that the proposed 

model enhances the performance of the standalone RVTDNN 

especially for a small number of parameters. In fact, for less 

than 100 parameters in the neural network, the proposed 

architecture can achieve more than 4dB improvement in the 

NMSE. Moreover, the use of the LUT/RVTDNN architecture 
allows for a much lower number of parameters when 

compared to the ARVTDNN approach. In the performed 

tests, it was found that the relative complexity of the proposed 

model, at a reduced number of neurons, is less than 50% of 

the ARVTDNN while its performance are comparable. The 

proposed model appears as a viable alternative for hardware 
friendly RVTDNN structures for power amplifiers behavioral 

modeling and predistortion. 

TABLE II.  PERFORMANCE AND COMPLEXITY OF THE ARVTDNN 

MODEL 

Number of 

Layers ( )L   

Number of 

neurons per 
layer 

( ), ,1D DLL  

Complexity  

Relative 

Complexity 

of the 
Proposed 

Model 

NMSE 

(dB) 

2 (8,2) 226 46.9% -31.1 

2 (16,2) 450 46.7% -34.4 

3 (50,25,2) 1596 69.9% -33.3 

4 (32,18,8,2) 2627 71.4% -35.6 

4 (100,50,25,2) 8977 83.2% -36.3 
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