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Abstract—The transition toward Software-Defined Vehicles
(SDVs) has significantly increased the complexity and size of
automotive ECU firmware, posing growing challenges in hard-
ware cost (BOM) and over-the-air (OTA) update efficiency.
Conventional general-purpose compressors fail to exploit the
architectural characteristics of the TriCore processor, resulting
in limited compression efficiency. To address this limitation, this
paper proposes an Al-driven, architecture-aware compression
framework tailored for TriCore-based firmware. The proposed
method employs a two-stage knowledge distillation scheme,
in which a large Transformer-based Teacher model transfers
its learned representations of TriCore binary patterns to a
lightweight GRU-based Student model suitable for on-device
deployment in real ECUs. Experimental results show that the
Student-based compression framework achieves an average com-
pression efficiency of 1.524 bpb, corresponding to 19.05% of the
original firmware size on the TC375 dataset, which represents
an improvement of approximately 38% compared to conven-
tional general-purpose compressors. In addition, the proposed
approach exhibits a compact runtime memory footprint during
decompression, requiring only 0.25 MB, which is approximately
94% lower than that of traditional methods. Furthermore, cross-
validation between the Python reference implementation and the
C-based decoder confirms deterministic and consistent decoding
behavior, demonstrating the practicality and portability of the
proposed framework. Overall, this study establishes a strong
proof of concept for Al-driven, architecture-aware firmware
compression and highlights its potential for further optimization
and deployment on embedded hardware.
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Knowledge Distillation

I. INTRODUCTION

Modern automotive systems are undergoing a rapid tran-
sition toward the Software-Defined Vehicle (SDV) paradigm,
leading to an unprecedented escalation in in-vehicle software
complexity. Unlike early generations of Electronic Control
Units (ECUs) that primarily executed simple control func-
tions, contemporary vehicles integrate a wide range of high-
level software components, including Advanced Driver Assis-
tance Systems (ADAS), artificial intelligence algorithms for
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Fig. 1. System Model

autonomous driving, and powertrain electrification modules
[1]. This increasing software complexity inevitably expands
firmware codebases, resulting in the rapid growth of ECU-
deployed binary sizes.

The rapid expansion of firmware introduces two critical
bottlenecks in both hardware and operational domains. First,
the growing demand for larger flash memory capacity directly
increases hardware costs. Second, during Over-the-Air (OTA)
updates, larger binary sizes lead to higher network bandwidth
consumption and longer transmission times, ultimately degrad-
ing overall system reliability.

To mitigate these challenges, conventional general-purpose
lossless compression algorithms, such as zlib, bzip2, and
LZMA, have been widely adopted. However, these algorithms
exhibit fundamental limitations in modeling the intrinsic
structural patterns of machine code. For example, LZ-based
methods can identify simple byte-level repetitions but fail to
capture semantic redundancies among instructions that differ
only in register allocation. Similarly, statistical models such
as bzip2 rely primarily on short-range contexts, making them
ineffective for modeling long-range dependencies, including
function calls and branch instructions, that frequently appear
in compiled firmware binaries.

To address these limitations, this study introduces an Al-
driven, architecture-aware entropy modeling framework de-
signed to learn the structural regularities inherent to the
TriCore architecture. Neural entropy modeling has been ex-
tensively explored in learned compression literature, where
neural networks are used to estimate conditional probability
distributions for entropy coding [2]. The proposed approach



employs a Transformer-based model that conceptualizes Tri-
Core firmware binaries as a form of “language,” learning the
conditional probability distribution for next-byte prediction.

However, deploying a large-scale Transformer model di-
rectly on an ECU is impractical due to its limited compu-
tational and memory resources [3]. To overcome this con-
straint, this study proposes a two-stage knowledge distillation
framework based on the Teacher—Student paradigm. In the
first stage, a Transformer-based Teacher model learns complex
structural and contextual patterns from TriCore binaries. In the
second stage, a lightweight GRU-based Student model distills
the Teacher’s predictive behavior, achieving comparable func-
tionality with substantially lower computational overhead.

Experimental results demonstrate that the proposed Stu-
dent model not only outperforms general-purpose compression
algorithms in terms of compression ratio but also enables
deterministic and memory-efficient decompression, making it
practically deployable in real ECU environments.

II. PROPOSED ARCHITECTURE

As discussed in the Introduction, conventional general-
purpose compressors such as zlib and LZMA exhibit inherent
limitations in exploiting the complex structural and semantic
regularities embedded in TriCore binaries, resulting in sub-
optimal compression efficiency. To address these limitations,
this study adopts an Al-driven entropy modeling approach.
Specifically, the compression process is reformulated as a next-
symbol probability prediction problem, effectively casting it
as a probabilistic language modeling task. Under this for-
mulation, TriCore firmware binaries are treated as a form of
“language,” enabling the model to learn causal dependencies
and contextual relationships among byte sequences.

To this end, this study introduces a Transformer-based
Teacher model. The Transformer architecture, equipped with
a self-attention mechanism, is well suited for capturing long-
range contextual dependencies [4], which are essential for
modeling the structural characteristics of TriCore code, in-
cluding branch behaviors, register interactions, and function-
call patterns. The Teacher model processes input sequences of
2048 bytes and is trained to predict the conditional probability
distribution of the next byte, denoted as P(z; | ). During
training, the Teacher model minimizes the cross-entropy loss,
which serves as an empirical estimate of the information en-
tropy H(x) of the training dataset. Through this optimization
process, the model learns the statistical regularities inherent in
TriCore binaries and produces a reference probability distri-
bution that forms the foundation of the proposed compression
framework.

To bridge the gap between the Teacher model’s predictive
capability and the computational constraints of embedded
environments, this study proposes a two-stage knowledge
distillation framework [5]. In the first stage, the Transformer-
based Teacher model is trained to learn the probabilistic
structure of TriCore binaries and to generate conditional byte-
level probability distributions, Pr(B;11 | B<;), which serve
as reference targets for distillation.

In the second stage, the probability distributions generated
by the Teacher model are used as soft targets to guide the
training of the lightweight Student model, which is explicitly
designed to operate within the limited Flash and RAM re-
sources of automotive ECUs. The Student model is trained to
approximate the Teacher’s predictive distribution by minimiz-
ing a distillation loss, where Pr(-) and Ps(-) denote the output
distributions of the Teacher and Student models, respectively.

The Student model employs a single-layer Gated Recur-
rent Unit (GRU) architecture, replacing the computationally
intensive attention mechanism with a short contextual in-
put consisting of only three consecutive bytes, denoted as
(Bi—2,Bi_1, B;). As a lightweight recurrent neural network
optimized for sequential data, the GRU offers two key ad-
vantages: a compact memory footprint and high portability
when implemented in C. As a result, the Student model inter-
nalizes the information-theoretic knowledge distilled from the
Teacher while maintaining computational efficiency suitable
for embedded decompression on TriCore ECUs. The overall
architectures of the Teacher and Student models are illustrated
in Fig. 1.

The Teacher and Student models are deliberately designed
with contrasting architectural characteristics to balance mod-
eling expressiveness and embedded feasibility. The Teacher
model leverages a self-attention mechanism to capture long-
range dependencies across instruction sequences, enabling
effective modeling of control-flow structures and function-
level patterns in TriCore firmware. This global receptive field
is essential for learning high-quality probabilistic representa-
tions, but comes at the cost of substantial computational and
memory requirements.

In contrast, the Student model prioritizes deployment ef-
ficiency by replacing attention with a compact recurrent
structure and operating on a short local context. While this
design inherently limits the accessible temporal range, the
Student successfully retains the core predictive behavior of
the Teacher through knowledge distillation. This architectural
simplification enables practical on-device decompression on
TriCore-based ECUs while maintaining competitive compres-
sion performance.

The Student model is built upon a GRU-based architecture
to enable efficient execution in resource-constrained embedded
environments. Compared to Transformer-based models, GRUs
process sequential data with substantially fewer parameters
and computational operations, making them well suited for
on-device deployment [6]. The Student model receives a short
contextual input of three consecutive bytes, (B;_2, B;_1, B;),
and is trained via knowledge distillation to approximate the
predictive behavior of the Teacher model. This lightweight
design preserves the essential statistical characteristics learned
by the Teacher while ensuring compatibility with the limited
Flash and RAM resources of TriCore ECUs.

Fig. 2 summarizes the training behavior of the proposed
two-stage framework. Fig. 2(a)—-(b) show that the Teacher
model converges stably, with smoothly decreasing training
and validation bpb and well-behaved optimization dynamics
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Fig. 2. Training Results of Teacher-Student

under a cosine learning rate schedule. The resulting probability
estimates are well calibrated and serve as reliable reference
distributions for knowledge distillation. Fig. 2(c) presents the
distillation results for the Student model. The KL diver-
gence between the Student and Teacher distributions decreases
steadily, while the validation bpb improves and converges
to approximately 1.6. Although the Student does not match
the Teacher’s absolute predictive performance, it achieves
an effective trade-off between accuracy and computational
efficiency with a substantially smaller context window.

The trained Student model does not operate as a standalone
compressor but functions as a probabilistic predictor that esti-
mates the likelihood of the next byte. The predicted probability
distributions are integrated with a classical arithmetic coding
scheme [7] to perform entropy-based compression and deter-
ministic decoding. During compression, at each timestep i, the
most recent three bytes (B;_o, B;_1, B;) are provided as input
to the Student model. The model outputs logits for all 256 pos-
sible next-byte symbols, which are converted into a probability
distribution using a numerically stable softmax function
implemented in £loat64 precision. These probabilities are
then transformed into a 16-bit quantized cumulative distri-

bution function (CDF) by a probs-to-quantized-cdf
procedure [8], which is directly consumed by the arithmetic
encoder.

This process incorporates three implementation-level mech-
anisms to ensure numerical consistency: minimum fre-
quency enforcement (equivalent to Laplace smoothing with
a +1 count), rounding behavior consistent with Python’s
np.round () function (Banker’s rounding), and a sum-
correction procedure applied to the quantized CDF. Together,
these mechanisms ensure deterministic behavior between the
Python reference implementation and the C-based deployment
[9]. Finally, the RangeEncoder updates its internal states
(low, high) using the generated CDF and the observed symbol,
emitting the corresponding bit sequence to the output stream.

The decompression procedure mirrors the compression pro-
cess and is designed to operate within a TriCore ECU envi-
ronment. Initially, the RangeDecoder reads the compressed
bitstream and initializes its internal states (code,low, high).
During initialization, the first 32 bits of the bitstream are
preloaded to set the code variable, following the same initial-
ization strategy as the Python-based RangeDecoder. Bit-
level alignment between the Python and C implementations
was verified to ensure consistent decoding behavior.

At each timestep 7, the C-implemented forward () func-
tion receives the three most recently reconstructed bytes
(Bi—2,Bi—1,B;) as input and computes the corresponding
logits. These logits are processed through a double-precision
softmax function followed by a probs—to—-cdf transfor-
mation to produce an integer-valued CDF identical to that
used during compression. The RangeDecoder compares the
current bitstream state with this CDF to recover the next
symbol B;;1 and updates its internal states (code, low, high)
accordingly. The decoded symbol is written to the output
buffer and used to update the input context for the subse-
quent prediction step. The detailed structure of this compres-
sion—decompression process is illustrated in Fig. 3.

To evaluate the effectiveness of the proposed TriCore
architecture-aware compression framework and to enable
comparison with conventional general-purpose compressors,
a comprehensive experimental setup was established. The
evaluation was conducted using approximately 60 compiled
firmware binaries generated from official example codes for
Infineon’s AURIX TC375 microcontroller. The dataset covers
a diverse set of ECU-relevant functionalities, including ADC,
UART, PWM, DMA, Timer, and CAN communication mod-
ules, representing realistic firmware components commonly
used in production vehicles.

For model training, hyperparameter tuning, and evaluation,
the dataset was randomly divided into training (70%), vali-
dation (15%), and test (15%) subsets. The final compression
performance was assessed exclusively on the test set, which
was not used during training or validation. A comparative
analysis between the proposed model-based compressor and
conventional lossless algorithms is presented in Fig. 4, consid-
ering compression efficiency (bits-per-byte), runtime memory
usage, and throughput.
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Fig. 3. Compression and Decompression Pipeline

A comprehensive performance comparison between the
proposed model-based compressor and conventional general-
purpose lossless algorithms is summarized in Fig. 4. The
evaluation considers three key metrics: compression efficiency
measured in bits per byte (bpb), runtime memory usage during
decompression, and decompression throughput. For clarity, the
quantitative performance comparison corresponding to Fig. 4
is summarized in Table 1.

As shown in Fig. 4(a), the conventional compressors
ZLIB, BZIP2, and LZMA achieve compression efficiencies of
2.628 bpb (32.85%), 3.055 bpb (38.19%), and 2.457 bpb
(30.71%), respectively. In contrast, the proposed TriCore-
aware model achieves 1.524 bpb, corresponding to 19.05%
of the original data size. This represents an improvement of
approximately 38% in compression efficiency compared to
LZMA, which provides the strongest baseline performance
among the conventional methods.

Fig. 4(b) shows the runtime memory usage during de-
compression. The proposed model requires an average of
0.25 MB of memory, representing a reduction of approxi-
mately 94% compared to ZLIB, which exhibits the lowest
memory consumption among the conventional compressors
at 4.25 MB. Similar memory usage levels are observed
for BZIP2 (4.27 MB) and LZMA (4.31 MB), highlighting
the compact nature of the proposed decoder in memory-
constrained ECU environments.

As shown in Fig. 4(c), the proposed model exhibits lower
decompression throughput than conventional lossless compres-
sors. This limitation is primarily attributable to the computa-
tional overhead of neural network inference, which has not
yet been optimized in the current implementation. It should be
noted that the primary objective of this study is to evaluate the
feasibility and compression benefits of model-based decoding
under strict ECU memory constraints, rather than to achieve
maximum decompression throughput at this stage.

Despite the remaining trade-off in decompression speed,
the results clearly demonstrate that the proposed architecture-
aware approach effectively addresses the limitations of
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Fig. 4. Compression Performance and Runtime Memory on TriCore Firmware

TABLE I
COMPRESSION PERFORMANCE AND RUNTIME MEMORY

Method bpb  Runtime Mem. (MB)
ZLIB 2.628 4.25
BZIP2 3.055 4.27
LZMA 2.457 4.31
Proposed (Student + Arithmetic) 1.524 0.25

architecture-insensitive compressors discussed in the Introduc-
tion, particularly in exploiting structural redundancy within
TriCore firmware binaries. By learning intrinsic byte-sequence
regularities specific to the target architecture, the proposed
method achieves superior compression efficiency and sub-
stantial runtime memory savings. These findings provide a
strong proof of concept and suggest considerable potential
for further improvements in decoding throughput through
architectural simplification, model quantization, or dedicated
hardware acceleration.

Furthermore, to verify the practical deployability of the
proposed model on ECUs, a functionally equivalent decom-
pression implementation was developed in C and validated
against the Python reference version. The validation was
conducted in a PC environment to ensure consistent decoding



behavior across both implementations. The results confirmed
that the model’s output logits for the initial prediction con-
text were numerically consistent within floating-point preci-
sion limits. In addition, the initial 32-bit internal state of
the RangeDecoder was verified to be bitwise identical,
demonstrating deterministic decoding behavior under matched
numerical conditions.

Overall, the validation results confirm functional equiva-
lence between the C-based decoder and the Python reference
implementation under controlled numerical precision settings.
The proposed C implementation therefore constitutes a faithful
and deployable realization of the trained Student model. This
validation demonstrates that the proposed compression and
decompression pipeline achieves high portability and practical
feasibility for deployment within real TriCore ECU environ-
ments.

III. CONCLUSION

This paper presented an Al-driven, TriCore architecture-
aware compression framework designed to address the critical
challenge of rapidly increasing ECU firmware size in the era
of Software-Defined Vehicles (SDVs). To enable deployable
architecture-aware compression on embedded ECUs, a two-
stage Teacher—Student knowledge distillation framework was
introduced to transfer the statistical knowledge of a high-
capacity Transformer-based Teacher model to a compact GRU-
based Student model.

Experimental results showed that the proposed compres-
sion framework, which integrates the lightweight Student
model with an arithmetic coding scheme, achieves an aver-
age compression efficiency of 1.524 bpb, corresponding to
approximately 19.05% of the original firmware size on the
TC375 example-code dataset. This represents an improvement
of approximately 38% compared to LZMA, which provides
the strongest performance among the conventional general-
purpose compressors. In addition, the proposed method ex-
hibits substantially reduced runtime memory usage during
decompression, requiring an average of 0.25 MB, which is
approximately 94% lower than that of ZLIB.

Although the current implementation has not yet been
optimized for maximum decompression throughput, the ex-
perimental results validate the effectiveness of the proposed
architecture-aware design under strict embedded memory con-
straints. By capturing structural regularities specific to TriCore
binaries, the proposed framework achieves substantially im-
proved compression efficiency and decompression-time mem-
ory usage compared to conventional architecture-insensitive
compressors, while maintaining a lightweight runtime foot-
print suitable for embedded environments.

The primary contribution of this study lies in the design
of an Al-based knowledge distillation pipeline tailored to
real-world embedded constraints, as well as the successful
PC-level validation of a high-efficiency entropy-model-based
compression engine specialized for TriCore firmware. Despite
being trained on a relatively limited dataset, the proposed
approach demonstrates substantial performance gains over

general-purpose compressors, highlighting its potential for
broader applicability and scalability.

While this work primarily demonstrates the feasibility of
architecture-aware neural compression for TriCore firmware,
future research will focus on improving decompression
throughput and overall model efficiency for deployment in
real ECU systems. The validated C implementation will be
ported to an actual TriCore target board to evaluate on-
device decompression latency and memory consumption. In
addition, future studies will address numerical robustness un-
der embedded compiler environments and expand the dataset
with larger-scale TriCore firmware binaries to further enhance
performance and generalization.
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