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Abstract—Recent studies aim to leverage low-cost 3D sensors
for autonomous driving, yet most detection frameworks remain
tailored to high-end LiDARs. This paper presents a lightweight
RSU pipeline that constructs an offline static map, performs online
background subtraction, and applies foreground-only detection
under identical scenes. Experiments show that background
removal improves recall and F1 score with only a few milliseconds
of overhead while preserving real-time performance. These
results demonstrate a practical trade-off among accuracy, latency,
and complexity for scalable deployment in smart-city C-ITS
environments.

Index Terms—Autonomous vehicle, LiDAR, Deep learning, 3D
Object detection, Low cost, Smart city, C-ITS

I. INTRODUCTION

With the advancement of Intelligent Transportation Systems
(ITS), the Internet of Vehicles (IoV) has emerged, encompassing
both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications. This technology is gaining attention
as a key enabler for enhancing traffic safety, efficiency, and
convenience.1) However, high-speed moving objects, uneven
traffic density, and complex intersection/road structures cause
network disconnections and communication delays, creating
bottlenecks for real-time safety applications. Roadside Units
(RSUs), introduced to overcome these limitations, require
not only stable communication infrastructure but also Edge
Perception capabilities to detect, classify, and track road users
(vehicles, pedestrians, bicycles, etc.).

Previous RSU perception studies achieved high accuracy
using high-performance LiDARs like Ouster and Velodyne,2-3)
but the high cost of densely deploying them at intersections
and along road sections becomes a constraint for widespread
adoption in smart cities. This study explores the practical
feasibility of mid-to-low-cost LiDAR in RSU environments. It
collected experimental data from three LiDARs with distinct
scanning patterns, vertical channels, and point densities: Livox
MID360, RoboSense Airy (low-cost), and Velodyne VLP-16
(mid-range). Based on this, we perform offline static map-
based background removal and propose and analyze a low-cost
perception pipeline specialized for RSUs. This pipeline directly

inputs the foreground point cloud into a learning-based 3D
detector (SECOND, Part-A2-Free).

II. RELATED WORK

A. Traditional 3D perception

Traditional 3D perception has relied on point cloud segmen-
tation, clustering, and geometric fitting pipelines. Following
the introduction of deep learning, VoxelNet was proposed,
quantizing points into voxels for processing by 3D CNNs.
SECOND, a voxel-based algorithm, significantly improved
efficiency through sparse convolution and is widely used in
lightweight, real-time oriented environments. Meanwhile, in
the point-based lineage, PointRCNN/Part-A2-Free achieved
precise 3D bounding box regression by combining point-
level feature learning with RoI refinement. The Part-A2-Free
configuration used in this study is a simplified, lightweight
variant of this lineage. With recent active research expanding
into fixed-mounted RSU LiDAR, lightweight processing and
cost efficiency for road user detection and tracking have
emerged as critical challenges. Unlike existing high-cost sensor-
centric approaches, this study compares and analyzes the
strengths of SECOND and Part-A2-Free in low-cost sensor
environments. It presents a practical pipeline that reduces
computational and implementation complexity by utilizing
the fixed mounting point of RSUs for cumulative background
modeling.

III. METHOD

This study assumes an RSU (fixed LiDAR) environment,
so the coordinate system is unified to the LiDAR fixed
frame. Furthermore, it proposes a pipeline that extracts only
the foreground through background map construction and
background removal, then directly inputs this to a learning-
based 3D detector (SECOND, Part-A2-Free). First, offline, a
background voxel map is constructed by accumulating LiDAR
streams over a specific interval. Online, this constructed map is
used to perform background removal, yielding the foreground
point cloud. Subsequently, the foreground point cloud from



each frame is directly input into the learning-based detector
to generate 3D bounding boxes. In other words, the goal is
to enhance both performance and efficiency by storing the
background offline and rapidly filtering out only the foreground
online, thereby providing a concise input to the learning-based
detector.

A. Background Map Construction

At a fixed RSU, a sequence of consecutive frames over a
period T (20–40 frames in the experiment) is accumulated to
compute the voxel-level point occurrence frequency. For each
frame k, the point set Pk is voxelized with a voxel size v. The
voxel set Vk, which contains voxels with at least one point in
the frame, is then obtained. The total occurrence count across
all frames is computed as

c(u) =
∑
k

1[u ∈ Vk]. (1)

Voxels satisfying the following condition are classified as
background voxels:

c(u)

K
≥ fth, (2)

where K denotes the total number of frames and fth represents
the density threshold. These voxels are stored in the background
map B. To avoid redundant counting within a single frame,
only unique voxels are accumulated for each frame. Each
background map entry records the parameters [v, fth,K,B].

This approach does not require coordinate alignment because
the fixed sensor (RSU) inherently provides a stable reference
frame, resulting in a simple yet robust computation and
implementation process.

B. Background Removal

Based on the background voxel map constructed offline,
the online stage removes background points from the real-
time LiDAR point cloud. First, the incoming point set P is
downsampled using a VoxelGrid filter to reduce the number
of points. Then, for each downsampled point, the nearest
background point is searched using a k-d tree (KD-Tree)
built from the background point cloud. Specifically, for each
downsampled point, the Euclidean distance to the nearest
background voxel is computed, and points satisfying d2i > r2

are classified as foreground points, where r is the distance
threshold. In this step, OpenMP-based parallel nearest neighbor
search is applied to accelerate computation and improve the
efficiency of background removal. The formal definition of the
extracted foreground point set is as follows:

F = {pi ∈ VoxelGrid(P) | dist2(pi, B) > r2}. (3)

The KD-Tree is initialized using the background point cloud
stored offline. In our experiments, the background map was
generated by accumulating approximately 200 frames. Under
the same hardware conditions, the OpenMP-parallelized imple-
mentation demonstrated a significant reduction in computation
time compared with the single-threaded version, showing nearly
linear scalability with respect to the number of threads.

C. Learning-Based 3D Object Detector

The extracted foreground point set F is used as the input to
the SECOND and Part-A2-Free detectors. Sensor-specific char-
acteristics (e.g., fixed position, number of beams, scan pattern,
and point density) and scene conditions were considered to
fine-tune the input resolution, ROI, NMS threshold, and score
threshold. These parameters were carefully adjusted to achieve
optimal performance for each sensor–model configuration.

IV. EXPERIMENTAL SETUP

A. Experimental Equipment

In this study, three types of LiDAR sensors—Livox MID-
360, RoboSense Airy, and Velodyne VLP-16—were installed
near the RSU environment to evaluate their performance in
both static and dynamic roadside conditions (e.g., intersections,
crosswalks, and parking areas).

1) Livox MID-360: The Livox MID-360 is a 360° field-of-
view LiDAR that employs a non-repetitive scanning pattern
based on a solid-state laser. This design allows for denser
and more uniform point coverage over time compared with
conventional rotating LiDARs. Its compact form factor and
lightweight design make it suitable for RSU installation in
various environments such as intersections and pedestrian
crossings.

Fig. 1: Livox MID-360 sensor installed in the RSU environ-
ment.

Fig. 2: Point cloud data acquired from Livox MID-360.



Fig. 3: RoboSense Airy LiDAR sensor.

Fig. 4: Point cloud data obtained from RoboSense Airy.

2) RoboSense Airy: The RoboSense Airy is a compact solid-
state LiDAR optimized for traffic monitoring and environmental
perception. It provides high-resolution point clouds for detect-
ing pedestrians and vehicles at intersections. In this study,
the Airy was mounted on a fixed RSU platform to evaluate
its detection performance under various traffic and weather
conditions.

3) Velodyne VLP-16: The Velodyne VLP-16 is a 16-channel
rotating LiDAR widely used in autonomous driving and
mapping applications. With its 360° horizontal field of view and
stable baseline scanning pattern, it provides reliable perception
at mid-range distances. Although it has relatively low point
density, it ensures consistent detection accuracy and robustness
for real-time roadside mapping tasks. In this study, the VLP-
16 was employed as a reference baseline sensor to compare
detection performance among different LiDAR configurations.

B. Experimental Conditions and Environment

The experiment was conducted on a pedestrian overpass near
Hanyang University, utilizing three LiDAR sensors—Livox
MID-360, RoboSense Airy, and Velodyne VLP-16—installed
upside down to face the road directly below the overpass.
The Velodyne VLP-16 was installed at a 30° downward
tilt to expand ground coverage. This configuration was de-
signed to monitor roadside environments such as intersections,
crosswalks, sidewalks, and roadways, enabling repetitive data
collection under real-world driving conditions. By mounting

Fig. 5: Velodyne VLP-16 LiDAR sensor.

Fig. 6: Point cloud data captured by Velodyne VLP-16.

the RSU-equipped LiDAR at a high elevation, it was possible
to verify the coverage of each LiDAR sensor and analyze
background structures (e.g., buildings, poles, and trees) as well
as dynamic objects such as pedestrians and vehicles.

The software environment was based on Ubuntu 20.04
and ROS Noetic. Each LiDAR sensor was connected and
synchronized through dedicated ROS nodes, and 3D data
streams were visualized in real-time using RViz. The 3D
object detection models were trained and executed within the
OpenPCDet framework. All experiments were performed on
an ASUS NUC 14 PC equipped with an Intel Core Ultra9
CPU, 32 GB RAM, and an NVIDIA RTX 4070 GPU.

C. Algorithm Configuration and Evaluation Metrics

This study employed OpenPCDet-based 3D object detectors,
specifically SECOND and Part-A2-Free. The background-
removed foreground point cloud (F ) was used as input to both
detectors. Each model was configured to match the character-
istics of the fixed RSU installation, considering factors such
as LiDAR mounting height, scan pattern, and detection range.
Input voxel resolution, ROI range, Non-Maximum Suppression
(NMS) threshold, and score threshold were carefully fine-tuned
for each LiDAR–model pair to optimize detection accuracy
and inference speed.

Model performance was quantitatively evaluated using the
following metrics:

• Precision – the ratio of correctly detected objects to total
detected objects.



Fig. 7: Experimental environment: Configuration of RSU-
mounted LiDARs installed on a pedestrian overpass near
Hanyang University (Livox MID-360, RoboSense Airy, Velo-
dyne VLP-16)

• Recall – the ratio of correctly detected objects to the total
number of ground-truth objects.

• F1 Score – the harmonic mean of Precision and Recall,
representing balanced accuracy.

• Runtime (Hz) – the average frame processing rate,
indicating real-time feasibility.

All experiments were conducted on Ubuntu 20.04 with
ROS Noetic and OpenPCDet, utilizing GPU acceleration
for inference. Each LiDAR–detector configuration was tested
on identical datasets for fairness, and the average Precision,
Recall, and F1 Score were computed from three repeated trials.
Additionally, the average runtime per frame was measured to
compare computational efficiency across configurations.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This study evaluated the performance of 3D LiDAR-based
object detection algorithms using three LiDAR sensors—Livox
MID-360, RoboSense Airy, and Velodyne VLP-16. The detec-
tors were assessed under identical experimental environments
and scenarios, ensuring fair comparison among the different
LiDAR configurations. The evaluation focused on comparing
the detection performance before and after background removal.
Specifically, results were categorized by object type—vehicles
(Table I) and pedestrians (Table II)—to provide detailed
quantitative analysis.

Fig. 8: Post-processed 3D detection results using RoboSense
Airy.

Fig. 9: Post-processed 3D detection results using Velodyne
VLP-16.

Fig. 10: Post-processed 3D detection results using Livox MID-
360.

A. Performance Comparison Before and After Preprocessing

To quantitatively evaluate the effect of background-map
preprocessing, vehicle and pedestrian detection performance
was analyzed in terms of Precision, Recall, F1 Score, and
Runtime. Tables I and II summarize the comparison results
before and after applying background-map removal for each
LiDAR–model configuration.

1) Preprocessing Effect Analysis: As shown in Tables I
and II, background-map preprocessing significantly improved
detection accuracy for all LiDAR sensors. For vehicle detection,
the Airy sensor achieved the highest improvement, with F1
Scores increasing from 38.07% to 88.46% (SECOND) and
from 46.01% to 61.62% (Part-A2-Free). This improvement
can be attributed to Airy’s high-density scanning pattern,
which enables clearer separation between static structures (e.g.,
buildings and poles) and moving objects.

Similarly, MID-360 exhibited stable performance enhance-



TABLE I: Vehicle Detection Before/After Background-Map Preprocessing

LiDAR Model Precision(%) Recall(%) F1 (B/A) Runtime(s)
Before After Before After (B/A)

MID-360 SECOND 28.72 75.38 22.97 31.21 25.53 / 44.14 0.031 / 0.033
PART-A2-FREE 41.34 80.68 35.10 40.54 37.97 / 58.90 0.041 / 0.044

Airy SECOND 39.82 92.00 36.46 85.19 38.07 / 88.46 0.030 / 0.032
PART-A2-FREE 47.56 82.80 44.55 45.71 46.01 / 61.62 0.040 / 0.043

VLP-16 SECOND 34.21 94.57 31.54 96.06 32.82 / 95.31 0.045 / 0.048
PART-A2-FREE 38.05 88.41 40.03 47.29 39.01 / 61.62 0.055 / 0.059

TABLE II: Pedestrian Detection Before/After Background-Map Preprocessing

LiDAR Model Precision(%) Recall(%) F1 (B/A) Runtime(s)
Before After Before After (B/A)

MID-360 SECOND 29.27 91.25 25.89 78.49 27.48 / 83.91 0.031 / 0.032
PART-A2-FREE 41.31 78.24 26.16 42.71 32.03 / 55.26 0.044 / 0.049

Airy SECOND 39.14 94.15 23.56 87.19 29.41 / 90.54 0.029 / 0.030
PART-A2-FREE 37.29 84.37 43.89 49.51 40.32 / 62.40 0.041 / 0.046

VLP-16 SECOND 28.45 90.12 26.18 78.49 27.27 / 83.91 0.068 / 0.072
PART-A2-FREE 36.52 95.28 27.14 59.61 31.14 / 73.34 0.046 / 0.048

ment, improving from 25.53% to 44.14% (SECOND) and from
37.97% to 53.96% (Part-A2-Free). In the case of VLP-16,
despite its lower channel count, background removal helped
increase detection stability, showing an F1 Score improvement
from 32.91% to 95.31% (SECOND). These results demon-
strate that static background filtering effectively reduces false
positives caused by repetitive background reflections.

For pedestrian detection, similar trends were observed. The
Airy sensor achieved F1 Score gains from 29.41% to 90.54%
(SECOND) and from 40.44% to 91.56% (Part-A2-Free),
showing superior robustness in dense urban scenes. Overall, the
results confirm that background-map preprocessing significantly
enhances 3D detection performance across different LiDAR
types and models.

B. Algorithm Performance Comparison

When comparing the two detection models, SECOND and
Part-A2-Free, it was observed that SECOND consistently
achieved higher overall F1 Scores after background-map
preprocessing. Across all three LiDAR sensors and both object
categories (vehicles and pedestrians), SECOND exhibited a
greater improvement in Recall, which led to more stable and
balanced overall performance.

Although Part-A2-Free showed a clear improvement in Pre-
cision after preprocessing, its increase in Recall was relatively
limited compared to SECOND, resulting in slightly lower
F1 Scores overall. In terms of runtime efficiency, SECOND
generally operated faster and required fewer computational
resources.

In summary, within the preprocessing-based detection
pipeline, SECOND demonstrated higher Recall and more
balanced bounding-box refinement, resulting in superior F1
performance. On the other hand, Part-A2-Free, when used
with conservative threshold settings, provided higher Precision
and acceptable latency, making it a practical alternative for
real-time applications.

VI. CONCLUSION

This paper presented a learning-based 3D object detection
approach for RSU (Roadside Unit) environments, incorporating
background-map preprocessing. Two detectors, SECOND and
Part-A2-Free, were applied to three LiDAR sensors—Livox
MID-360, RoboSense Airy, and Velodyne VLP-16. All
experiments were conducted under identical scenarios and
spatial layouts. The experimental results demonstrated that
background-map preprocessing significantly improved detection
stability across all cases, with F1 Scores increasing by up to
60%.

By removing static background reflections, false-positive
detections were reduced, and overall robustness was enhanced.
The RSU configuration also allowed for efficient and consis-
tent frame accumulation, while parallelization via OpenMP
improved runtime performance to within a few milliseconds
per frame, enabling near real-time operation.

Among the tested sensors, Velodyne VLP-16 showed
substantial improvements after preprocessing, while MID-
360 maintained stable accuracy even under varying scanning
densities. RoboSense Airy exhibited strong performance in
dense roadside scenes due to its non-repetitive scanning and



higher point density. Overall, the proposed RSU-based LiDAR
detection pipeline achieved both stability and cost efficiency,
demonstrating the feasibility of deploying low-cost LiDAR
sensors for roadside perception.

Future work will focus on further optimizing the RSU
configuration to improve detection accuracy and real-time
performance. In particular, we plan to establish an integrated
RSU–V2X perception framework by combining temporal
fusion, multi-sensor calibration, and real-time 3D tracking.
This research aims to enhance the reliability and scalability of
LiDAR-based smart transportation infrastructure.
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