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Abstract— Deep learning-based prognostics and health 

management (PHM) has advanced remaining useful life (RUL) 

prediction; however, its performance remains limited by 

domain-specific dependence and noisy degradation data. The 

present paper introduces Contrastive Representation learning 

for Optimal Source-to-Source transfer (CROSS), a two-stage 

self-supervised framework that enhances domain generalization 

in degradation modeling. In the initial phase, a dual-tiered 

alarm system integrates the augmented Dickey–Fuller (ADF) 

test and acceleration analysis to identify the primary prediction 

time (FPT). This approach eliminates transient fluctuations and 

precisely delineates degradation initiation. In Stage 2, a 

negative-free contrastive learning module encodes temporal 

continuity between historical and future subsequences, thereby 

producing invariant representations for cross-domain transfer. 

Experiments on benchmark datasets demonstrate that CROSS 

outperforms baseline models, achieving the lowest mean 

absolute error (MAE) and the most precise FPT alignment with 

ground-truth failure points. The findings substantiate the 

hypothesis that the amalgamation of statistical FPT detection 

with contrastive representation learning furnishes a resilient, 

domain-invariance approach for intelligent industrial PHM 

applications. 
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I. INTRODUCTION 

Industrial systems are increasingly relying on predictive 
intelligence to ensure the reliability of their equipment and 
minimize downtime. The aim of prognostics and health 
management (PHM) is to estimate the remaining useful life 
(RUL) of components, enabling maintenance to be scheduled 
before failures occur [1], [2]. In contrast, traditional reactive 
maintenance (RM) only acts after breakdowns occur, whereas 
preventive maintenance (PM) follows fixed intervals 
regardless of actual degradation [3]. Neither approach is 
efficient in dynamic manufacturing environments. 

Recent advances in deep learning have made it possible to 
use data to predict health outcomes by mapping sensor signals 
directly to health indicators [4]. However, three persistent 
challenges remain: (1) Domain dependence: models trained 
under one operating condition rarely generalize to another; (2) 
Data imbalance: healthy data dominate, while data on 
degradation are scarce; (3) Noise variability: environmental 
fluctuations obscure degradation patterns. Conventional 
transfer learning methods, such as conditional domain 
adversarial networks (CDAN) [5] and domain-adversarial 
networks (DAN) [6], align distributions between domains, but 
they ignore the temporal evolution of degradation, which is 
essential for accurate RUL prediction.  

To address these issues, we propose Contrastive 
Representation learning for Optimal Source-to-Source 
transfer (CROSS). Unlike single-domain adaptation, CROSS 
first creates invariant degradation representations across 
multiple source domains, which are then transferred to the 
target domain. 

The framework has two stages. The Stage 1 is first 
prediction time (FPT) identification. This involves a two-level 
alarm mechanism that integrates the augmented Dickey-Fuller 
(ADF) test for non-stationarity detection [7] and acceleration-
based trend analysis to suppress false alarms caused by 
transient fluctuations. The intersection of both alarms defines 
the FPT, marking the transition from healthy to degraded 
states. 

The next Stage 2 is RUL prediction. For each degradation 
segment, historical and future sub-sequences are encoded 
through a shared convolutional network. The framework 
minimizes the cosine distance between the predicted and 
actual future embeddings using negative-free contrastive loss 
to promote temporal continuity. Learned representations are 
transferred across sources using partial weight freezing to 
preserve degradation-invariant features while adapting to new 
conditions. 

The main contributions are as follows: 

• A robust, two-level alarm method that unifies FPT 
identification across machines and suppresses random 
noise. 

• A negative-free contrastive objective that captures 
intrinsic temporal continuity in degradation. 

• A source-to-source transfer strategy that aligns 
degradation structures prior to fine-tuning using 
limited target data. 

The remainder of this paper is organized as follows. 
Section II reviews related works. The proposed CORSS 
framework is described in Section III. In Section IV, the 
performance of the proposed method is evaluated using a 
benchmark datasets. Finally, Section V concludes the paper 
and discusses future research directions.  

II. RELATED WORKS 

A. RUL Predcition and Recent PHM 

Estimating the RUL of critical components is a core 
objective of PHM. Traditional approaches have relied on 
physical degradation models or statistical filtering techniques, 
such as particle filters and Kalman filter variants [1], [2]. 
Recent research applies deep learning architectures, such as 
convolutional, recurrent, and attention-based, to learn 
degradation dynamics directly from multi-sensor signals [4], 
[8]. While these methods are highly accurate on individual 
machines, their reliance on domain-specific data limits their 
deployment in heterogeneous environments.                                                                    *Co-corresponding author



Transfer learning (TL) has been widely used to address 
domain mismatch by aligning feature spaces between 
different working conditions. Methods such as CDAN [5] and 
DAN [6] encourage invariance by minimizing the discrepancy 
between source and target distributions through adversarial 
training. However, these methods typically operate at the 
distribution level, disregarding the temporal degradation 
trajectory underlying RUL estimation. Recent studies have 
explored kernel-based and moment-matching strategies, but 
these still assume stationarity and are susceptible to overfitting 
in the presence of sensor noise or partial degradation records 
[3]. 

B. Time-series Representation Learning 

The goal of representation learning is to obtain task-
agnostic embeddings from sequential data. Self-supervised 
frameworks, such as temporal neighborhood coding (TNC) 
[9], temporal and contextual contrasting (TS-TCC) [10], and 
TS2Vec [11], demonstrate that context prediction can yield 
transferable features. However, industrial degradation differs 
from generic sequences in that it is irreversible, non-stationary, 
and often domain-dependent. Therefore, models that assume 
stationary or cyclic signals cannot reliably capture gradual 
fault propagation. 

C. Contrastive Learning for PHM 

Conventional contrastive frameworks, such as the simple 
framework for contrastive learning of visual representations 
(SimCLR) [12] and momentum contrast (MoCo v3) [13], rely 
on explicit negative pairs to separate dissimilar instances in 
the embedding space. However, in degradation modeling, two 
similar temporal trajectories may be incorrectly treated as 
negatives, which can lead to representation collapse and 
unstable optimization. 

Negative-free paradigms, such as bootstrap your own 
latent (BYOL) [14] and masked hierarchical cluster-wise 
contrastive learning (MHCCL) [15], address this problem by 
aligning predictions between twin encoders without creating 
negatives. While these approaches generally improve the 
stability of self-supervised learning, they rarely consider 
domain shifts or the nonstationary progression of industrial 
degradation. This limits their applicability to PHM tasks. 

Building on these observations, the proposed CROSS 
framework aims to overcome two limitations of prior transfer-
learning and self-supervised studies: the lack of explicit FPT 
detection and the absence of source-to-source alignment. 
CROSS couples a statistical, ADF-based, two-level alarm for 
robust FPT identification with a negative-free, temporal, 
contrastive encoder [7]. This enables reliable detection of 
degradation onset and learning of domain-invariant, temporal 
representations. This design improves cross-domain RUL 
prediction under noisy and limited data conditions, bridging 
the gap between contrastive representation learning and 
practical industrial prognostics. 

III. PROPOSED METHOD 

The proposed CROSS framework consists of two 
sequential stages: First, a two-level alarm mechanism is used 
to identify the FPT. Second, RUL prediction is performed 
through contrastive representation learning and partial weight 
transfer. Fig. 1 shows an overview of the workflow. 

CROSS consists of two main modules: (1) a two-level 
alarm mechanism to locate the First Prediction Time (FPT), 
and (2) a contrastive representation encoder for degradation 
modeling and transfer learning. 

A. Stage 1: FPT Identification 

In industrial signals, most of the data correspond to a 
healthy state, which provides little information about 

 
Fig. 1. The overall workflow for contrastive representation learning for optimal source-to-source transfer. 



degradation. Therefore, detecting the point at which a 
component begins to deteriorate—the FPT—is critical for 
identifying meaningful degradation segments. However, 
transient fluctuations, sensor drift, and random noise often 
trigger false alarms when using a single indicator or threshold.  

To address this issue, the CROSS system uses a two-level 
alarm mechanism integrating the ADF test for statistical non-
stationarity and acceleration-based trend analysis for 
sustained changes in signal magnitude. For each sliding 
window �� = {���

, … , ���
�}, the ADF test evaluates the null 

hypothesis of a unit root as (1), following the classical 
formulation introduced by Dickey and Fuller [16]. 

 Δ�� = � + �� + ����� + ∑ ��Δ����
�
��� + �� (1) 

where � < 0 indicates stationarity.  
An alarm is triggered when the ADF � − �� !" <  0.1, 

suggesting that the local distribution has shifted from the 
previous neighborhood. Next, the local acceleration is 
computed as (2). 

 �� =
&'()*�+'(
'(,*-

.�/  (2) 

If the average ��  over 0  consecutive windows exceeds the 
threshold 12, a trend alarm is raised. 

The intersection of statistical and trend alarms defines the 
FPT, which marks the transition from a healthy state to a 
degraded state. This dual criterion filters out short-term noise 
and stabilizes FPT detection across heterogeneous operating 
conditions. 

B. Stage 2: RUL Prediction 

After the degradation segments have been isolated, 
CROSS uses contrastive representation learning to capture 
temporal continuity and enable cross-domain transfer. Each 
segment is divided into historical &34- and future &35- sub-

sequences of equal length. These sub-sequences are encoded 
by a shared, multi-scale, one-dimensional (1D) convolutional 
network 67&⋅-: 

 94 = 67&34-, 95 = 67&35- (3) 

A predictor :;&⋅-maps the last historical embedding to a 

predicted future representation 9̂5 = :;&94-. The negative-

free contrastive loss function promotes temporal consistency 
by minimizing the angular distance between the predicted and 
actual embeddings. 

 ℒCROSS = 1 −
BĈD,CDE

∥ĈD∥/∥CD∥/
 (4) 

Gradients are stopped through 95 , as in BYOL [14], to 

prevent representation collapse. After training on the source 
domain, freeze the lower convolutional layers and fine-tune 
the upper layers on another source domain to achieve source-
to-source transfer before adapting to the final target. A 
lightweight regression head GH&⋅- predicts the RUL as (5): 

 IJKL� = GH&95- (5) 

The overall loss combines contrastive and smoothness 
terms as (6). 

 ℒ�M�2N = ℒCROSS + O ∥ ∇7ℒCROSS ∥+
+ (6) 

where O  controls the trade-off between alignment and 
stability. This integrated design enables Stage 1 to accurately 
detect degradation onset and allows Stage 2 to learn domain-
invariant temporal embeddings that can be transferred across 
operating conditions. These mechanisms enable CROSS to 
robustly predict RUL across domains, even under noisy or 
partially observed degradation trajectories. 

IV. EXPERIMENTS 

A. Experimental Setup 

1) Datasets: CROSS was validated on two public 

benchmarks dataset. XJTU-SY [17]: Vibration data from 

LDK UER204 bearings under three load levels (25.6kHz 

sampling, 32,768 points/min). PHM 2012 [18]: IEEE PHM 

Challenge bearing run-to-failure signals (25.6kHz, 2,560 

points/10s). Fig. 2 illustrates the experimental setups of both 

public datasets The summary of the dataset is shown in Table 

I.. 

 
Fig. 2 Public bearing test datasets: (a) XJTU-SY; (b) PHM2012.. 

TABLE I.  SUMMARY OF DATASETS 

Dataset Name Bearing Entities 

XJTU-SY 
XB1 XB11, XB12, XB13, XB15 

XB2 XB21, XB22, XB23, XB24, XB25 

PHM2012 
PB1 PB11, PB12, PB13, PB14, PB15, PB16, PB17 

PB2 PB21, PB22, PB23, PB24, PB26, PB27 
 

To evaluate source-to-source transfer, each dataset was 

divided into multiple cross-domain tasks (e.g., XB1 → XB2, 

PB1 → PB2). Training used a sliding window size 20, a batch 

size 128, an epoch size 300, and a learning rate 1×10⁻⁴. Fifty 

percent of the encoder layers were frozen during source 

transfer. 
 

2) Baseline and metrics: For FPT identification, three 

classic detectors were compared: (1) the 2R principle method, 

(2) the gradient method with the linear rectification technique 

(LRT), and (3) the gradient method with the moving average 

filter (MAF). Performance was evaluated by the difference 

between the detected FPT and the ground truth failure time 

for each sequence.  

Three prognostic methods with different transfer 

strategies were compared for RUL prediction. Baseline 

(without transfer learning), CDAN [5], and DAN [6]. The 

evaluation metric was mean absolute error (MAE). 

B. Results of FPT Identification 

The proposed two-level alarm robustly detects the FPT, 
even under noisy conditions. Fig. 3 shows that each colored 
vertical marker corresponds to an FPT estimated by a different 
method according to the colors in the legend: proposed, 2σ, 
gradient (LRT), and gradient (MAF). 



 
Fig. 3. FPT identification results comparison in XJTU-SY dataset: (a) 

XB11, (b) XB12, (c) XB13, (d) XB14. 

Across the XJTU-SY dataset, the markers corresponding 
to the proposed method align most closely with the ground-
truth failure references. In contrast, the 2R method tends to 
trigger prematurely, and the gradient-based methods remain 
sensitive to local fluctuations despite smoothing. 

These results confirm that fusing statistical (ADF) and 
kinetic (acceleration) indicators provide stable and accurate 
detection of degradation onset. The experimental evidence 
shows that the proposed method can effectively capture the 
degradation trend. 

C. Cross-Domain RUL Prediction 

After FPT segmentation, CROSS performs contrastive 
representation learning and source-to-source transfer. Fig. 4 
shows representative RUL trajectories across domains, and 
Table II presents the quantitative results. The proposed model 
yields smoother and more accurate RUL curves than CDAN 
and DAN, the latter of which often exhibits delayed or 
stepwise degradation prediction.  

CROSS achieves the lowest MAE across all scenarios, 
indicating superior domain-invariant representation learning. 
The largest relative improvement is seen in transfer tasks with 
a significant operating-condition mismatch (e.g., PB1 → PB2), 
where conventional adversarial alignment (DA) demonstrates 
unstable adaptation. 

Additionally, the overall trend of CROSS predictions 
closely follows the true degradation trajectory. Predicted RUL 
values decrease smoothly as operation time increases, and 
degradation states correspond well to FPT boundaries 
identified in Stage 1. This consistency shows that the learned 
temporal representations capture continuous damage 
propagation. This allows for reliable RUL forecasting under 
domain shift. 

V. CONCLUSION 

This study presented CROSS, a two-stage framework for 
robust degradation modeling and RUL prediction. Stage 1 
involves a two-level alarm that combines the ADF test and 
acceleration analysis to effectively identify the FPT. This 
process filters out transient noise and produces reliable 
degradation segments. Stage 2 involves a negative-free 
contrastive representation that learns smooth, domain-
invariant temporal embeddings. This enables efficient source-
to-source transfer for RUL estimation. Experiments on 
benchmark demonstrated that, compared with CDAN and 
DAN, CROSS consistently reduced MAE by 15-30% while 
achieving the most accurate FPT alignment with ground-truth 
degradation onset. These results confirm the advantage of 
combining statistical detection and contrastive learning for 
domain generalization in prognostics. 

Future work will extend CROSS toward multi-sensor 
fusion and transformer-based encoders to capture cross-modal 
degradation dynamics. Additionally, integrating online 
adaptation and continual learning will enable the real-time 
deployment of CROSS within industrial PHM systems. 

TABLE I.  CROSS-DOMAIN RUL PREDICTION RESULTS 

Transfer 

Scenario 

Test 

Bearing 

Proposed 

Method 
Baseline CDAN DAN 

XB1-2  

XB21 0.1031 0.1920 0.2091 0.1770 

XB22 0.1147 0.2219 0.1871 0.2022 

XB23 0.1435 0.2538 0.2418 0.2311 

XB24 0.2077 0.3070 0.2335 0.1996 

XB25 0.1684 0.2111 0.1812 0.1852 

XB2-1 

XB11 0.1823 0.2227 0.2171 0.2096 

XB12 0.1491 0.2207 0.1787 0.2153 

XB13 0.1250 0.2332 0.1733 0.1814 

XB15 0.0965 0.1685 0.1385 0.1226 

PB1-2 

PB21 0.1516 0.1641 0.2522 0.2051 

PB22 0.2376 0.4753 0.2147 0.2865 

PB23 0.2082 0.3412 0.2751 0.3662 

PB24 0.2292 0.2651 0.3288 0.2721 

PB26 0.2151 0.2652 0.2854 0.2367 

PB27 0.1956 0.2312 0.2078 0.3122 

PB2-1 

PB11 0.2292 0.3821 0.2631 0.2869 

PB12 0.1535 0.2145 0.2620 0.2641 

PB13 0.1517 0.2861 0.2393 0.2582 

PB14 0.3665 0.4310 0.3887 0.3592 

PB15 0.1521 0.1942 0.2554 0.2417 

PB16 0.1821 0.2151 0.2668 0.2615 

PB17 0.1255 0.2571 0.2063 0.2082 

 

 
Fig. 4. RUL prediction trends on target domains: (a) XB15 in XB2→XB1, (b) XB25 in XB1→XB2, (c) PB17 in PB2→PB1, (d) PB17 in PB2→PB1. 
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