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Abstract— Deep learning-based prognostics and health
management (PHM) has advanced remaining useful life (RUL)
prediction; however, its performance remains limited by
domain-specific dependence and noisy degradation data. The
present paper introduces Contrastive Representation learning
for Optimal Source-to-Source transfer (CROSS), a two-stage
self-supervised framework that enhances domain generalization
in degradation modeling. In the initial phase, a dual-tiered
alarm system integrates the augmented Dickey—Fuller (ADF)
test and acceleration analysis to identify the primary prediction
time (FPT). This approach eliminates transient fluctuations and
precisely delineates degradation initiation. In Stage 2, a
negative-free contrastive learning module encodes temporal
continuity between historical and future subsequences, thereby
producing invariant representations for cross-domain transfer.
Experiments on benchmark datasets demonstrate that CROSS
outperforms baseline models, achieving the lowest mean
absolute error (MAE) and the most precise FPT alignment with
ground-truth failure points. The findings substantiate the
hypothesis that the amalgamation of statistical FPT detection
with contrastive representation learning furnishes a resilient,
domain-invariance approach for intelligent industrial PHM
applications.
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I. INTRODUCTION

Industrial systems are increasingly relying on predictive
intelligence to ensure the reliability of their equipment and
minimize downtime. The aim of prognostics and health
management (PHM) is to estimate the remaining useful life
(RUL) of components, enabling maintenance to be scheduled
before failures occur [1], [2]. In contrast, traditional reactive
maintenance (RM) only acts after breakdowns occur, whereas
preventive maintenance (PM) follows fixed intervals
regardless of actual degradation [3]. Neither approach is
efficient in dynamic manufacturing environments.

Recent advances in deep learning have made it possible to
use data to predict health outcomes by mapping sensor signals
directly to health indicators [4]. However, three persistent
challenges remain: (1) Domain dependence: models trained
under one operating condition rarely generalize to another; (2)
Data imbalance: healthy data dominate, while data on
degradation are scarce; (3) Noise variability: environmental
fluctuations obscure degradation patterns. Conventional
transfer learning methods, such as conditional domain
adversarial networks (CDAN) [5] and domain-adversarial
networks (DAN) [6], align distributions between domains, but
they ignore the temporal evolution of degradation, which is
essential for accurate RUL prediction.
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To address these issues, we propose Contrastive
Representation learning for Optimal Source-to-Source

transfer (CROSS). Unlike single-domain adaptation, CROSS
first creates invariant degradation representations across
multiple source domains, which are then transferred to the
target domain.

The framework has two stages. The Stage 1 is first
prediction time (FPT) identification. This involves a two-level
alarm mechanism that integrates the augmented Dickey-Fuller
(ADF) test for non-stationarity detection [7] and acceleration-
based trend analysis to suppress false alarms caused by
transient fluctuations. The intersection of both alarms defines
the FPT, marking the transition from healthy to degraded
states.

The next Stage 2 is RUL prediction. For each degradation
segment, historical and future sub-sequences are encoded
through a shared convolutional network. The framework
minimizes the cosine distance between the predicted and
actual future embeddings using negative-free contrastive loss
to promote temporal continuity. Learned representations are
transferred across sources using partial weight freezing to
preserve degradation-invariant features while adapting to new
conditions.

The main contributions are as follows:

e A robust, two-level alarm method that unifies FPT
identification across machines and suppresses random
noise.

® A negative-free contrastive objective that captures
intrinsic temporal continuity in degradation.

e A source-to-source transfer strategy that aligns
degradation structures prior to fine-tuning using
limited target data.

The remainder of this paper is organized as follows.
Section II reviews related works. The proposed CORSS
framework is described in Section III. In Section IV, the
performance of the proposed method is evaluated using a
benchmark datasets. Finally, Section V concludes the paper
and discusses future research directions.

II. RELATED WORKS

A. RUL Predcition and Recent PHM

Estimating the RUL of critical components is a core
objective of PHM. Traditional approaches have relied on
physical degradation models or statistical filtering techniques,
such as particle filters and Kalman filter variants [1], [2].
Recent research applies deep learning architectures, such as
convolutional, recurrent, and attention-based, to learn
degradation dynamics directly from multi-sensor signals [4],
[8]. While these methods are highly accurate on individual
machines, their reliance on domain-specific data limits their
deployment in heterogeneous environments.
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Fig. 1. The overall workflow for contrastive representation learning for optimal source-to-source transfer.

Transfer learning (TL) has been widely used to address
domain mismatch by aligning feature spaces between
different working conditions. Methods such as CDAN [5] and
DAN [6] encourage invariance by minimizing the discrepancy
between source and target distributions through adversarial
training. However, these methods typically operate at the
distribution level, disregarding the temporal degradation
trajectory underlying RUL estimation. Recent studies have
explored kernel-based and moment-matching strategies, but
these still assume stationarity and are susceptible to overfitting
in the presence of sensor noise or partial degradation records

(3]
B. Time-series Representation Learning

The goal of representation learning is to obtain task-
agnostic embeddings from sequential data. Self-supervised
frameworks, such as temporal neighborhood coding (TNC)
[9], temporal and contextual contrasting (TS-TCC) [10], and
TS2Vec [11], demonstrate that context prediction can yield
transferable features. However, industrial degradation differs
from generic sequences in that it is irreversible, non-stationary,
and often domain-dependent. Therefore, models that assume
stationary or cyclic signals cannot reliably capture gradual
fault propagation.

C. Contrastive Learning for PHM

Conventional contrastive frameworks, such as the simple
framework for contrastive learning of visual representations
(SimCLR) [12] and momentum contrast (MoCo v3) [13], rely
on explicit negative pairs to separate dissimilar instances in
the embedding space. However, in degradation modeling, two
similar temporal trajectories may be incorrectly treated as
negatives, which can lead to representation collapse and
unstable optimization.

Negative-free paradigms, such as bootstrap your own
latent (BYOL) [14] and masked hierarchical cluster-wise
contrastive learning (MHCCL) [15], address this problem by
aligning predictions between twin encoders without creating
negatives. While these approaches generally improve the
stability of self-supervised learning, they rarely consider
domain shifts or the nonstationary progression of industrial
degradation. This limits their applicability to PHM tasks.

Building on these observations, the proposed CROSS
framework aims to overcome two limitations of prior transfer-
learning and self-supervised studies: the lack of explicit FPT
detection and the absence of source-to-source alignment.
CROSS couples a statistical, ADF-based, two-level alarm for
robust FPT identification with a negative-free, temporal,
contrastive encoder [7]. This enables reliable detection of
degradation onset and learning of domain-invariant, temporal
representations. This design improves cross-domain RUL
prediction under noisy and limited data conditions, bridging
the gap between contrastive representation learning and
practical industrial prognostics.

III. PROPOSED METHOD

The proposed CROSS framework consists of two
sequential stages: First, a two-level alarm mechanism is used
to identify the FPT. Second, RUL prediction is performed
through contrastive representation learning and partial weight
transfer. Fig. 1 shows an overview of the workflow.

CROSS consists of two main modules: (1) a two-level
alarm mechanism to locate the First Prediction Time (FPT),
and (2) a contrastive representation encoder for degradation
modeling and transfer learning.

A. Stage 1: FPT Identification

In industrial signals, most of the data correspond to a
healthy state, which provides little information about



degradation. Therefore, detecting the point at which a
component begins to deteriorate—the FPT—is critical for
identifying meaningful degradation segments. However,
transient fluctuations, sensor drift, and random noise often
trigger false alarms when using a single indicator or threshold.
To address this issue, the CROSS system uses a two-level
alarm mechanism integrating the ADF test for statistical non-
stationarity and acceleration-based trend analysis for
sustained changes in signal magnitude. For each sliding
window W; = {x¢,, ..., X¢;+.}, the ADF test evaluates the null
hypothesis of a unit root as (1), following the classical
formulation introduced by Dickey and Fuller [16].

Ax; =a+Bt+yxe + X0 pilbx,; +& (1)

where y < 0 indicates stationarity.

An alarm is triggered when the ADF p — value < 0.1,
suggesting that the local distribution has shifted from the
previous neighborhood. Next, the local acceleration is
computed as (2).
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If the average a, over n consecutive windows exceeds the
threshold 7, a trend alarm is raised.

The intersection of statistical and trend alarms defines the
FPT, which marks the transition from a healthy state to a
degraded state. This dual criterion filters out short-term noise
and stabilizes FPT detection across heterogeneous operating
conditions.

B. Stage 2: RUL Prediction

After the degradation segments have been isolated,
CROSS uses contrastive representation learning to capture
temporal continuity and enable cross-domain transfer. Each
segment is divided into historical (X,) and future (Xy) sub-
sequences of equal length. These sub-sequences are encoded
by a shared, multi-scale, one-dimensional (1D) convolutional
network Fg(+):

zp = Fg(Xpn), zp = Fo(Xp) (3)

A predictor G (-)maps the last historical embedding to a
predicted future representation Zr = Gy (2,). The negative-
free contrastive loss function promotes temporal consistency
by minimizing the angular distance between the predicted and
actual embeddings.

_ {2rzr)
Leross = 1= I2fl201z 1l “)
Gradients are stopped through z¢, as in BYOL [14], to
prevent representation collapse. After training on the source
domain, freeze the lower convolutional layers and fine-tune
the upper layers on another source domain to achieve source-
to-source transfer before adapting to the final target. A
lightweight regression head Ry, () predicts the RUL as (5):

YruL = Rzp (Zf) (%)

The overall loss combines contrastive and smoothness
terms as (6).

Liotar = Leross + A Il VoLcross I3 (6)

where A controls the trade-off between alignment and
stability. This integrated design enables Stage 1 to accurately
detect degradation onset and allows Stage 2 to learn domain-
invariant temporal embeddings that can be transferred across
operating conditions. These mechanisms enable CROSS to
robustly predict RUL across domains, even under noisy or
partially observed degradation trajectories.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: CROSS was validated on two public
benchmarks dataset. XJTU-SY [17]: Vibration data from
LDK UER204 bearings under three load levels (25.6kHz
sampling, 32,768 points/min). PHM 2012 [18]: IEEE PHM
Challenge bearing run-to-failure signals (25.6kHz, 2,560
points/10s). Fig. 2 illustrates the experimental setups of both
public datasets The summary of the dataset is shown in Table

(a) (b)

Fig. 2 Public bearing test datasets: (a) XJTU-SY; (b) PHM2012..

TABLE L SUMMARY OF DATASETS
Dataset | Name Bearing Entities
XB1 XB11, XB12, XB13, XB15
XITU-SY XB2 XB21, XB22, XB23, XB24, XB25
PLIM2012 PB1 PB11, PB12, PB13, PB14, PB15, PB16, PB17
PB2 PB21, PB22, PB23, PB24, PB26, PB27

To evaluate source-to-source transfer, each dataset was
divided into multiple cross-domain tasks (e.g., XB1 — XB2,
PB1 — PB2). Training used a sliding window size 20, a batch
size 128, an epoch size 300, and a learning rate 1x10-*. Fifty
percent of the encoder layers were frozen during source
transfer.

2) Baseline and metrics: For FPT identification, three
classic detectors were compared: (1) the 20 principle method,
(2) the gradient method with the linear rectification technique
(LRT), and (3) the gradient method with the moving average
filter (MAF). Performance was evaluated by the difference
between the detected FPT and the ground truth failure time
for each sequence.

Three prognostic methods with different transfer
strategies were compared for RUL prediction. Baseline
(without transfer learning), CDAN [5], and DAN [6]. The
evaluation metric was mean absolute error (MAE).

B. Results of FPT Identification

The proposed two-level alarm robustly detects the FPT,
even under noisy conditions. Fig. 3 shows that each colored
vertical marker corresponds to an FPT estimated by a different
method according to the colors in the legend: proposed, 2c,
gradient (LRT), and gradient (MAF).
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Fig. 3. FPT identification results comparison in XJTU-SY dataset: (a)

XB11, (b) XB12, (c) XB13, (d) XB14.
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Across the XJTU-SY dataset, the markers corresponding
to the proposed method align most closely with the ground-
truth failure references. In contrast, the 20 method tends to
trigger prematurely, and the gradient-based methods remain
sensitive to local fluctuations despite smoothing.

These results confirm that fusing statistical (ADF) and
kinetic (acceleration) indicators provide stable and accurate
detection of degradation onset. The experimental evidence
shows that the proposed method can effectively capture the
degradation trend.

TABLE L. CROSS-DOMAIN RUL PREDICTION RESULTS
Transfer| Test Proposed .

Scenario | Bearing Melt)hod Bascline CDAN DAN
XB21 0.1031 0.1920 0.2091 0.1770

XB22 0.1147 0.2219 0.1871 0.2022

XB1-2 XB23 0.1435 0.2538 0.2418 0.2311
XB24 0.2077 0.3070 0.2335 0.1996

XB25 0.1684 0.2111 0.1812 0.1852

XB11 0.1823 0.2227 0.2171 0.2096

XBI12 0.1491 0.2207 0.1787 0.2153

XB2-1 XB13 0.1250 0.2332 0.1733 0.1814
XB15 0.0965 0.1685 0.1385 0.1226

PB21 0.1516 0.1641 0.2522 0.2051

PB22 0.2376 0.4753 0.2147 0.2865

PB12 PB23 0.2082 0.3412 0.2751 0.3662
PB24 0.2292 0.2651 0.3288 0.2721

PB26 0.2151 0.2652 0.2854 0.2367

PB27 0.1956 0.2312 0.2078 0.3122

PBI11 0.2292 0.3821 0.2631 0.2869

PB12 0.1535 0.2145 0.2620 0.2641

PB13 0.1517 0.2861 0.2393 0.2582

PB2-1 PB14 0.3665 0.4310 0.3887 0.3592
PBI15 0.1521 0.1942 0.2554 0.2417

PB16 0.1821 0.2151 0.2668 0.2615

PB17 0.1255 0.2571 0.2063 0.2082

C. Cross-Domain RUL Prediction

After FPT segmentation, CROSS performs contrastive
representation learning and source-to-source transfer. Fig. 4
shows representative RUL trajectories across domains, and
Table II presents the quantitative results. The proposed model
yields smoother and more accurate RUL curves than CDAN
and DAN, the latter of which often exhibits delayed or
stepwise degradation prediction.

CROSS achieves the lowest MAE across all scenarios,
indicating superior domain-invariant representation learning.
The largest relative improvement is seen in transfer tasks with
a significant operating-condition mismatch (e.g., PB1 — PB2),
where conventional adversarial alignment (DA) demonstrates
unstable adaptation.

Additionally, the overall trend of CROSS predictions
closely follows the true degradation trajectory. Predicted RUL
values decrease smoothly as operation time increases, and
degradation states correspond well to FPT boundaries
identified in Stage 1. This consistency shows that the learned
temporal representations capture continuous damage
propagation. This allows for reliable RUL forecasting under
domain shift.

V. CONCLUSION

This study presented CROSS, a two-stage framework for
robust degradation modeling and RUL prediction. Stage 1
involves a two-level alarm that combines the ADF test and
acceleration analysis to effectively identify the FPT. This
process filters out transient noise and produces reliable
degradation segments. Stage 2 involves a negative-free
contrastive representation that learns smooth, domain-
invariant temporal embeddings. This enables efficient source-
to-source transfer for RUL estimation. Experiments on
benchmark demonstrated that, compared with CDAN and
DAN, CROSS consistently reduced MAE by 15-30% while
achieving the most accurate FPT alignment with ground-truth
degradation onset. These results confirm the advantage of
combining statistical detection and contrastive learning for
domain generalization in prognostics.

Future work will extend CROSS toward multi-sensor
fusion and transformer-based encoders to capture cross-modal
degradation dynamics. Additionally, integrating online
adaptation and continual learning will enable the real-time
deployment of CROSS within industrial PHM systems.
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