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Abstract—Laterally Diffused Metal-Oxide Semiconductor (LD-
MOS) devices are crucial for high-power and high-frequency
applications, but their optimization requires balancing complex
trade-offs among structural parameters that determine break-
down voltage (BV), on-resistance (Ron), and gate–drain charge
(Qgd). Conventional single-objective approaches often fail to
identify globally optimal solutions across competing performance
metrics. This study presents a deep learning-based surrogate
modeling framework integrated with multi-objective Pareto opti-
mization for efficient LDMOS design. A ResNet-1D architecture
trained on TCAD simulation data accurately predicts electrical
characteristics from five key parameters (L1, N1, T , NPWELL,
NSUB), ..., achieving R2 > 0.99 while reducing computational cost
by up to 53.3× compared with TCAD (Table I). SHAP analysis
revealed that BV is most sensitive to drift thickness (T ) through
RESURF effects, while Ron and Qgd are primarily controlled
by channel doping (N1). Pareto optimization between BFOM
(BV2/Ron) and SFOM (Qgd ×Ron) quantified the inherent trade-
off between conduction efficiency and switching loss, enabling
systematic identification of application-specific optimal designs.
The proposed framework provides a computationally efficient
and physically interpretable platform for LDMOS optimization,
facilitating rapid design space exploration and goal-aware device
engineering for power semiconductor applications.

Index Terms—LDMOS, surrogate modeling, deep learning,
SHAP, Pareto optimization

I. INTRODUCTION

LDMOS (Laterally Diffused Metal-Oxide Semiconductor)
devices are widely utilized in high-power and high-frequency
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Fig. 1. Cross-sectional schematic of LDMOS device structure.

application fields such as switching power converters, wireless
transmission amplifiers, and automotive electronic systems,
due to their structure that can simultaneously secure high
breakdown voltage and excellent power efficiency. In partic-
ular, LDMOS has attracted attention as a leading platform
for silicon-based high-power device technology because it is
based on a lateral structure, offering high compatibility with
integrated circuit processes and enabling cost-effective process
implementation [1], [2], [3].

However, the performance of LDMOS is complexly de-
termined by multiple process and structural parameters such
as drift region length (Ldrift), doping concentration (Ndrift),
gate length (Lg), P-well and substrate concentration (NPWELL,
NSUB). Since these variables cause trade-offs among static
and dynamic power characteristics such as breakdown volt-
age (BV), specific on-resistance (Ron), and gate-drain charge
(Qgd), it is difficult to find optimal design points that balance
overall performance improvement using only conventional
single-objective optimization or empirical design approaches
[4], [5], [6].

Therefore, this study proposes an LDMOS device perfor-
mance prediction and design framework that combines deep



Fig. 2. Prediction accuracy of the ResNet-1D surrogate model. Left column: scatter plots comparing predicted versus true values for BV (top), RON (middle),
and QGD (bottom). Right column: corresponding error distributions (Pred−True) for BV (top), RON (middle), and QGD (bottom). The model achieves
R2 > 0.99 for all outputs on the held-out test set.

learning-based surrogate models with multi-objective Pareto
optimization techniques [7]. The deep learning-based surrogate
model learns TCAD simulation data to approximate the non-
linear correlations between design parameters and electrical
characteristics with high precision, and enables model-based
optimization by significantly reducing the parameter search
space. Subsequently, by applying Pareto optimization tech-
niques, the trade-off between static characteristics (BFOM =
BV2/Ron) and dynamic characteristics (SFOM = Qgd × Ron)
is quantitatively analyzed, and a goal-aware design framework

that can derive balanced optimal design points according to
each application purpose is implemented [8], [9].

II. DEVICE STRUCTURE AND SIMULATION METHOD

The cross-sectional schematic of the simulated field-plate
LDMOS device is shown in Figure 1. The device consists of
highly doped n+ source and drain regions, a lightly doped
n-type drift region, a p-well region beneath the gate, and a
p-type substrate.



To capture the complex trade-off relationships between
structural configuration and electrical performance, five pri-
mary structural parameters were defined as input variables
for device simulation and subsequent surrogate modeling: (1)
drift length (Ldrift, L1), the lateral extent of the drift region
that primarily determines the breakdown voltage and on-
resistance trade-off; (2) drift thickness (tdrift, T), the vertical
dimension of the drift region that affects current spreading
and resistance; (3) drift concentration (Ndrift, N1), the doping
concentration in the drift region that influences both depletion
width and conductivity modulation; (4) p-well concentration
(Npwell, NPWELL), the doping level in the p-well region
beneath the gate that impacts threshold voltage and chan-
nel characteristics; and (5) substrate concentration (Nsubstrate,
NSUB), the background doping of the p-type substrate that
affects punch-through behavior and backside electric field
distribution.

The output parameters selected for model training and
performance evaluation are breakdown voltage (BV), specific
on-resistance (Ron), and gate–drain charge (Qgd). These three
output variables comprehensively represent the device trade-
off between static power performance (characterized by BV
and Ron) and dynamic switching behavior (represented by
Qgd).

A TCAD dataset of 1,000 samples is generated by random
sampling of the five input parameters (L1, N1, T, NPWELL,
and NSUB) within the following ranges: L1 = 8.0–16.0 µm,
N1 = 7.5×1015–5.0×1016 cm−3, T = 1.5–3.5 µm, NPWELL
= 1.5 × 1017–6.5 × 1017 cm−3, and NSUB = 3.0 × 1015–
3.0 × 1016 cm−3. TCAD runs that did not converge or pro-
duced non-physical outputs were discarded to ensure dataset
quality. The dataset is split into training/test = 80/20, and all
preprocessing (e.g., normalization/standardization) is fitted on
the training set only to avoid data leakage. Unless otherwise
stated, all predictive results in Section III are reported on
the held-out test set. In addition, all Pareto-optimal designs
reported in this work are confirmed to lie within the min–
max bounds of the training data for each input parameter (i.e.,
within the interpolation regime of the surrogate model).

Device simulations were performed using Synopsys Sen-
taurus TCAD with a 2D structure. To comprehensively ac-
count for carrier transport, high-field effects, and breakdown
mechanisms in the field-plate LDMOS device, the following
eight physics models were activated: (1) high-field saturation,
(2) vertical electric field dependence (Enormal model), (3)
effective intrinsic density (Oldslotboom model), (4) velocity
saturation, (5) drift–diffusion transport model, (6) Shockley–
Read–Hall (SRH) recombination, (7) Auger recombination,
and (8) avalanche generation (impact ionization).

III. RESULTS AND DISCUSSION

A. DNN-based surrogate model construction

The surrogate model was constructed to take five structural
parameters (L1, N1, T , NPWELL, NSUB) as inputs and predict
three key electrical characteristics—breakdown voltage (BV),

Fig. 3. SHAP analysis results revealing the relative importance of five input
parameters on (top) breakdown voltage (BV), (middle) on-resistance (RON),
and (bottom) gate-drain charge (QGD). The drift thickness T dominates BV
prediction, while channel doping N1 primarily controls RON and QGD.

gate–drain charge (QGD), and on-resistance (RON)—as out-
puts.

The proposed model employed a 1D convolution-based
ResNet (Residual Network) architecture, consisting of four
stages of residual blocks expanding through 64–128–256–
512 channels after the input layer, followed by fully con-
nected layers. Each block includes two convolutional layers
(Conv1d, kernel=3), batch normalization (BatchNorm1d), and
ReLU activation functions, and is designed to prevent gradient
vanishing in deep networks through skip connections.

To quantify the computational benefit of the proposed
surrogate model, we measured the average wall-clock time per
design for (i) TCAD simulation and (ii) ResNet-1D inference
under the same workstation environment. The TCAD time
denotes the end-to-end runtime (including simulation and post-



TABLE I
MEASURED RUNTIME PER DESIGN POINT FOR TCAD SIMULATION AND

SURROGATE INFERENCE (BV, RON, AND QGD).

Metric TCAD time ResNet-1D time Speedup
BV 31 min (1860 s) 45 s 41.3×
RON 13 min (780 s) 36 s 21.7×
QGD 48 min (2880 s) 54 s 53.3×

TABLE II
PREDICTION PERFORMANCE OF THE PROPOSED RESNET-1D SURROGATE

MODEL ON THE HELD-OUT TEST SET.

Metric R2 NRMSE (range) [%] MAPE [%]
BV 0.9949 2.99 2.39
RON 0.9975 1.25 4.81
QGD 0.9959 3.34 2.42

processing) required to obtain each target metric (BV, RON,
and QGD) for a single design point. The ResNet-1D time
denotes the end-to-end inference time to predict the same
metric for the same one-design unit. The measured runtimes
and speedups are summarized in Table I.

As shown in Fig. 2, the proposed ResNet-1D surrogate
model achieved high prediction accuracy for all output vari-
ables. On the held-out test set, the coefficient of determination
(R2) exceeded 0.99 for BV, RON, and QGD, and the predicted
values closely matched the TCAD simulation results. The
mean absolute percentage error (MAPE) was 2.39% for BV,
4.81% for RON, and 2.42% for QGD (Table II). Overall,
these results indicate that the proposed DNN-based surrogate
model effectively learned the nonlinear interactions between
design parameters, validating it as a reliable predictive model
capable of replacing costly TCAD simulations. The prediction
performance on the held-out test set is summarized in Table II.

B. Pareto-front exploration

To interpret the internal prediction characteristics of the sur-
rogate model, SHAP (SHapley Additive exPlanations) analysis
was performed. By quantifying the relative influence of the
five input variables on each output value (BV, QGD, RON),
the drift thickness T was identified as the most influential
factor affecting BV. This is because the RESURF (Reduced
Surface Field) condition significantly changes with variations
in drift region thickness, making the electric field distribution
and breakdown voltage characteristics most sensitive to this
parameter.

Meanwhile, both RON and QGD responded most sensitively
to N1 (doping concentration near the channel). This is because
N1 directly affects channel resistance and gate–drain charge,
thereby jointly determining switching speed and conduction
loss characteristics. Therefore, it was confirmed that BV is
primarily controlled by the structural factor T , while RON and
QGD are mainly controlled by the electrical factor N1. These
results are summarized in Fig. 3.

Additionally, Fig. 4 presents the Pareto optimization results
between BFOM (maximization) and SFOM (minimization).
All candidate designs evaluated by the surrogate model during

Fig. 4. Pareto optimization results between BFOM (to be maximized)
and SFOM (to be minimized). Gray points denote all surrogate-evaluated
candidate designs generated during SMPSO. Pareto-optimal (non-dominated)
solutions are defined as designs for which no other candidate achieves a higher
BFOM while simultaneously achieving a lower SFOM (with at least one
strict improvement). The blue marker highlights the Pareto solution with the
maximum BFOM, and the red marker highlights the Pareto solution with the
minimum SFOM, illustrating the trade-off between conduction efficiency and
switching loss.

SMPSO are plotted as gray points. From this set, Pareto-
optimal (non-dominated) solutions are extracted using the
dominance criterion: a solution is non-dominated if there
exists no other candidate with BFOM ≥ and SFOM ≤
simultaneously (with at least one strict inequality). The blue
and red markers correspond to the two extreme Pareto solu-
tions, i.e., the maximum-BFOM and minimum-SFOM points,
respectively. The resulting front confirms the inherent trade-
off: improving conduction efficiency via higher BV and lower
RON tends to increase switching loss (captured by SFOM),
whereas reducing switching loss generally degrades conduc-
tion efficiency. Therefore, selecting an appropriate operating
point on the Pareto front is essential for balancing high-voltage
tolerance and high-speed switching in LDMOS design.

IV. CONCLUSION

In this study, a deep learning-based surrogate model was
developed to efficiently predict the electrical characteristics
of LDMOS devices as a function of key process and struc-
tural parameters, and a multi-objective optimization analysis
was performed using this model. The proposed ResNet-1D
surrogate simultaneously predicts three outputs—breakdown
voltage (BV), gate–drain charge (QGD), and on-resistance
(RON)—from five input variables (L1, N1, T , NPWELL,
NSUB). The results on the held-out test set demonstrated
that the coefficient of determination (R2) exceeded 0.99 for
all outputs, confirming that the surrogate model accurately
approximates TCAD simulation results.

Through SHAP analysis, the internal decision-making struc-
ture of the model was quantitatively interpreted. The results
showed that BV responds most sensitively to changes in drift
thickness T , which is attributed to the significant variation
in RESURF effect and electric field distribution according
to drift region thickness. In contrast, RON and QGD were



most strongly influenced by the doping concentration near the
channel N1, indicating that this parameter acts as a key factor
jointly determining channel resistance and switching speed.

Furthermore, based on the prediction results, BFOM and
SFOM were defined and Pareto optimal analysis was per-
formed. The analysis revealed that the two metrics exhibit a
trade-off relationship, where increasing conduction efficiency
(BFOM) increases switching loss (SFOM), and conversely,
reducing SFOM decreases BFOM. This confirms that deter-
mining the balance point between high-voltage tolerance and
high-speed switching characteristics is the key to LDMOS
structure optimization.

Consequently, the proposed DNN-based surrogate model
achieved a measured computational speedup of 21.7×–53.3×
over TCAD simulation while maintaining high prediction
accuracy (Table I). The framework also provides an integrated
analysis pipeline that interprets the physical influence of
design-parameter variations and enables exploration of multi-
objective optimal designs. In future work, the model will be
extended to reliability prediction under environmental factors
such as process variations and thermal stress, and to dynamic
Pareto optimization.
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