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Abstract—The proliferation of the Industrial Internet of Things
(IIoT) across critical infrastructure demands real-time intrusion
detection systems (IDS) that guarantee both high accuracy and
data integrity against sophisticated cyber threats. This paper
introduces the Deep Learning Integrated PureChain Model (DLI-
PCM), a novel, low-latency framework for robust anomaly
detection and verifiable logging in IIoT edge environments. The
system’s core is an LSTM-based IDS that effectively captures
complex temporal dependencies in high-dimensional time-series
data, achieving superior detection performance with an Accuracy
of 0.9960 and an F1-Score of 0.9596. Crucially, when an attack
is detected by the LSTM core, the DLI-PCM immediately
generates a real-time alert, which is then secured by a specialized
PureChain Data Sharing Layer utilizing a gas-free PoA2 consen-
sus mechanism. This unique layer ensures all detection alerts
and corresponding data hashes are immediately and immutably
logged via a Smart Contract, providing a tamper-proof, auditable
record. Performance metrics validate its operational efficiency,
showing an low Average Latency of 0.114s for transaction logging
and highly cost effective due to its low transaction gas cost,
thus establishing a comprehensive, trustworthy defense-in-depth
strategy essential for secure Industry 4.0 environments.

Index Terms—Deep Learning (DL), Industrial IoT (IIoT),
Intrusion Detection System (IDS), LSTM, PureChain

I. INTRODUCTION

The convergence of Operational Technology (OT) and Infor-
mation Technology (IT) in Industrial Internet of Things (IIoT)
ecosystems has enabled unprecedented levels of automation,
real-time monitoring, and data-driven decision-making across
critical infrastructure. This integration, however, has simulta-
neously expanded the cyberattack surface, exposing intercon-
nected industrial components to adversarial manipulation capa-
ble of disrupting operational continuity, damaging equipment,
or compromising safety [1]. As IIoT deployments continue to
scale in heterogeneity and connectivity, the need for intrusion
detection mechanisms that can operate reliably under stringent
industrial constraints becomes increasingly urgent [2].

Traditional intrusion detection systems (IDS) particularly
signature-based and rule-driven approaches are ill-suited for
modern IIoT environments. They struggle against dynamic,
stealthy, and high-dimensional attack patterns that evolve
rapidly and often evade static detection logic. In contrast, deep
learning (DL) techniques have demonstrated strong potential
in modeling temporal and contextual dependencies within IIoT

telemetry, enabling the identification of previously unseen or
subtle anomalies [3] [2].

Yet, despite these advantages, contemporary DL-based IDS
solutions exhibit two critical limitations. First, most rely on
centralized detection or logging infrastructures, creating single
points of failure that sophisticated attackers can exploit to
modify, erase, or forge forensic records [4]. Second, many
proposals are validated only in offline or simulated settings,
without accounting for the real-world constraints of industrial
systems where processing power, communication bandwidth,
and latency budgets are highly restricted [5].

Existing IDS designs attempt to increase detection accuracy
by employing complex deep architectures such as layered
LSN, CLA, SSAE, and HGS pipelines that achieve strong
modeling capacity but introduce computational overhead in-
compatible with resource-limited edge devices [6]. Conversely,
lightweight statistical methods reduce latency but suffer from
elevated false-negative rates, leaving critical operational win-
dows unprotected. In parallel, reliance on centralized Security
Information and Event Management (SIEM) infrastructures
amplifies forensic vulnerability by enabling attackers to tamper
with or remove log records forensics [7].

To address these challenges, this paper introduces the Deep
Learning Integrated PureChain Model (DLI-PCM), a unified
framework that couples low-latency LSTM-based anomaly
detection with a decentralized, tamper-resistant blockchain
logging layer. The LSTM component captures fine-grained
temporal dynamics in IIoT traffic to enable accurate real-
time threat classification, while the PureChain layer employs
a low gas PoA² consensus mechanism to ensure immutable,
verifiable, and cost-efficient recording of intrusion alerts [8]
[7]. This integration eliminates the single-point-of-failure limi-
tation of centralized logging and enhances forensic traceability
during and after security incidents.

The key contributions of this work are as follows:

1) Introduction of the DLI-PCM architecture, which inte-
grates LSTM-based threat detection with a decentralized
blockchain layer for data integrity

2) Real-time threat classification, achieved through the de-
ployment of LSTM networks on edge devices, enabling
low-latency, high-accuracy detection of anomalies.



3) Immutable data logging, facilitated by the PureChain
blockchain, which guarantees the integrity and non-
repudiation of detection alerts through a almost gas-free
PoA2 consensus mechanism.

4) Empirical validation, demonstrating the superior perfor-
mance of the DLI-PCM system compared to existing
IDS approaches in terms of detection accuracy, latency,
and cost-effectiveness.

II. RELATED WORK

The increasing interconnection of OT and IT systems within
IIoT infrastructures has prompted extensive research into cy-
bersecurity mechanisms tailored for industrial environments.
Two predominant research directions Deep Learning–based
intrusion detection and blockchain-enabled integrity preserva-
tion have demonstrated substantial potential but also revealed
significant shortcomings when considered independently.

A. Deep Learning-Based IDS in IIoT

Deep learning techniques have been widely adopted for
anomaly detection across IIoT systems due to their capability
to automatically learn hierarchical representations from diverse
telemetry sources. Hybrid models that combine CNNs for
spatial pattern extraction, LSTMs or GRUs for temporal se-
quence modeling, and autoencoders for unsupervised anomaly
detection have achieved state-of-the-art accuracy in benchmark
datasets [1].Furthermore, attention mechanisms and ensemble
learning have been explored to enhance robustness against
stealthy attacks.

However, these methods typically require substantial com-
putational resources, limiting their suitability for deployment
in edge nodes with restricted CPU, memory, and energy
budgets. High inference latency also undermines their effec-
tiveness in environments requiring sub-second response times
[1]. Additionally, the lack of explainability in many deep
learning architectures presents challenges in mission-critical
IIoT applications, where operators must interpret and justify
anomaly classifications. Only a limited subset of research
evaluates these systems under real-world industrial constraints,
such as fluctuating traffic loads, noisy sensor data, or hardware
limitations.

B. Blockchain for IIoT Security and Trust

Blockchain has emerged as a decentralized mechanism
capable of ensuring data immutability, secure event logging,
and transparent forensic trails in IIoT networks. Prior efforts
have utilized Ethereum smart contracts, Hyperledger Fabric’s
permissioned consensus, and customized private blockchains
to store network events, authenticate device interactions, and
verify access control [9].While these approaches demonstrate
improved trust management, their operational overhead raises
concerns.

Public blockchains suffer from high latency and transaction
fees, making them impractical for real-time or high-frequency
logging. Permissioned blockchains, though more efficient, still
incur communication overhead and may not fully support

synchronous integration with detection systems. Notably, most
existing blockchain-enabled IDS solutions log events only
after detection, resulting in delays that expose the system to
tampering risks. The PureChain framework addresses some
of these limitations by offering gas-free transactions and a
PoA² consensus mechanism designed to reduce computational
burden and latency [10] [7].

C. Research Gaps

Although deep learning improves detection and blockchain
strengthens forensic integrity, current research still lacks a
unified framework for the complex security needs of IIoT
systems.. Prior work has not simultaneously integrated:

1) Low-latency deep learning-based detection at the edge,
2) Immediate and verifiable blockchain-backed alert log-

ging, and
3) Systematic evaluation framework that approximates real-

world industrial operational constraints through empiri-
cal latency analysis, resource-aware model design, and
attack-driven workload simulation.

In practice, fully reproducing industrial operating conditions
such as heterogeneous device capabilities, dynamic network
congestion, and safety-critical response deadlines is challeng-
ing in a controlled research environment. Accordingly, rather
than full-scale deployment, this work analytically models
key constraints and evaluates the system via realistic latency
measurements, throughput profiling, and resource-bounded
deep learning inference that approximate industrial execution
characteristics [4].

The proposed Deep Learning Integrated PureChain Model
(DLI-PCM) aims to fill this gap by integrating an LSTM-based
edge detector with a lightweight blockchain layer, enabling
real-time intrusion detection alongside tamper-proof forensic
auditing.

III. METHODOLOGY

Consequently, there remains a clear need for an IIoT
intrusion detection architecture that couples high detection
performance with verifiable log integrity, while ensuring com-
putational feasibility and responsiveness under experimentally
derived constraint conditions. The proposed Deep Learn-
ing Integrated PureChain Model (DLI-PCM) addresses this
gap by integrating an LSTM-based anomaly detector with a
lightweight PoA²-enabled blockchain layer. This architecture
enables real-time threat identification and tamper-proof alert
recording, while its empirical evaluation provides a repro-
ducible methodology for understanding how such a system
would behave under quasi-realistic industrial workloads.

A. Proposed System Architecture

Figure 1 illustrates the end-to-end operational flow of the
proposed security framework. Heterogeneous IIoT devices
and edge-layer sensors continuously emit high-dimensional
telemetry streams comprising network statistics, protocol-
level metadata, temporal flow descriptors, and packet-oriented
attributes. These raw measurements are first routed to the



Fig. 1. Proposed System Diagram of Deep Learning Integrated PureChain IDS Model.

Data Aggregation and Preprocessing Module, which performs
cleansing, normalization, and feature structuring to transform
unrefined traffic into analytically coherent vectors suitable for
subsequent deep learning inference [11].

The resulting feature representations xt are then processed
by the Deep Learning–based Intrusion Detection System
(IDS), which evaluates sliding windows of IIoT activity to
determine whether the observed state corresponds to legitimate
operational behavior or a deviation indicative of an attack.
Upon classification, the system branches according to the IDS
decision output: if ŷt = benign, the data stream continues
through the standard processing pipeline without interruption;
if ŷt = attack, the detection event triggers two simultaneous
actions.

First, the alert is communicated to the Security Dashboard
and Operator Interface, enabling real-time situational aware-
ness and facilitating rapid response. Second, the event and its
associated metadata are transmitted to the PureChain Data-
Sharing Layer. This layer employs an immutable logging
mechanism supported by a PoA2 consensus scheme and
smart-contract-driven validation to ensure trustworthy, tamper-
resistant record-keeping. Through this dual response pathway,
the architecture provides both operational continuity and ver-
ifiable forensic traceability whenever anomalous activity is
detected [8] [7].

B. Deep Learning Core for Anomaly Detection
Let the IIoT state at time t be a multivariate feature vector

Xt ∈ Rd, where d denotes the number of features. Using a
fixed window size k, the IDS constructs temporal sequences

Wt = [Xt−k+1, . . . ,Xt]. (1)

These sequences are fed into a Long Short-Term Memory
(LSTM) network designed to capture long-range temporal

dependencies typical of evolving IIoT traffic patterns. The
LSTM unit computes its internal states using

ft = σ
(
Wf [ht−1,Xt] + bf

)
, (2)

it = σ
(
Wi[ht−1,Xt] + bi

)
, (3)

c̃t = tanh
(
Wc[ht−1,Xt] + bc

)
, (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (5)
ht = ot ⊙ tanh(ct), (6)

where σ(·) is the sigmoid activation, ⊙ denotes element-wise
multiplication, and W{·}, b{·} are trainable weight matrices
and bias vectors, respectively. A final dense layer outputs
the attack probability. The binary decision is made via a
thresholding function

ŷt =

{
1, if p(attack | Wt) > τ,

0, otherwise,
(7)

where τ is a decision threshold, is empirically selected using
validation-set optimization based on ROC and F1-score anal-
ysis, ensuring an optimal balance between false positives and
false negatives under IIoT operational constraints.

C. PureChain Data Sharing Layer for Immutable Logging

Upon detection of an anomaly (ŷt = 1), DLI-PCM generates
an intrusion payload P containing metadata such as times-
tamps, device identifiers, suspected attack type, and the LSTM
confidence score. To ensure tamper resistance, the payload is
hashed using

HP = SHA-256(P ). (8)

The system then constructs a signed transaction

T = {P, HP , Sign(HP , SKedge)}, (9)



where SKedge denotes the private key of the authenticated
edge node. This transaction is forwarded to the PureChain
Data Sharing Layer, which implements the PoA2 (Proof-of-
Authority-and-Association) consensus. The consensus nodes
validate the signature and append the alert as part of a new
block

Bi = {Hi−1, T, MerkleRoot, Timestamp}. (10)

As represented in Figure 1, the PureChain layer provides
(i) immutable data logging, (ii) authenticity verification, and
(iii) automated access control and alert generation via smart
contracts. This makes the final logged event resistant to
retrospective modification or deletion.

D. Real-Time Alerting and Operator Interface

Following successful block formation, the smart contract
triggers an Alert Event, which is propagated to the Security
Dashboard and Operator Interface in Figure 1. The dashboard
displays the hash reference, block details, and attack meta-
data, enabling operators to perform immediate mitigation and
forensic analysis. The end-to-end system latency is expressed
as

λtotal = λdet + λchain, (11)

where λdet is the LSTM inference time and λchain denotes the
PureChain logging latency.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset and Experimental Setup

The proposed DLI-PCM model is evaluated on the Edge-
IIoTset dataset [11], which contains 61 features and 14 attack
categories. All numerical features are standardized to zero
mean and unit variance, and time-ordered flow records are
grouped into sequences of length k = 20. The dataset is split
chronologically into 70%/15%/15% for training, validation,
and testing, respectively, to avoid temporal leakage. Class
imbalance is addressed using a class-weighted binary cross-
entropy loss. The LSTM classifier comprises two stacked
layers with 128 and 64 hidden units and a dropout rate of
0.3, followed by a sigmoid output layer. Training is performed
using the Adam optimizer (learning rate 10−3), a batch size
of 128, and early stopping based on the validation loss. All
experiments are conducted in Python with TensorFlow on a
GPU-enabled workstation. The PureChain layer is deployed
with three PoA2 validator nodes to measure on-chain logging
latency and throughput.

B. Evaluation Metrics

We conducted validation and testing on the dataset to
ensure that the proposed LSTM model was supplied with
the trained parameters and executed over 20 epochs. As a
result, the complete model achieved 99.60% accuracy for both
training and validation, as illustrated in Figure 2. Likewise,
the model exhibited a validation loss of only 0.0353% after
20 epochs, as shown in Figure 3. The trained model, which
incorporates large-scale IoT device data, was subsequently

finalized and optimized using the EdgeIIoT dataset. The
optimization strategy accounted for computational feasibility
and the maximum achievable accuracy of the proposed LSTM
architecture. Furthermore, this phase signified the completion
of the intrusion-detection mechanism, effectively addressing
the intrusion attacks originally present in the EdgeIIoT dataset.
The proposed LSTM-based Intrusion Detection System (IDS),
evaluated on the EdgeIIoT dataset, demonstrates strong clas-
sification performance as summarized in the Table I

Fig. 2. Training and Validation Accuracy for each Epoch

Fig. 3. Training and Validation loss for each Epoch

TABLE I
PERFORMANCE METRICS FOR LSTM MODEL ON EDGEIIOT IDS

Model LSTM
Accuracy 0.9960
Precision 0.9725
Recall 0.9689
F1-Score 0.9596
Training Time (s) 34.975
Testing Time (s) 0.4900
Inference Time (s) 0.0591

The model achieved an accuracy of 0.9960, with precision,
recall, and F1-score each at 0.9596. These values reflect the
system’s high proficiency in distinguishing anomalous from



benign activity, with minimal error rates. Additionally, the
training time of approximately 34.98 seconds and very low
testing and inference times 0.49 seconds and 0.059 seconds,
respectively, indicate that the system offers both effectiveness
and efficiency suitable for real-time IIoT threat detection
scenarios [12].

Classification Metrics
Accuracy (Acc) measures the overall correctness of model

predictions, calculated as the ratio of correctly classified sam-
ples (both normal and attack) to the total number of samples:

Acc =
TP + TN

TP + TN + FP + FN
(12)

Precision (P ) indicates how many predicted attacks are true,
reflecting the model’s ability to avoid false alarms:

P =
TP

TP + FP
(13)

Recall (R) measures how many actual attacks were detected,
representing the model’s sensitivity to intrusions:

R =
TP

TP + FN
(14)

F1-Score (F1) is the harmonic mean of precision and
recall, balancing the trade-off between false positives and false
negatives.

Fig. 4. Confusion matrix of the IDS model on the EdgeIIoT dataset.

The Figure 4 confusion matrix summarises the IDS model’s
classification outcomes for normal and anomalous events using
the EdgeIIoT dataset. The diagonal cells (1876 and 97) repre-
sent correctly classified samples: normal instances in the upper
left and anomalies in the lower right. Off-diagonal entries (2
false positives, 4 false negatives) indicate misclassifications.
Overall, the matrix reveals high accuracy and robust anomaly
detection capability, with minimal false alarms and missed
detections.

C. Evaluation of PureChain’s Immutable Logging

PureChain ensures tamper-proof, auditable IIoT intrusion
logs by storing each detected attack as a unique blockchain
transaction.

The latency reported in fig.5, corresponds to the delay be-
tween the occurrence of an event and its on-chain registration,
rather than the detection time of the deep learning model.
The Alert Log records unique attack identifiers (e.g., IDs 20
and 271) and their transaction hashes (TxHash), confirming
successful on-chain commitment. The observed logging laten-
cies range from 0.096 s (Attack 20) to 0.736 s (Attack 192),
indicating near real-time transaction finality while revealing
the quantitative impact of blockchain communication overhead
and network congestion on system responsiveness.

Table II summarises the PureChain logging results during
real-time IDS operation. All detected attacks were success-
fully registered on PureChain, with no failures. The system
achieved an average transaction latency of 0.114 seconds and
a throughput of 34.64 transactions per second, demonstrating
suitability for high-throughput environments.

TABLE II
PURECHAIN LOGGING PERFORMANCE SUMMARY

Metric Value
Total attacks detected 99
Successfully logged 99
Failed logs 0
Average latency per tx (s) 0.114
Throughput (TPS) 34.64

These results confirm that PureChain provides highly reli-
able and efficient logging, making it well-suited to real-time
intrusion detection deployments in edge and IIoT environ-
ments.

D. Comparative Analysis

A consolidated comparison of all evaluated IDS models
highlights the clear performance and operational advantage of
the proposed LSTM-based architecture, as shown in Table III.
The CNN-GRU-LSTM model [13] achieves moderate accu-
racy (0.960) and F1-score (0.932), but its Purechain logging
latency of 0.257 s reflects substantial overhead from its layered
convolutional–recurrent design, limiting its real-time usability.
Similarly, the Ethereum-based CNN model [14] yields lower
accuracy (0.989), precision (0.936), and F1-score (0.936),
alongside an even higher latency of 0.257 s, underscoring its
reduced suitability for time-sensitive IIoT tasks.

The Isolation Forest model, despite achieving the lowest la-
tency (0.032 s) with PureChain logging, demonstrates weaker
accuracy (0.897) and F1-score (0.866), illustrating the chal-
lenges of unsupervised detection in noisy IIoT environments.
The MARL-FL model [15] shows strong accuracy (0.990) and
F1-score (0.988) but still incurs comparatively high latency
and lacks tamper-resistant auditability.

In contrast, the proposed LSTM achieves the highest ac-
curacy (0.996) and a competitive F1-score (0.959) while
maintaining a substantially lower PureChain latency of 0.114 s.



Fig. 5. Successful attack alerts and PureChain logging

This balance demonstrates its efficiency in modeling temporal
dependencies and generating concise, verifiable blockchain-
logged alerts.Overall, the comparative analysis identifies the
proposed LSTM as the most effective model, offering the
strongest combination of detection performance, computa-
tional efficiency, and secure blockchain-based auditability.

TABLE III
COMPARATIVE PERFORMANCE OF IDS MODELS

Model Accuracy F1-
Score

Precision Latency

CNN–GRU–LSTM 0.960 0.932 0.962 0.257 s
CNN 0.989 No 0.936 0.257 s
Isolation Forest 0.897 0.866 0.872 0.032 s
MARL-FL 0.990 0.988 0.989 5.200 s
Proposed LSTM 0.996 0.959 0.972 0.114 s

V. CONCLUSION

This paper introduced DLI-PCM, an LSTM-based intru-
sion detection framework integrated with PureChain PoA2

blockchain logging for securing Industrial IoT environments.
Using the Edge-IIoTset dataset, the model achieved an accu-
racy of 0.9960 with an average inference time of 0.059 s, while
PureChain recorded alerts with a logging latency of 0.114 s
and a throughput of 34.64 TPS. These results demonstrate that
combining deep learning with a lightweight blockchain layer
can provide both accurate detection and low-latency, tamper-
proof alert recording. The current study is limited to binary
attack classification and a single deployment setting. Future
work will extend the model to multiclass attack detection,
evaluate robustness across multiple datasets, and further opti-
mize PureChain parameters to improve scalability and reduce
logging overhead in diverse IIoT scenarios.

ACKNOWLEDGEMENT

This work was partly supported by Innovative Human
Resource Development for Local Intellectualization program
through the IITP grant funded by the Korea government
(MSIT) (IITP-2025-RS-2020-II201612, 25%) and by Priority
Research Centers Program through the NRF funded by the
MEST (2018R1A6A1A03024003, 25%) and by the MSIT,
Korea, under the ITRC support program (IITP-2025-RS-2024-
00438430, 25%) and by Basic Science Research Program
through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education(RS-2025-25431637,
25%).

REFERENCES

[1] A. Orman, “Cyberattack detection systems in industrial internet of things
(iiot) networks in big data environments,” Applied Sciences, vol. 15,
no. 6, p. 3121, 2025.

[2] M. Al Rawajbeh, A. J. Maria Soosai, L. K. Ramasamy, and F. Khan,
“Trustworthy adaptive ai for real-time intrusion detection in industrial
iot security,” IoT, vol. 6, no. 3, p. 53, 2025.

[3] S. M. S. Bukhari, M. H. Zafar, M. Abou Houran, Z. Qadir, S. K. R.
Moosavi, and F. Sanfilippo, “Enhancing cybersecurity in edge iiot
networks: An asynchronous federated learning approach with a deep
hybrid detection model,” Internet of Things, vol. 27, p. 101252, 2024.

[4] N. Alkhafaji, T. Viana, and A. Al-Sherbaz, “Integrated genetic algorithm
and deep learning approach for effective cyber-attack detection and clas-
sification in industrial internet of things (iiot) environments,” Arabian
Journal for Science and Engineering, pp. 1–25, 2024.

[5] B. Ahmad, Z. Wu, Y. Huang, and S. U. Rehman, “Enhancing the security
in iot and iiot networks: An intrusion detection scheme leveraging deep
transfer learning,” Knowledge-Based Systems, vol. 305, p. 112614, 2024.

[6] A. Banitalebi Dehkordi, “Edblsd-iiot: a comprehensive hybrid architec-
ture for enhanced data security, reduced latency, and optimized energy in
industrial iot networks,” The Journal of Supercomputing, vol. 81, no. 2,
p. 359, 2025.

[7] D.-S. Kim, E. A. Tuli, I. I. Saviour, M. M. H. Somrat, and X.-Q. Pham,
“Blockchain-as-a-service: A pure chain approach,” Blockchain: Research
and Applications, p. 100397, 2025.

[8] D.-S. Kim, I. S. Igboanusi, L. A. C. Ahakonye, and G. O.
Anyanwu, “Proof-of-authority-and-association consensus algorithm for
iot blockchain networks,” in 2025 IEEE International Conference on
Consumer Electronics (ICCE). IEEE, 2025, pp. 1–6.

[9] M. Rodriguez, D. P. Tobon, and D. Munera, “A framework for anomaly
classification in industrial internet of things systems,” Internet of Things,
vol. 29, p. 101446, 2025.

[10] M. I. Hossain, T. Steigner, M. I. Hussain, and A. Akther, “Enhancing
data integrity and traceability in industry cyber physical systems (icps)
through blockchain technology: A comprehensive approach,” arXiv
preprint arXiv:2405.04837, 2024.

[11] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke,
“Edge-iiotset: A new comprehensive realistic cyber security dataset of
iot and iiot applications for centralized and federated learning,” IEEe
Access, vol. 10, pp. 40 281–40 306, 2022.

[12] A. Quraishi, M. A. Rusho, A. Prasad, I. Keshta, R. Rivera, and M. W.
Bhatt, “Employing deep neural networks for real-time anomaly detection
and mitigation in iot-based smart grid cybersecurity systems,” in 2024
Third International Conference on Distributed Computing and Electrical
Circuits and Electronics (ICDCECE). IEEE, 2024, pp. 1–6.

[13] C. A. Nnadiekwe, S. O. Ajakwe, J. M. Lee, and D.-S. Kim, “Remote-
care: Ai-driven multimodal predictive framework with blockchain for
personalized remote patient monitoring in iomt,” IEEE Internet of Things
Journal, pp. 1–1, 2025.

[14] M. F. Rahaman, M. Golam, M. R. Subhan, E. A. Tuli, D.-S. Kim, and
J.-M. Lee, “Meta-governance: Blockchain-driven metaverse platform for
mitigating misbehavior using smart contract and ai,” IEEE Transactions
on Network and Service Management, vol. 21, no. 4, pp. 4024–4038,
2024.

[15] G. Alandjani, “A marl-federated blockchain-based quantum secure
framework for trust management in industrial internet of things,” Scien-
tific Reports, vol. 15, no. 1, p. 39149, 2025.


