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Abstract—High-resolution precipitation maps are critical for
hydrological modeling and hazard assessment in the Philippines,
yet reanalysis datasets such as ERA5-Land are too coarse for
many local applications. We develop a hybrid machine learning—
geostatistical framework to downscale the daily ERAS-Land
precipitation to a 1 km grid over the entire country. The
models were trained and evaluated against observations from
374 rain gauges and automated weather stations for 2010-2020;
among these, the histogram-based gradient boosting decision
trees (HGBDT) performed the best, achieving an RMSE of
9.088 mm/day, an MAE of 4.204 mm/day, and an R’ of 0.139,
compared to the raw ERAS-Land (RMSE 13.284 mm/day, MAE
6.929 mm/day, R> -0.827). Applying the geostatistical correction
to the model’s residuals showed additional improvements, most
notably during the dry season. This study shows that the
downscaled precipitation map was able to capture the fine-scale
orographic patterns that coarse reanalysis datasets usually miss.
Although it still tends to underestimate heavier rainfall events
(above 20 mm/day), it offers a more physically realistic and
statistically improved high-resolution dataset that can support
local hydrological work and hazard management.
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I. INTRODUCTION

Precipitation is a crucial component of the hydrological
cycle, playing a critical role in regulating water resources,
agricultural activities, and flood dynamics [1]. The Philippines
is one of the most disaster-prone countries in the world.
An archipelagic nation located in the Western North Pacific,
it exemplifies such complexity with its unique orographic
patterns, as well as an interplay of tropical cyclones, mon-
soons, and mesoscale convective systems that lead to extreme
spatiotemporal precipitation variability [2], [3]. Capturing this
extreme spatiotemporal variability is essential for hydrological
modeling, flood early warning, and climate-change impact
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assessment. However, quantifying an accurate spatiotemporal
precipitation distribution remains a challenge.

Although the national rain-gauge network continues to
expand over time, it remains relatively sparse in many moun-
tainous and island regions, resulting in large uncertainties
when gridded data are generally derived from station in-
terpolation [4]. Furthermore, global reanalysis data such as
ERAS5-Land [5] allow for a physically consistent analysis of
all atmospheric states on an hourly basis, but their coarse
resolution means they can’t capture small-scale terrain effects
and coastal storm patterns that shape local rainfall. As a result,
ERAS-Land tends to underestimate intense rainfall and fails to
capture the detailed spatial variability needed for reliable local
assessments, especially during events like tropical cyclone
landfalls and monsoon surges [6].

Empirical statistical downscaling offers a practical way to
connect local hydrometeorological conditions with large-scale
atmospheric information. Dynamical downscaling, by contrast,
uses regional climate models to resolve high-resolution at-
mospheric processes, but it requires substantial computing
resources and inherits biases from the driving global models.
Empirical downscaling instead uses statistical relationships
between large-scale climate patterns and local observations
to represent fine-scale features in complex environments [7],
[8]. Conventional parametric regression methods have been the
standard for this task, although they often fail to capture the
complex, non-linear relationships inherent in the precipitation
processes. [9]

Recent developments in hydroinformatics have shown that
machine learning (ML) algorithms are more effective in down-
scaling climate variables than traditional statistical techniques.
Research has demonstrated that non-linear algorithms like
Random Forest (RF) and Gradient Boosting greatly outper-



form interpolation and linear regression methods in terms of
reducing error metrics and enhancing rain event detection [10].
These Al-driven techniques are especially useful in areas with
limited data since they can produce high-resolution projections
that are essential for policy development and disaster mitiga-
tion [11].

This study presents a machine learning and geostatistical
method to downscale ERAS-Land precipitation data from 9
km spatial resolution to a 1 km daily grid for the area of
the Philippines. By leveraging the dense network of local
automated weather stations and rain-gauges (PhilSensors) as
the ground truth, this research applies physical atmospheric
predictors, high-resolution topographical variables and geo-
statistical determinants within an optimized ML model. This
method seeks to provide a reliable high-resolution precipita-
tion dataset appropriate for hydrometeorological applications
in the Philippines while correcting the biases present in
reanalysis data.

II. METHODOLOGY

The overall workflow of this study is shown in Fig. 1.
The methodology follows a step-by-step process, beginning
with data collection and preprocessing and ending with the
generation of high-resolution precipitation estimates.

Multiple datasets are combined to construct the downscaling
framework, including ground-based observations, reanalysis
products, and auxiliary geographic and climate information.
The prepared dataset is then used to train and evaluate several
machine learning models. Feature selection and hyperparam-
eter tuning are carried out using cross-validation to ensure
robust model performance.

Model results are compared using an independent test set,
and the best-performing approach is applied to produce high-
resolution precipitation maps. Further details of each step are
provided in the corresponding subsections.

A. Study Area

The area of focus for this study is the Philippines, a Western
North Pacific archipelagic nation. Home to more than 7600
islands, the region’s geomorphology varies from mountain
ranges like the Sierra Madre and Cordillera Central, which
contribute to regional rainfall due to orographic lifting and rain
shadow effects as shown in Fig. 2. The climate is influenced
by the Asian Monsoon system (Southwest Monsoon and
Northeast Monsoons) and the frequent occurrence of tropical
cyclones. The region is a perfect testbed for high-resolution
downscaling because of the extreme spatiotemporal rainfall
variability produced by these factors interacting with the rough
terrain [1].

B. Data Acquisition and Preprocessing

1) Ground-Based and Reanalysis Data: Daily precipitation
data is obtained from the 374 Automatic Weather Stations
(AWS) and rain gauges of the PhilSensors network from
January 1, 2010, to December 31, 2020. The PhilSensors
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Fig. 1: Overall methodological framework for precipitation
downscaling in the Philippines. The workflow integrates sta-
tion data (PhilSensors), reanalysis (ERAS-Land), and topo-
graphic features (DEM) into a machine learning pipeline
involving feature selection, hyperparameter tuning, and com-
parative model evaluation.

network spans to diverse topographic areas, and the altitudes
of the stations range from almost 0 m to over 2,500 m.

The PhilSensors data were recorded at 15-minute intervals,
and the precipitation measurements were aggregated to daily
totals that served as the ground truth. Several quality checks
were made to ensure data quality and prevent outliers, indi-
vidual data points from the station data that shows unrealistic
values such as negative precipitation or totals exceeding 1,000
mm/day, were identified as outliers and removed. The station
network was then randomly divided into train and test for un-
biased evaluation. 317 stations (84.8%) comprised the training
set used for model training and hyperparameter optimization.
57 stations (15.2%) comprised the independent test set that
was not used during model training.

The atmospheric predictors was derive from the ERA5-Land
reanalysis data [5]. Although these are physically uniform and
produced on an hourly frequency, the spatial resolution of the
ERAS-Land data (~9 km) is still too coarse for downscaled,
location-specific studies. For ease of use, the following eight
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Fig. 2: Digital elevation model of the Philippines with Philsen-
sors station locations overlaid.

dynamic variables of interest were chosen: 2m temperature,
2m dewpoint, surface pressure, total precipitation, u/v wind
components, 2m solar radiation and evaporation.

2) Topographic and Geostatistical Features: To resolve
sub-grid heterogeneity, we integrated high-resolution static
features:

o Topography: Derived from the Copernicus GLO-30
DEM, resampled to 1 km. Features include elevation,
slope, and aspect.

o Proximity: Euclidean distances to rivers, coastlines, and
lakes, plus land-sea percentage, to capture coastal con-
vergence effects.

o Climate Index: The Oceanic Nifio Index (ONI) was
included to account for ENSO-driven climate variability.

3) AUREHLY Principal Components: To model spatial au-
tocorrelation, we used the AUREHLY (Analysis of Using the
Relief for Hydrometeorology) method. Similar to a previous
study [12], AUREHLY was computed by getting the elevation
difference between the point and the grids. We selected 32
nearest neighbors along latitude and 46 along longitude for
each station, resulting in 1,550 points (1550 = (2 x 16 + 1) x
(2 x 23 + 1) - 1). Principal Component Analysis (PCA) was
applied then to the matrix of elevation difference retaining
the top 15 components (PC1-PC15). These components act
as additional information about the terrains surrounding each
point.

C. Feature Selection Strategy

A Sequential Feature Selection method was used to identify
the most optimal subset of features. A model was first trained

on the atmospheric features from ERAS-Land, which served
as a baseline. Topographic features and PCs were candidate
variables that were added iteratively. A variable was retained
only if it showed a reduction in the RMSE on the 5-fold
cross-validation. This implies that variables leading to a lower
RMSE are those that contribute to improving the model’s
predictive performance [12].

D. Machine Learning Models

Different types of regression-based machine learning mod-
els were used to represent the complex and non-linear relation-
ships between atmospheric conditions and local precipitation.
Within the downscaling framework, these models serve as
the deterministic component and are used to generate initial
precipitation estimates. To account for spatially structured
errors, Ordinary Kriging was then applied to the model resid-
uals, resulting in a combined approach commonly known as
Regression Kriging (RK). The set of evaluated ML models
includes both interpretable baseline models and more advanced
approaches such as ensemble methods and neural networks,
which are described in the following sections.

1) Ridge Linear Regression (RLR): we used Ridge Linear
Regression (RLR) as one of the model we explored. The
standard Ordinary Least Squares (OLS) regression sometimes
tends to yield unstable estimates when some predictors are
highly correlated and they are also prone to overfitting based
on small fluctuations in the training data. RLR can account
for this limitation by adding an L2 regularization penalty term
to the objective function. This penalty shrinks the regression
coefficients towards zero, thereby reducing model variance and
improving generalization [10], [13]. The prediction for a new
input vector x is given by:

Ypred = XT (XTX + )\I)il XTy (1)

where X is the matrix of predictors, y is the vector of
observed rainfall, and A is the complexity parameter that
controls the strength of the regularization.

2) K-Nearest Neighbors (KNN): KNN is a non-parametric
instance-based machine learning algorithm that does not as-
sume a fixed functional form for the rainfall-topography
relationship. Instead, it operates on the principle of feature
similarity. For a target pixel x, the prediction is derived from
the values of its neighbors in the training set; this method was
shown to be effective for downscaling in recent hydrological
studies [10]:

1
Ypred = % Z Yi 2
1EN,

where N, is the set of the k nearest neighbors to z in the
multi-dimensional feature space. This approach inherently pre-
serves the way precipitation values vary together across space,
keeping the original spatial structure of the data intact [14].



3) Multilayer Perceptron (MLP): To capture the non-linear
relationships of the data, we utilized a Multilayer Perceptron
(MLP). The feedforward neural network usually consists of
an input layer, one or more hidden layers with non-linear
activation functions, and a linear output layer for the rainfall
prediction. For a single hidden layer, the model output can be
written as [7]:

3)

where x is the input feature vector; W and b; denote
the weight matrix and bias vector of the hidden layer; g(-) is
the non-linear activation function (e.g., hyperbolic tangent or
ReLU); and W3, and b5, are the output-layer weight vector and
bias term, respectively. The network parameters are optimized
using gradient-based learning to minimize the loss.

4) Random Forest (RF): To address the complex non-
linearity of tropical precipitation, we also used Random Forest.
RF is an ensemble method that constructs a multitude of decor-
related decision trees using bootstrap aggregating (bagging)
and random feature selection at each split [15]. Each tree T} is
trained on a random subset of the data, and the final prediction
is the average of the outputs from the ensemble of B trees:

Ypred = W, g(WIX + bl) + b27

1 B
Ypred = E ; Tb(l’) (4)

where x denotes the input feature vector (e.g., elevation,
coordinates). This ensembling strategy reduces model vari-
ance, making the RF less prone to overfitting than individual
decision trees [16].

5) Gradient Boosting Decision Trees (GBDT): Unlike Ran-
dom Forest, which builds trees independently, Gradient Boost-
ing constructs trees sequentially. Each new tree h,,(z) is
trained to approximate the pseudo-residuals of the current
ensemble. The final prediction is expressed as the sum of
an initial model Fy and the weighted contributions of M
sequentially trained trees [17]:

Z vl (2)

m=1

Ypred = FO(SU) + (5)

where v is the learning rate. By iteratively targeting the
remaining errors, GBDT can reduce model bias relative to
bagged tree ensembles, and previous work has shown im-
proved performance for typhoon-related precipitation extremes
[18].

6) Light Gradient Boosting Machine (LGBM): LGBM is an
optimized version of the gradient boosting method mentioned
above. LGBM uses the same additive prediction model as
standard GBDT, but instead of growing trees level-wise,
it grows trees leaf-wise (best-first). It grows the leaf that
minimizes loss instead of growing individual leaves layer by
layer, LGBM can achieve faster loss minimization for a given
model size. Combined with histogram-based split finding and
other system-level optimizations, this makes LGBM highly

efficient for large datasets and well suited to precipitation
reconstruction tasks [19].

7) Histogram-Based Gradient Boosting (HGBDT): To han-
dle the large spatial grids more efficiently, we used the
Histogram-Based Gradient Boosting method (HGBDT). It
follows the same general idea as standard gradient boosting,
but it speeds things up by grouping continuous variables, such
as elevation or humidity, into histogram bins. By working with
these bins instead of every individual value, the algorithm re-
duces the cost of searching for the best splits. The complexity
drops from being tied to the full dataset to being tied only to
the number of bins and features. In practice, this keeps most of
the accuracy of traditional GBDT models while cutting down
training time and memory requirements [19], [20].

E. Hyperparameter Optimization

To better compare the best configuration of each model,
hyperparameter tuning was done using the Optuna optimiza-
tion framework. For each machine learning model, appropriate
search ranges were specified for the key hyperparameters,
as summarized in Table I. The optimization objective was
to minimize the root mean squared error (RMSE), evaluated
over 50 trials using five-fold cross-validation on the training
dataset. This cross-validation helps ensure that the selected
hyperparameter configurations generalize well to previously
unseen data. The best optimized hyperparameter values used
for each model are also shown in Table I.

TABLE I: Search ranges and optimal hyperparameter values
for each model as found by Optuna.

Model Hyper-parameters Search Range Best Value
RLR Alpha (Regularization)  [0.01, 100] (Log) 7.64
Variogram Model {spherical, exponential, gaussian, linear} Gaussian
No. of neighbors [3, 20] 20
KNN Weighting {uniform, distance} Uniform
Variogram Model {spherical, exponential, gaussian, linear} Gaussian
No. of layers [1, 2] 1
Layer size {50, 100, 150} 100
ANN Activation {relu, tanh} ReLU
Alpha (Regularization)  [0.01, 100] (Log) 0.0006
Initial learning rate [0.0001, 0.01] (Log) 0.0006
Variogram Model {spherical, exponential, gaussian, linear} Gaussian
No. of estimators [50, 300] 282
Max depth [5, 30] 26
RF Min samples split [2, 20] 10
Min samples leaf [1, 10] 10
Variogram Model {spherical, exponential, gaussian, linear} Linear
No. of estimators [50, 300] 235
Max depth [3, 15] 8
GBDT Learning rate [0.01, 0.3] (Log) 0.018
Subsample [0.6, 1.0] 0.888
Variogram Model {spherical, exponential, gaussian, linear} Spherical
No. of estimators [50, 300] 300
Max depth [3, 15] 8
Learning rate [0.01, 0.3] (Log) 0.017
LGBM  Num leaves 120, 150] 125
Subsample [0.6, 1.0] 0.774
Variogram Model {spherical, exponential, gaussian, linear} Spherical
Max iterations [50, 300] 228
Max depth [3, 15] 11
HGBDT Learning rate [0.01, 0.3] (Log) 0.028
Variogram Model {spherical, exponential, gaussian, linear} Linear

F. Model Evaluation

To better reflect the strong seasonal pattern of rainfall in
the Philippines, such as the shifts between the dry months



and the monsoon period, the training and testing data were
further divided into twelve subsets that match the calendar
months. Separate models were then trained and evaluated for
each month so that the learning algorithms could adapt to
the atmospheric conditions that tend to dominate during that
specific part of the year.

Model performance was assessed on the held-out test
stations using continuous metrics such as the Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and
the Coefficient of Determination (R?). The Kling-Gupta Ef-
ficiency (KGE) was also computed to evaluate hydrological
consistency:

KGE=1-/(r—12+(B3—-12+(y—-12 (6

where r, 8, and 7y correspond to correlation, bias ratio, and
variability ratio respectively.

To understand how the models behaved across different
rainfall intensities, precipitation was grouped into No Rain,
Light, Moderate, and Heavy categories. The Probability of
Detection (POD), False Alarm Ratio (FAR), and Critical
Success Index (CSI) were then calculated for each category.
These metrics provided a clearer view of the models’ ability
to capture events across the seasonal cycle [10].

G. High-Resolution Mapping

The model that performed the best was then used to create
daily rainfall maps at a 1 km scale. To prepare the inputs,
the ERAS predictor variables were upscaled through nearest-
neighbor interpolation. The AUREHLY principal components
at each pixel were standardized using the mean and standard
deviation derived from the original fifteen components. The
ML model was used to estimated precipitation for every pixel,
drawing on the broad physical patterns in the reanalysis data
while preserving the finer spatial structure provided by terrain
and station measurements.

ITI. RESULTS AND DISCUSSION
A. Comparative Assessment of Machine Learning Models

The performance of each models was evaluated on four
metrics: Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Coefficient of Determination (R?) and Kling-
Gupta Efficiency (KGE) based on the test set (57 stations).
Table II summarizes the findings on average over the course
of the 12-month study period. Among the evaluated ML
models, the Histogram-based Gradient Boosting Decision Tree
(HGBDT) showed the most promising performance, achieving
the lowest RMSE and MAE of 9.088 and 4.204 respectively.
It achieved the highest R? among the models, with a value of
0.139. While an R? of 0.139 may appear low in absolute terms,
it shows a significant improvement over the raw ERAS5-Land
baseline, which shows a negative R? of -0.827 and a much
higher RMSE and MAE of 13.284 and 6.929. This confirms
that the downscaling framework successfully captures the
local-scale information that coarse reanalysis data cannot.

The top-performing models were tree-based ensemble mod-
els. HGBDT produced the lowest test RMSE of 9.088 with RF

and LGBM only slightly higher at 9.105 and 9.127 respec-
tively. Interestingly, RLR achieved a competitive performance
compared from the tree-based ensemble models with a test
RMSE of 9.27, not that far off from the more complex GBDT
as well. The instance based KNN model, however, had a
much higher Test RMSE of 9.313 than the regression and
tree-based methods. In contrast, the ANN failed to capture
the precipitation dynamics effectively, producing a test RMSE
value of 14.291, which is the highest error rate among the
machine learning models, indicating it performed worse than
a simple climatological average.

TABLE II: Performance metrics of different precipitation
downscaling models averaged across 12 months. Best values
for the testing set are highlighted in bold.

2
Model RMSE MAE R KGE
Train Test Train Test Train Test Train Test
HGBDT  9.443 9.088 4.161 4204 0274  0.139 0235 0.081
RF 8.371 9.105 3.544 4244 0427 0.135 0.349  0.086
LGBM 8.847 9.127 3907 4208 0366  0.131 0318  0.104
GBDT 8.280 9.217  3.805 4258 0.448 0.114  0.383 0.093
RLR 10.163  9.266 4486 4370 0.159  0.105 0.100  0.003
KNN 9.500 9313 4157 4245 0266 0.094 0236  0.088
ANN 12.734 14291 7.040 8.033 -0.382 -1.248 -0.504 -1.062
ERAS5 14.091 13.284 7210 6.929 -0.608 -0.827 -0.445 -0.697

B. Impact of Geostatistical Residual Correction

We examined whether geostatistical post-processing makes
the ML predictions more accurate by exploring the effect
of Ordinary Kriging on model residuals. A clear seasonal
pattern emerges, as shown in Fig. 3. During the dry season
and the transition months (January to May and November
to December), Kriging consistently reduces the RMSE. The
largest improvements occur in December with a reduction of
about 0.035 and in January with a reduction of about 0.032.
These gains appear because rainfall during these periods is
relatively uniform, which allows the spatial structure of the
errors to be interpolated effectively.

The opposite happens during the Southwest Monsoon from
June to October. In this period, the correction increases the
error, at times by up to 0.025. Rainfall becomes highly
convective and varies sharply across short distances, which
violates the assumptions needed for Kriging to work well. As
a result, the method oversmooths features that the HGBDT
model already captured. Overall, residual correction is helpful
only during stable rainfall conditions, while the uncorrected
model performs better during the convective wet season.

C. Categorical Skill and Detection Capability

To assess the operational value of the HGBDT model,
we examined its performance across four rainfall intensity
categories. Fig. 4 shows the monthly patterns of POD, FAR,
and CSI.

The model performs best in detecting days without rainfall.
During the dry season (Months 1-5 and 12), the POD hovers
around 0.71 and the FAR remains below 0.10 consistently
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resulting in CSI values upwards of 0.70; these are stable values
for dry seasons.

For Light and Moderate rain, the model maintains a moder-
ate POD (around 0.50-0.60), but this is paired with very high
false alarm rates, especially for Light Rain (FAR > 0.80).
This shows a general wet bias common in gridded products
across the Philippines [2]. This means that such algorithms
overestimate frequency in low precipitation events to avoid
global residuals during interpolation or regression [4].

The model struggles most with heavy rainfall. The POD
for Heavy Rain (>20 mm) drops below 0.15 during the wet
season (Months 6-9), and CSI values across all rain categories
remain low (<0.20). Although the model captures spatial
rainfall patterns reasonably well, it has difficulty estimating
the intensity of localized rain.
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Fig. 4: Categorical performance metrics (POD, FAR, CSI) of
the HGBDT model across four rainfall intensity classes (No
Rain, Light, Moderate, Heavy) for each month.

D. Spatial Reconstruction of Daily Rainfall

To check how well the downscaling framework performs,
we compared the 1 km precipitation maps it produced with the
original ERAS5-Land data, as shown in Fig. 5. The comparison
shows that the model brings back much of the small-scale
detail that is missing in the coarse reanalysis data. The
HGBDT output better defines orographic features, such as the
rain shadows in Northern Luzon on August 1, which appear
much smoother and more uniform in the baseline maps. It
also captures the patchy structure of tropical convection by
breaking up broad areas of moderate rainfall into smaller
pockets of stronger precipitation, as seen on September 1.
These improvements suggest that the model makes good use
of static topographic information to reduce spatial smoothing
and produce a more realistic picture of the highly variable
rainfall patterns found across the Philippines.

HGBDT - Precipitation 2018-08-01

Eras Land - Precipitation 2018-08-01

(a) Comparison for 2018-08-01: The HGBDT model (left) resolves
sharp orographic boundaries and rain shadows that are blurred in the
ERAS baseline (right).

HGBDT - Precipitation 2018-09-01 Eras Land - Precipitation 2018-09-01

(b) Comparison for 2018-09-01: The HGBDT model (left) recon-
structs localized high-intensity pockets (magenta) within broader rain
bands, correcting the smoothing effect seen in ERAS (right).

Fig. 5: Visual comparison of spatial downscaling results.
The HGBDT model consistently recovers fine-scale spatial
structures and intensity gradients that are lost in the coarse
ERAS5-Land reanalysis data.



E. Discussion

The strong results from the HGBDT model has shown
how useful nonlinear machine-learning approaches can be for
downscaling climate data in tropical regions with complex
terrain. The model was able to capture how topography
and atmospheric variables jointly shape local rainfall, which
helps reduce several biases present in the ERAS-Land dataset.
The spatial patterns it produces also look more physically
realistic, with rainfall placed correctly on windward slopes and
coastal structures appearing much sharper than in the coarser
reanalysis maps.

There is still a balancing act when it comes to lowering the
RMSE while also representing rainfall extremes. The model
often predicts too many light rain events, which increases the
false alarm rate, and it tends to miss heavier rainfall, which
lowers the probability of detection. This behavior reflects the
difficulty of inferring short-lived convective storms from large-
scale atmospheric variables. The seasonal limits of the Kriging
correction also suggest that adding physical covariates to the
interpolation, such as through Regression Kriging, might give
more stable results during the convective season.

IV. CONCLUSION

We produced a daily 1 km x 1 km precipitation dataset
for the Philippines by downscaling ERA5-Land with several
machine-learning models. This study showed that the HGBDT
model was the most effective at reducing error and better
capturing subdaily characteristics of precipitation compared to
the reanalysis. Residual correction via Ordinary Kriging was
successful during dry seasons but not during the predominantly
convective typhoon season. The model also effectively cap-
tured dry days, although it did overpredict the number of light
rains and failed to capture the majority of heavy rain events.
Future studies should assess other deep learning models and
models that can account for data imbalance, especially for
extremes. Ultimately, the final product provides a clearer and
more locally observed representation of precipitation, which
serves as a reliable dataset for hydrological and agricultural
efforts across the Philippines.
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